ID-10-1-US Circular	
Purpose:	Compute discharge in a circular section using Manning's equa-
	tion assuming normal (uniform) flow
Required Tools:	Calculator/Slide-Rule, or Logarithmic and Trigonometric Tables
Input Data:	Manning's n ; Conduit Slope, S_0 , (dimensionless);
	Flow Depth, d , (in feet); and Conduit Diameter, D , (in feet)
Output Values:	Discharge, Q , (in cubic feet per second)
Use:	When on-line tools or spreadsheet tools are unavailable.
1. Manning's $n =$	
2. Flow Depth $d =$	feet.
3. Conduit Diameter $D =$	feet.
4. Conduit Slope $S_0 =$	
5. Ratio of flow depth to diameter; $\frac{d}{D} =$	
6. Compute $cos(\alpha) = 1 - 2 \times \frac{d}{D} =$	
7. Compute the inverse cosine of the result in line [6] in radians . Enter the result below.	
$\cos^{-1}(1-2 \times \frac{d}{D}) = \alpha =$	
8. Compute the flow area using	
$A = \frac{D^2}{4} \times (\alpha - \sin(\alpha)\cos(\alpha))$	$s(\alpha)) = $ feet ² .
9. Compute the wetted perimeter	
$P_w = \alpha \times D =$	feet.
10. Compute the hydraulic radius, $R_h = \frac{A}{P_w} =$ feet.	

CE 3372 – Water Systems Design ID-10-T-US Circular

ID-10-T-US Circular

CE 3372 – Water Systems Design

${\rm SPRING}~2017$

16. Compute Line[13] raised to the 2/3-rds power;

17. Multiply Line [16], Line [15], and Line [12];

$$R_h^{2/3} \times \sqrt{S_0} \times A =$$

18. Multiply Line [17] by 1.49;

 $1.49 \times R_h^{2/3} \times \sqrt{S_0} \times A =$

19. Divide Line [18] by Line [11], result is discharge, Q.

 $Q = \frac{1.49}{n} \times R_h^{2/3} \times \sqrt{S_0} \times A =$ cubic feet per second.