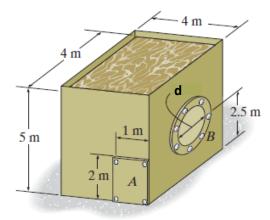

Fluid Properties

An experimental test using an unknown fluid indicates that it exerts a shear stress of $\tau = 98.5 \text{ N/m}^2$. Determine the apparent dynamic viscosity of the unknown fluid.

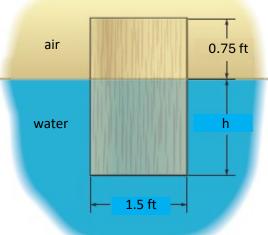
3 m/s

Fluid Measurement

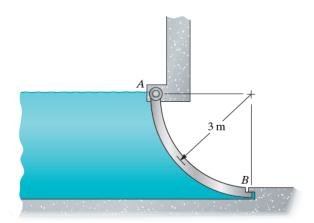
The inverted U-tube manometer is used to measure the difference in pressure between water in pipe A and oil in pipe B (s_{oil} = 0.95). Segment CD is filled with mercury (s_{Hg} = 13.5). Determine the magnitude of the pressure difference between pipes A and B.


Δp = _____

Fluid Statics

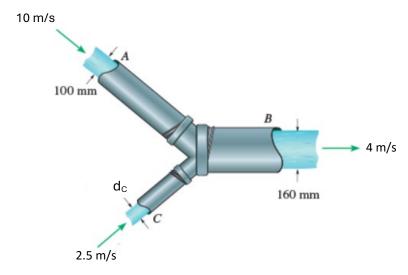

The tank contains oil (s = 0.95) and the maximum resultant force the glass of window B can support is 50 kN. Determine the maximum diameter of window B.

 $d_B = \underline{\hspace{1cm}}$


The 210 lb cylinder floats in water to the level shown. Determine the depth the cylinder is submerged.

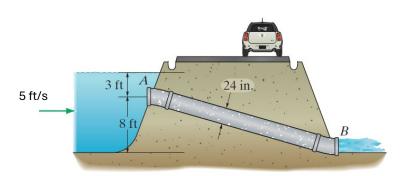
h = ____

Gate AB has a width of 2 m into the page and the radius shown. Determine the resultant force of the water acting on the gate. You will not receive full credit without a free body diagram of gate AB.


 $F_R = \underline{\hspace{1cm}}$

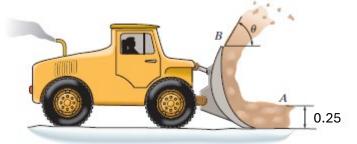
Conservation of Mass

Water flows into pipes A and C and exits pipe B. The velocities and known diameters are shown on the figure. Determine the required diameter at entrance pipe C.

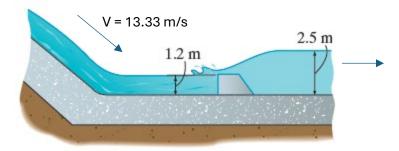

d_C = _____

Energy – Bernoulli's Equation

The water in an open channel drainage canal flows with a velocity of 5 ft/s into the drainpipe that crosses a highway embankment. Determine the volumetric discharge through the pipe. *You may neglect any losses.*

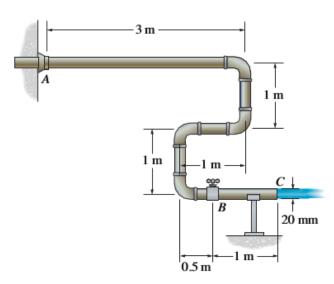

Q = ____

Momentum


The snow plow is shoveling 250 mm deep snow slush (120 kg/m³). The blade is 3 m wide (into the page) and the angle of the slush as it exits point B is 70°. Determine the maximum speed the plow can travel if the traction force just before slipping is 4 kN. You may assume the slush is thrown off the blade at the same rate it enters.

٧	=								

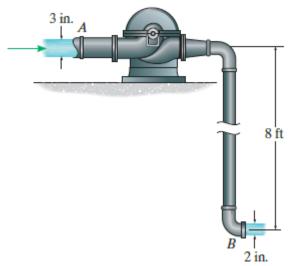
A rectangular stilling basin is 5 m wide and is used to confine the flow over a spillway. The slow the flow, baffle blocks are used. Determine the horizontal force on the blocks if the upstream velocity of the water is 13.33 m/s.


F_H = _____

Pipe Losses

Water at flows through the 20 mm diameter, re-entrant, galvanized iron pipe (ϵ = 0.15mm) such that it discharges as an open jet at C from the fully opened gate valve B at 0.003 m³/s. All elbows may be considered short radius. Determine the major and minor losses within the system. v_{water} = 1.00(10⁻⁶)m²/s

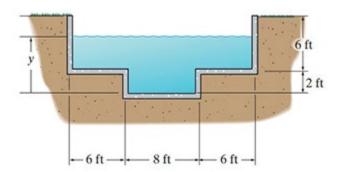
$h_{Lmajor} = $	 	
h _{Lminor} =		


Energy Equation

A reservoir is used to provide flow of 0.85 m³/s to a turbine for generation of electricity. A 200 m long reinforced concrete pipe (ϵ = 0.0003 m) with diameter 600 mm carries flow to the turbine. The pipe includes a flush entrance on the upstream side of the dam and an open angle valve. The turbine discharges into a downstream tank. The turbine runs at 0.92 efficiency. *This drawing is not to scale*. v_{water} = 0.474 (10⁻⁵) m²/s Calculate the major and minor losses in this system.

h _{Lmajor} =	∇ Elev. = 900 m
h _{Lminor} =	

The pump discharges water at B at 0.3 $\rm ft^3/s$. If the head loss from A to B is 2 ft and the pump adds 45 ft of head to the system. Determine the pressure at A.


p = _____

Open Channels

Determine the flow through the channel if y = 6 ft, $S_0 = 1.5/1000$, and n = 0.02.

Q = _____

