Fluid Mechanics (New Engine)

Multiple Choice 1 point

The pitot tube shown below is placed at a point where the velocity is 4.5 m/s. The specific gravity of the fluid is 2.5, and the upper portion of the manometer contains air.

The reading h (m) on the manometer is most nearly:

- 4.05
- 25.0
- 1.03
- 45.0

2

Multiple Choice 1 point

If the standard density of water is 1,000 kg/m³, a fluid having a specific gravity of 1.524 and an absolute dynamic viscosity of 1.3 kg/(m \bullet s) has a kinematic viscosity (m²/s) of most nearly:

- 8.53 x 10⁻⁴
- 1.17 x 10⁻³
- 1.30 x 10⁻³
- 1.98 x 10⁻³

The rectangular homogeneous gate shown below is 6.00 m high x 1.00 m wide and has a frictionless hinge at the bottom.

If the fluid on the left side of the gate has a density of $1,750 \text{ kg/m}^3$, the magnitude of the force **F** (kN) required to keep the gate closed is most nearly:

- **24**
- O 51
- **154**
- 103

Multiple Choice 1 point

Archimedes' principle states that:

- the sum of the pressure, velocity, and elevation heads is constant
- a floating body displaces a weight of fluid equal to its own weight
- flow passing two points in a stream is equal at each point
- the buoyant force on a body is equal to the volume displaced by the body

Four water tanks are shown with varying heights H and varying nozzle cross-sectional areas A_0 . Assume no minor losses in the discharge and a common coefficient of discharge C = 0.6 for all the nozzles.

List the tanks from lowest to highest magnitude of discharge velocity

- Tank D, Tank B, Tank C, Tank A
- Tank D, Tank C, Tank A, Tank B
- Tank B, Tank A, Tank C, Tank D
- Tank A, Tank C, Tank B, Tank D

A 1-in-diameter jet of 50° F water is deflected 90° by an angled chute as shown. The water enters with a velocity of 32.5 ft/sec and freely exits into the atmosphere with the same velocity.

The forces (lb) in the x and y directions of the chute are most nearly:

- $F_x = 15.80 \text{ lb}$
 - Fy = 0
- $F_x = 0$
 - Fy = 7.90 lb
- $F_x = 15.80 \text{ lb}$
 - Fy = 15.80 lb
- $F_x = 0$
 - Fy = 15.80 lb