Two adjacent fields contribute runoff to a collector. Field 1 is 2.0 acres in size and has a runoff coefficient of 0.35. Field 2 is 4.0 acres in size and has a runoff coefficient of 0.65. The rainfall intensity of the storm after the time to concentration is 3.9 in/hr. The peak runoff is most nearly

- $\bigcirc \quad \text{A. 8.7 } \frac{ft^3}{sec}$ $\bigcirc \quad \text{B. 10 } \frac{ft^3}{sec}$
- $\bigcirc \quad \text{C. 13 } \frac{ft^3}{sec}$
- O D. 16 $\frac{ft^3}{ggg}$

FIELD I 2AC. C=0.35 FIELD 2 4AC. C=0.65 i=3.9 IN/HR Q = CIA

 $Q_{p} = (0.35)(3.9in/hr)(2ac) = 2.73cfs$ $Q_{p} = (0.65)(3.9in/hr)(4ac) = 16.14cfs$ $Q_{p} = (0.65)(3.9in/hr)(4ac) = 12.87cfs$ $Q_{p} = 12.87cfs$

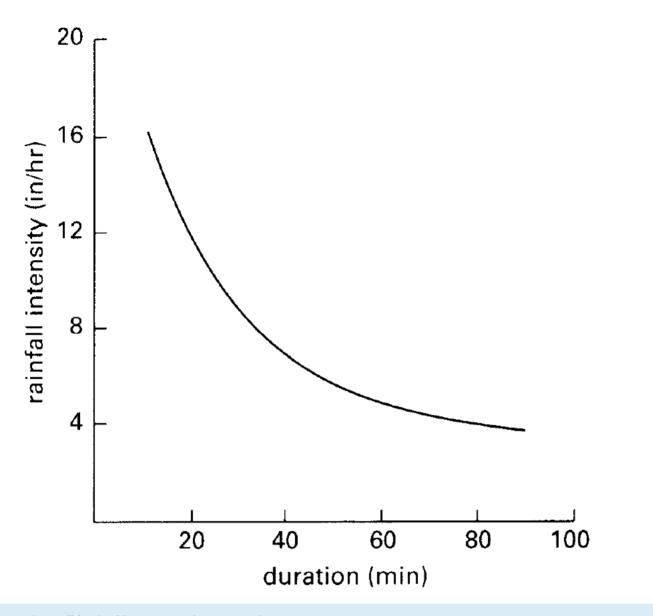
 $C_{COMPOSITE} = (2)(0.35) + (4)(0.65) = 0.55$

 $Q_p = (0.55)(3.9 in/hr)(6ac) = 12.87 cfs$

NOTES PG 171 BIVIL ENGINEURING-(RATIONAL FORMULA)

CIVIL REVIEW MANUAL PY 10-5 "WEIGHTED RUNCH COEFFICIENT" The rational formula runoff coefficient of a 950 ft x 600 ft property is 0.35. A storm occurs with a rainfall intensity of 4.5 in/hr. The peak runoff from this property is most nearly

- $\bigcirc \quad A. \ 21 \ \frac{ft^3}{sec}$
- $\bigcirc \quad \text{B. 30 } \frac{ft^3}{sec}$
- $\bigcirc \quad \text{C. 62 } \frac{ft^3}{sec}$
- O. 90 $\frac{ft^3}{sec}$


Q = CIA $A = 950 \times 600 = 570,000 ft^{2} \frac{1ac}{43,560 ft^{2}}$ = 13,08 acres $Q_{p} = (0.35)(4.5ihhr)(13.08 acres)$ = 20.6 cfs

NOTES pg 2 CONVERSIONS

NOTES pg 171 CIVIL ENGINEGRING

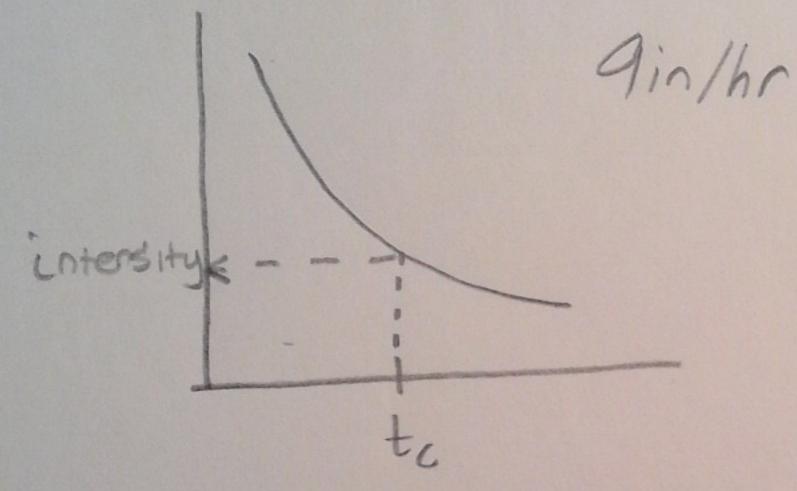
(RATIONAL FORMULA)

A watershed occupies a 70.0 acre site. 45 acres of the site have been cleared and are used for pasture land with a runoff coefficient of 0.13; 3.0 acres are occupied by farm buildings, a house, and paved surfaces and have a runoff coefficient of 0.75; the remaining 22 acres are woodland with a runoff coefficient of 0.20. The total time to concentration for the watershed is 30 minutes. The 20-year storm is characterized by the intensity duration curve shown.

The peak runoff for the 20-year storm is most nearly

$$\circ$$
 a. 50 $\frac{fr}{sec}$

o b. 110
$$\frac{f^{v}}{sec}$$


$$\circ$$
 c. 240 $\frac{fr}{sec}$

o d. 530
$$\frac{f^p}{sec}$$

70 acres

-- Re

45 acres C = 0.13 3 acres C = 0.75 22 acres C = 0.20 $t_c = 30 \text{ minites}$

 $\overline{C} = \frac{(0.13)(45acres)+(0.75)(3acres)+(0.20)(22acres)}{45+3+22}$

= 0.178

 $Q_p = CIA$ = (0.178)(9in/hr)(70 acres) $= (112.5 ft^3/sec$

NCEES pg 171 CIVIL ENGINEERING
CIVIL REVIEW MANUAL PG 10-5
"WEIGHTED RUNOFF COEFFICIENT"

The table shown contains curve numbers based on land use and soil type. A watershed contains 10.0 acres of residential land of soil type B and 5.0 acres of grassland of soil type A.

CN Values

land use	soil type A	soil type B
residential	57	72
grassland	30	58

If the total precipitation is 11 inches, what will be the approximate runoff from the watershed?

- a. 5.4 inches
- O b. 6.0 inches
- c. 6.7 inches
- d. 7.2 inches

$$Q = \frac{(P - 0.25)^{2}}{P + 0.85}$$

$$S = \frac{1.000}{CN} - 10$$

$$CN = \frac{1.000}{S + 10}$$

$$10 \text{ acres}, CN = 72$$

$$5 \text{ acres}, CN = 30$$

$$CN = \frac{(72)(10 \text{ acres}) + (30)(5 \text{ acres})}{10 \text{ acres} + 5 \text{ acres}}$$

$$= 58$$

$$S = \frac{1000}{58} - 10 = 7.24$$

$$Q = \frac{(11 - 0.2(7.24))^{2}}{(11 + 0.8(7.24))} = 5.43 \text{ inches}$$

NCEES pg 171 CIVIL ENGWERRING

A drainage basin covers an area of 2.4 acres. During a storm with a sustained rainfall intensity of 0.6 inches per hour, the peak runoff from the basin is 320 gallons per minute. What is most nearly the runoff coefficient for the basin?

- A. 0.38
- O B. 0.50
- O. 0.65
- O D. 0.85

Q = CIA A = 2.4 acres i = 0.6 in/hr Q = 320 gpm $O.134 \text{ ft}^3$. $Imin_{60sec} = 0.714 \text{ ft}^3/\text{sa}$ $C = \frac{Q}{iA} = \frac{0.7146}{0.6 \times 2.4} = 0.496$

NCEES pg 2 CONVERSION FACTORS

A model of a dam has been constructed so that the scale of dam to model is 15:1. The similarity is based on Froude numbers. At a certain point on the spillway of the model, the velocity is 5 meters per second. At the corresponding point on the spillway of the actual dam, the velocity would most nearly be

- $\bigcirc \quad \text{a. 6.7 } \frac{m}{sec}$
- O b. 7.5 $\frac{m}{sec}$
- O c. 15 $\frac{m}{sec}$
- O d. 19 $\frac{m}{sec}$

NCEES P117 FLUID MECHANICS [From] = [Frmoder] 7944 VMODEL 7994moder 79 YHDAM VMODEL 79 YHDAM - VMODEL TO TYHORM
TO TYHORE - VMODEL 7/15

 $=5m/s\sqrt{15}=19.36m/s$

An open channel has a cross sectional area of flow of 0.5 meters², a hydraulic radius of 0.15 meters, and a roughness coefficient of 0.15. The slope of the hydraulic gradient needed to achieve a flow rate of 10 liters per second is most nearly

O a.
$$1.1 \times 10^{-4}$$

O b.
$$1.1 \times 10^{-3}$$

$$\circ$$
 c. 6.7 × 10⁻⁴

O d.
$$6.7 \times 10^{-3}$$

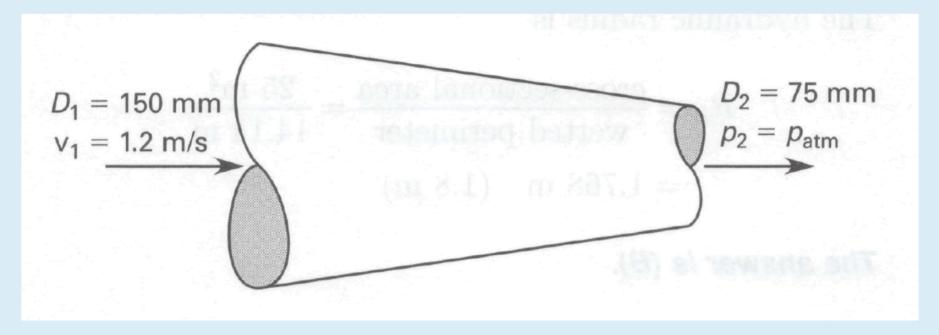
$$Q = \frac{1}{n} A R_{H}^{2/3} 3^{1/2}$$

$$A = 0.5m^{2}$$

$$R_{H} = 0.15m$$

$$M = 0.15$$

$$Q = \frac{10L}{5ec} \cdot \frac{1m^{3}}{1000L}$$

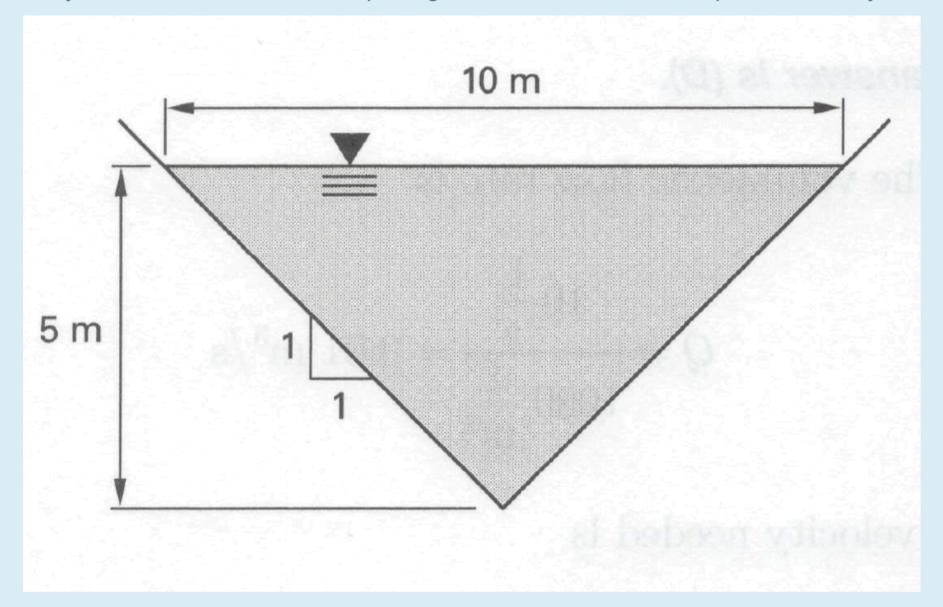

$$S = ?$$

$$S^{1/2} = \frac{Q \cdot N}{A R_{H}^{2/3}} = \frac{(0.01)(0.15)}{(0.5)(0.15)^{2/3}} = 0.0106$$

$$S = (0.0106)^{2} = 0.0001/29$$

$$1.129.10^{-4}$$

NCEES PG 111 FLUID MECHANICS NCEES PG 173 CIVIL ENGINEERING NCEES PG 2 CONVERSIONS Water flows through a converging fitting as shown and discharges freely to the atmosphere at the exit. Flow is incompressible, and friction is negligible.


The gage pressure at the inlet is most nearly

- O A. 10.2 *kPa*
- O B. 10.8 *kPa*
- O. 11.3 kPa
- O D. 12.7 kPa

NOTES PO 109 FLUID MECHANICS A, V, = A2 V2 NCEES P9 110 FLUID MECHANICS P1 + 1/2 + 2, = 1/2 + 2/2 + 2/2

1 - 29 + 21 = 1/2 + 2/2 + 2/2 1=INLET 0998 2=00TLET P'= 12 + 12 - 12 + 22 = 0 V_=1.2m/s p/= 1/2 1/2 2g 2g A) = 0/1 A A2 = 02 T Dix, = D2 x V2 $V_2 = \frac{D_1^2}{D_2^2}V_1 = \left(\frac{D_1}{D_2}\right)^2V_1 = \left(\frac{150mm}{75mm}\right)^2V_1 = 4V_1$ V,=1.2m/s V2=4(1.2)=4.8m/s $\frac{p_1}{g} = \frac{(4.8m/s)^2 - (1.2m/s)^2}{2g}$ $p_1 = \frac{2g}{2g} \frac{2g}{2g}$ $p_2 = \frac{(4.8m/s)^2 - (1.2m/s)^2}{2g} \frac{19g}{2g}$ = [4.82 - 1.2] [1000kg] [9.8m/s2] 2(9.8m/s2 2(9.8m/s2) [9.8m/s2] = 10,800 kgm = 10,800 Pa = 10,8 kPa

The hydraulic radius of a 5 meter deep triangular channel with 1:1 side slope is most nearly

- A. 1.0 meters
- O B. 1.8 meters
- O. 2.0 meters
- O D. 2.8 meters

NOTES Py III FLUID MECHANICS RA = A PW

5 m 45°

L cos 45 = 5

 $L = \frac{5}{\cos 45} = 7.071m$

Lsin 45 = W

7.071 sin 45 = W = 5

Pw=2L = 2(7.071)=14.142

 $R_{H} = \frac{25m^{2}}{14.142m} = 1.76m$

A pipe carrying an incompressible fluid has a diameter of 100 millimeters at point 1 and a diameter of 50 millimeters at point 2. The velocity of the fluid at point 1 is 0.3 meters per second. What is most nearly the velocity at point 2?

- A. 0.95 m/s
- B. 1.2 m/s
- O. 2.1 m/s
- O D. 3.5 m/s

$$A_{1}V_{1} = A_{2}V_{2}$$

$$A_{1} = \prod D_{1}^{2}$$

$$A_{2} = \prod D_{2}^{2}$$

$$V_{2} = A_{1}V_{1} = A_{2}V_{1} = A_{2}V_{1} = A_{3}V_{1} = A_{4}V_{1}$$

$$= (D_{1})^{2}V_{1}$$

$$= (D_{2})^{2}V_{1}$$

$$= (D_{2})^{2}V_{1}$$

$$V_{2} = A(0.3m/s) = 1.2m/s$$

Water drains at a constant rate through a saturated soil column with a diameter of 1 foot and a height of 2 feet. The hydraulic head is maintained at 5 feet at the top of the column and 0.5 feet at the bottom of the column. After a period of 1 hour, 100 in³ of water has drained through the column. What is most nearly the hydraulic conductivity of the soil?

O A.
$$3.5 \times 10^{-6} \frac{ft}{sec}$$

O B.
$$4.6 \times 10^{-6} \frac{ft}{sec}$$

$$\circ$$
 C. 7.3 × 10⁻⁶ $\frac{ft}{sec}$

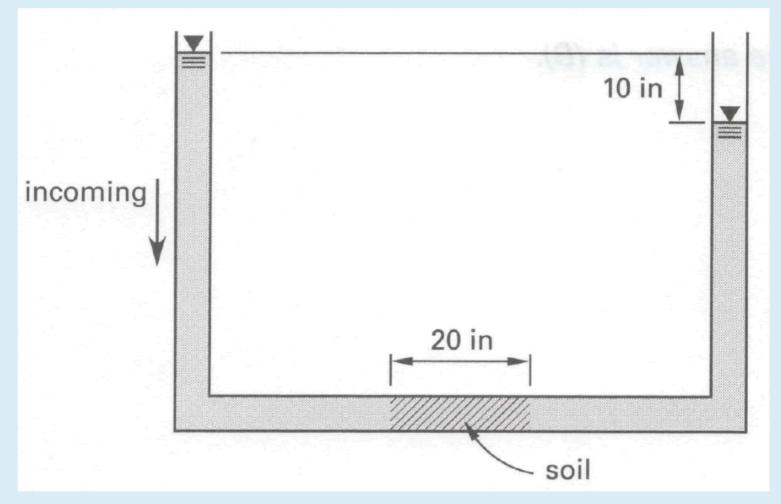
O D.
$$9.1 \times 10^{-6} \frac{ft}{sec}$$

NCESS Pg 152 CIVIL ENGINEERING

$$i = \frac{5f+-0.5f+}{2f+} = \frac{4.5f+}{2f+}$$

$$= 2.35$$

$$\frac{1}{2} \int_{-1}^{1} \int_{-1}^{1}$$


$$k = \frac{0.0578744^{3}}{(2.25)(0.785444^{2})(36005ee)} = 0.00000909$$

$$(2.09.10^{-6}44)$$

Darcy's law is primarily associated with flow through

- A. open channels
- O B. pipes
- C. pitot tubes and venturi meters
- O. porous media
- E. V8 engines

A soil sample with a permeability of $5 \times 10^{-6} \frac{inches}{sec.}$ will be tested using the pipe setup shown. The pipe's diameter is 2 inches. The 10 inch head differential will be maintained.

The volumetric flow rate is most nearly

O A.
$$2.5 \times 10^{-6} \frac{in^3}{sec.}$$

O B.
$$4.9 \times 10^{-6} \frac{in^3}{sec.}$$

O C.
$$7.9 \times 10^{-6} \frac{in^3}{sec.}$$

O D.
$$3.0 \times 10^{-5} \frac{in^3}{sec.}$$

NEES FIJ 171 CIVIL ENGINEERING

$$Q = -KA \frac{dh}{dx} = KA \frac{\Delta h}{\Delta L}$$

$$Ah = 10in$$

$$AL = 20in$$

$$AL = \frac{10}{20} = 0.5$$

$$A = \pi (2in)^2 = \pi in^2$$

$$K = 5.10^{-6} in/sec$$

$$Q = (5.10^{-6} \text{in/sed})(\pi \text{ in}^2)(0.5)$$

$$= 0.00000785$$

$$7.85-10^{-6} \text{in/sec}$$

An aquifer has a thickness of 52 feet and a transmissivity of 650 $\frac{ft^2}{day}$. What is most nearly the hydraulic conductivity of the aquifer?

- A. 2.5 ft/day
- B. 6.3 ft/day
- C. 13 ft/day
- D. 33 ft/day

NEES pg 17) CIVIL ENGINETERING T = Kb $K = \frac{T}{b} = \frac{650ft^2}{day} = 12.5ft/day$

The results of well pumping tests from a homogeneous, unconfined aquifer are shown. At the time of the tests, the pumping had continued long enough for the well discharge to become steady

Pumping Test Results

<u>parameter</u>	<u>value</u>
pumping rate	20 gal/sec
well diameter	1.5 ft
radius of influence	900 ft
aquifer depth at radius of influence	135 ft
drawdown in well	11 ft

The hydraulic conductivity of the aquifer is most nearly

$$\bigcirc$$
 A. 1.2 × 10⁻³ $\frac{ft}{sec}$

$$\bigcirc \quad \text{B. } 2.1 \times 10^{-3} \ \frac{ft}{sec}$$

$$\bigcirc$$
 C. 5.0 × 10⁻³ $\frac{ft}{sec}$

O D.
$$8.7 \times 10^{-3} \frac{ft}{sec}$$

NCEES BY 171 CIVIL ENGINEERING

$$Q = \pi K (h_{2}^{2} - h_{1}^{2})$$

$$In(\frac{r_{2}}{r_{1}})$$

$$Q In(\frac{r_{2}}{r_{1}}) = \pi K (h_{2}^{2} - h_{1}^{2})$$

$$Q In(\frac{r_{2}}{r_{1}}) = \pi K (h_{2}^{2} - h_{1}^{2})$$

$$\pi (h_{2}^{2} - h_{1}^{2}) = K$$

$$Q = 209al \times \frac{0.134 ft^3}{19al} = 2.68 ft^3$$

$$K = \frac{\left(2.68 + \frac{4}{5}^{3}\right) \ln \left(\frac{900 + 4}{0.75 + 4}\right)}{\pi \left(\left(\frac{135 + 4}{5}\right)^{2} - \left(\frac{135 - 11}{5}\right)^{2}\right)}$$