CE 3372 - Water Systems Design
 ID-10-T-SI Circular

Purpose:	Compute discharge in a circular section using Manning's equation as- suming normal (uniform) flow
Required Tools:	Calculator/Slide-Rule, or Logarithmic and Trigonometric Tables
Input Data:	Manning's $n ;$ Conduit Slope, S_{0}, (dimensionless); Flow Depth, d, (in meters); and Conduit Diameter, D, (in meters)
Output Values:	Discharge, Q, (in cubic meters per second)
Use:	When on-line tools or spreadsheet tools are unavailable.

1. Manning's $n=$
2. Flow Depth $d=$ \qquad meters.
3. Conduit Diameter $D=$ \qquad meters.
4. Conduit Slope $S_{0}=$ \qquad
5. Compute ratio of flow depth to diameter; $\frac{d}{D}=$ \qquad
6. Compute $\cos (\alpha)=1-2 \times \frac{d}{D}=$ \qquad
7. Compute the inverse cosine of the result in line [6] in radians. Enter the result below.

$$
\cos ^{-1}\left(1-2 \times \frac{d}{D}\right)=\alpha=
$$

8. Compute the flow area using
9. Compute the wetted perimeter

$$
P_{w}=\alpha \times D=
$$

10. Compute the hydraulic radius, $R_{h}=\frac{A}{P_{w}}=$ \qquad meters.
11. Copy the value from Line [1], $n=$
12. Copy the result from Line [8], $A=$ \qquad meters ${ }^{2}$.
13. Copy the result from Line [10], $R_{h}=$ \qquad meters.
14. Copy the result from Line [4], $S_{0}=$ \qquad
15. Compute square root of Line [14],

$$
\sqrt{S_{0}}=
$$

\qquad
16. Compute Line[13] raised to the $2 / 3$-rds power;

$$
R_{h}^{2 / 3}=
$$

\qquad
17. Multiply Line [16],Line [15], and Line [12];

$$
R_{h}^{2 / 3} \times \sqrt{S_{0}} \times A=
$$

18. Multiply Line [17] by 1.0 ;

$$
1.0 \times R_{h}^{2 / 3} \times \sqrt{S_{0}} \times A=
$$

\qquad
19. Divide Line [18] by Line [11], result is discharge, Q. $Q=\frac{1.0}{n} \times R_{h}^{2 / 3} \times \sqrt{S_{0}} \times A=\quad$ cubic meters per second.

