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UNIT CONVERSION

Data listed in this report are defined in the inch-pound system of units.
A list of these units and the factors for their conversion to International
system of units (5I) are provided below.

Abbreviations of units are defined in the conversion table below or where
they first appear in the text. Symbols are defined where they first appear in
the text.

e : _ . By - ) in SI ;
foot (ft) 0.3048 meter (m)
inch (in} 0.02540 meter (m)
pound (lb) 4,448 newton (N)
slug 14.59 kilogram (kg)
slug per cubic foot tslugfft3} 515.4 kilogram per cubic meter
(kg/m3)
slug per foot second 47 . BB newton per meter second
(slug/s ft) (N/m?)
pound per cubic foot (lb/ft3) 157.1 newton per cubic meter (N/mY)
pound per square foot (lb/ftZ2) 47.88 pascal (Pa)
square foot per second (ft2/s) 0.092%0 square meter per second (m¢/s)
pound per square inch (1b/in?) 6,895 pascal (Pa)
pound per cubic inch (lb/in3) 271,400 newton per cubic meter (N/m3)
pound per inch (lb/in) 175.1 newton per meter (N/m)
pound second per sguare foot 47 .88 pascal second (Pa s}
(1b s/ft2)
foot per square second (ft/s<) 0.3048 meter per square second (m/s¢)
cubic foot per second (ft2/s) 0.02832 cubic meter per second (m3/s)
degr=e Fahrenheit (°F) °C = (°F-32)/1.8 degree Celsius (°C)
SYMBOLS AND UNITS
Symbol Explanation Unit
A Total area of a section fr 2
Aj Total cross-section area at the cross-section number i £rl
aj Area of a subsection i £r2
B Width of opening fr
b Width of channel upstream of opening 2 o
C Chezy resistance coefficient ftl/2yg
D Depth £k
D Brink depth i
Do Critical depth ft
Dg Normal depth ft
Dp Diameter or height of a culvert £r
d Depth in overflow section ft
dp Particle size that is larger than p percent of the hed £t
material
E Specific energy ft
F Force 1b

wi
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Horizontal force

Fesultant force

Drag force

Water-pressure force

Froude number

Vertical force

Shear force

Darcy-Weisbach friction factor
Acceleration of gravity

Total head

Hydraulic (piezometric) head
Head loss due to local causes
Head loss due to boundary fricticon
Head loss due to any cause

Tail-water elevation

Velocity head

Acceleration

Convayance

Total conveyance at cross=-section number i
Effective roughness height of boundary
Expansion or contraction losa coefficient
Conveyance at subsection i

Local losa coefficient

Distance along channel or length of structure

Length scale for Reynolds number or Prandtl's mixing

length :
The meander length of a channel reach

The straight length of a channel reach
Mass

Channel contraction ratio
Manning's roughness factor

Wetted perimeter of channel or height of weir
Pressure

Pressure at the center of pressure
Discharge

Discharge per unit width

Hydraulic radius

Reynolds number

Radius of curvature

Slope

S5lope of energy grade line
Friction salope

Specific gravity of £fluid

Slope of bed

Top width of the channel

Time

Shear velocity

Average or mean velocity

Critical wvelocity

Local velocity

Widch

vii

1b
1k
1b
1b

1b
1b

£t /sl
ft
o ol
ft
£t
ft

£r

ft,l"a2

fr3/ g

ft3fs
ot

fr3/s
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fr
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Explanation

Width of overflow section

Weight of water

Horizontal coordinate direction

Vertical coordinate direction

Depth to center of pressure

Elevation

Distance from datum to culwvert invert
Kinetic energy coefficient or Cariolis coefficient
Specific weight of the fluid

Energy loss

Change in water-surface elewvation

Slope angle of bed or angle of V-notch weir
von Karman constant

Dynamic viscosity

Kinematic wviscosity

Density of the fluid

Shear stress

Shear stress at the bed
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BASIC HYDRAULIC PRINCIPLES OF OPEN-CHANNEL FLOW

by Harvey E. Jobson and David C. Froehlich

ABSTRACT

The three basic principles of cpen-channel-flow analysis--the conserva-
tion of mass, energy, and momentum--are derived, explained, and applied to
solve problems of cpen-channel flow. These principles are introduced at a
level that can be comprehended by a person with an understanding of the prin-
ciples of physics and mechanics eguivalent to that presented in the first
college level course of the subject. The reader is assumed te have a working
knowledge of algebra and plane geometry as well as some knowledge of calculus.

Once the principles have been derived, a number of example applicatiocns
are presented that illustrate the computation of flow through culverts and
bridges, and owver structures, such as dams and weirs.

Because resistance to flow is a major obstacle to the successful appli-
caticn of the energy principle to open=-channel flow, procedures are outlined
for the rational selection of flow-resistance coefficients. The principle of
specific energy is shown to be useful in the prediction of water-surface
profiles both in the qualitative and quantitative sense.

INTRCDUCTION

Most of the principles and concepts presented in a beginning level
college course in fluid mechanics are presented herein, but their application
is focused on cpen-channel hydraulics. Some concepts that are unigque to open
channels--for example, specific energy and channel roughness--are developed in
somewhat more detail here than would be expected in an introductory cocllege
coursea,

It ia assumed that the reader is familiar with the physical principles
of mechanics, at least to the level covered by a beginning college physics
bock. The reader also is assumed to have a working knowledge of algebra and
trigonometry and to comprehend simple derivatives and integrations.

The emphasis of this text is on teaching the application of the theory
of hydraulies to solving practical problems and not on the standard techniques
used in problem solutions. The final egquations developed in this text are
frequently used as the starting point in other chapters of Beook 2 of the
Techniques of Water-Resocurces Investigations of the U.5. Geological Survey.

Manuscript approved for publication November 17, 1388.




PART I - BASIC PRINCIPLES OF HYDRAULICS FOR AN IDEAL FLUID

Lesson 1 - Fluid Properties

All quantities used in this report can be defined in terms of three
basic units (length (foot), time (second), and mass {slug)). Another guantity
that is commonly used is force (pound), but the units of this guantity are
defined in terms of mass and acceleration.

The weight on earth (force) of a mass of one slug is defined to be 32.2
pounds (lb). Therefore, the units of pounds force are equivalent to the units

of slug feet per second sgquared (slug ft/s2) or
Force = F = 32.2 lb = Mg = (1 slug) 32.2 fr/s2,

where the mass of the bedy is M, and g is the acceleration of gravity (32.2
£t/s%) .

Because fluid does not have a definite form and specific particles of
fluid are difficult to identify, it is customary to work with the weight or
mass of fluid per unit volume. The mass of a fluid per unit volume is defined
as its density (p):

Mass of fluid (=slugs)
Volume of fluid (ft3)

Density = p =

The specific (unit) weight of a fluid ¥ is defined as:

Weight of fluid (1b)
Volume of fluid (ft3)

Specific weight = vy =

The specific gravity of a fluid is defined as the ratic of the density

of the fluid to the density of water at standard conditions {(1.94 slugs/ft3) --
that is,

density of fluid (slugs/ft3)
density of water (slugs/ftd)

Specific Gravity = 54 =

Because it is a ratio, specific gravity is unitless. By multiplying both the
numerator and the dencminator of the expression for the specific gravity by g,
it is seen that the specific gravity alsc is equal to the ratio of specific
weights,

slug ft!az} 1l slug ft
Pe Ps (ft3) g Tt (23 52 e (1b/£e3)
sg-_- - = r

Py slu 2 1 slug ft\ v, (1b/ft3)
Py (_f;‘ig') gi{ft/==) Y [ft3 +) W
in which the subscripts f and w refer to the fluid and water, respectively. A
fluid is a substance that can flow. Specifically, this means that it continu-
ally deforms as long as a shearing stress is applied and that the internal
shear stress is a function of the rate of deformatien rather than the amount
of deformation as in a solid, A Newtonian fluid is a substance in which the
internal shear stress is determined as




-y g —

T = %3 ; (1-1)

in which T is the shear stress {lh{ftz}, dv is the change in velocity (ft/s)

that occurs over a small distance dy (ft), and the dynamic viscosity M 2 %? or
fr

slug , " ' . A i .
;—Ef is a specific fluid property, which is a measure of its resistance to

deformation (shear or flow). Table 1-1 contains some tabulated wviscosities of
fluids and gases. The kinematic wviscosity Vv is defined as

v o= B slug/s ft - fr2
p slug/ft3 2

Figure 1-1 shows a free body diagram of an isolated bleock of fluid of
height vy, width dx, and thickness of 1 foot. Figure 1=1 is called a free-body
diagram. A free-body diagram is a cutaway view of the fluid or object in
which the effect of any surface that is cut is replaced by the forces exerted
on that surface. For example, the bottom surface could axert a shear force
(tdx (1)) on the fluid and a pressure force (pdx{(l)). These are the only
forces the water beneath could exert on the block of fluid. The fluid is at
rast, tharafara; all shear stresses (T) are zero (see egquation 1-1).

T T Figure 1-1.--Free-body diagram of
fluid element.

[}
| = |
g dx |

The pressure (p) at the bottom of the block in figure 1-1 can be com-
puted as follows. Because the sides are wvertical and the shear stress is

zero, the weight (wt) is balanced by the pressure at the bottom times the area
of the bottom of the block or

wt = pdx(l),
but the weight is

wt = YVolume = ¥y ydx(l)
or

Yydx(l) = pdx(l);
therefore

B =1 ¥ (1=2)

which shows that in a fluid at rest, the pressure increases linearly with
depth below the surface.



Table 1-1.--Mechanical properties of some fluids

[f1:3'4r cubic foot: lh!ft3, pounds per cubic foot; s lb, second times pound;
; °F, degrees Fahrenheit] *

(A) Some properties of air at atmospheric pressure

Temperature Density Specific weight Kinematic wviscosity
°p slug/ft> 1b/£t3 ft2/s
P ¥ v
0 0.00268 0.0B62 12.6 x 10-5
40 .00247 L0794 14.6 x 1073
80 .00228 .0735 16.9 x 1075
120 .00215 .0684 18.9 x 1072

(B) Mechanical properties of water at atmospheric pressure

Temperature Density Specific weight Dynamic wviscosity
°F slug/ft3 1b/fr3 s 1b/ftZ
p Y H
32 1.94 62.4 3.75 x 1073
40 1.94 62.4 3.24 x 103
50 1.94 62.4 2.74 x 10™3
60 1.94 62.4 2,36 % 1073
70 1.94 62.3 2.04 x 10°5
80 1.93 62.2 1.80 x 10-5
90 1.93 62.1 1.59 x 10°2
100 1.93 62.0 1.42 x 1075
120 1.92 61.7 1.17 x 1075
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Table l1-1.--Mechanical properties of some fluids--continued

(C) Specific gravity and kinematic wviscosity of certain liguids

(Kinematic wiscosity = tabular value x 1079)

Medium
Carbon tetrachloride — lubricating aodil
Kinematic Kinematic
Temperature Specific wiscosity Specific viscosity
°F gravity ft/s gravity ft2/s
Sg v Sg ¥
40 1.621 0.810 0.905 477
60 1.545 .700 .B98 188
a0 1.569 L8077 .888 94
100 1.542 .530 .BA2 49,2
—Medium fyel pil —Begular gasoline
KEinematic Kinematic
Temperature Specific viscoaity Specific viscosity
°F gravity ft2/s gravity ft2/s
5g v Sg v
40 0.B65 6.55 0.738 0.810
60 .B58 4,75 .728 . 730
g0 851 3.685 L7149 .6860
100 .B43 2.78 .710 . 600

{D) Specific gravity and kinematic viscosity of some
other liguids

Liquid and temperature

Turpentine at 68 °F
Linseed oil at A6 °F
Ethyl alcohol at 68 °F
Benzene at &8 °F
Glycerin at 68 °F
Castor oil at 68 °F

Light machinery oil at 62 °F

Kinematic
Specific viscoaity
gravity £e2/3
Sg v
0.B62 1.86
. 925 38.6
.783 1.85
LB79 0.802
1.262 711
. 960 1,110
L5907 147




PROELEMS

1. Compute your mass in slugs.

2. The density of alcohol is 1.53 slugs/ft3,
and specific gravity.

Calculate its specific weight




3. A stream gager falls in the river and gets his boots full of water. He

= manages to get to shore but his boots are still full of water. What is
the maximum pressure inside his boots when he stands up? His boots are 3
= feet high.
- [ - .',' =<
3t
L}
-.-l""-"'

4. The inside of a pipe, which has an inside diameter of 6 inches, is coated
with heavy oil. A 2-1b cylinder € inches long and 5.98 inches in diame-
ter falls through the vertical pipe at a rate of 0.15 ft/s. Caleulate

- the dynamic wiscosity of the oil.




Lesson 2 - Forces on Submerged Objects
Only fluids at rest will be dealt with in this lesson se no tangential
(shear) forces are exerted, and hence all forces are normal to the free hody
surfaces in question. Consider the force on a vertical rectangular gate as
illustrated in figure 2-1. As seen from equation 1-2, the pressure increases
with increasing distance below the water surface; hence, the force (dF) on a
narrow strip of the gate of height dy and width W is computed as
dff = p dh = Yy W dy.
Figure Z-1.--Pressure prism for
vertical rectangular |
gate.
o

The total force on the vertical surface may be computed as the sum of
2ll of the differential force wvalues (dF on fig. 2-1). Hence, the total hori- |
zontal force on the surface is |

D
F-f dF-'rwjydy--m:lz;z. (2-1)
A )

Another technigque to compute the force is based on the fact that the
force is equal to the volume of the pressure prism defined by the sclid abcdef
in figure 2-1. The force on any submerged surface is equal to the volume of
the pressure prism. The pressure prism is the solid with a base equal to the
area of the surface in contact between the gate and the water and with a
height equal to the pressure on the surface. It is often easier to visualize
the pressure prism and compute its volume than to integrate an expression such
as the equation for dF. For example, the pressure prism in figure 2-1 is a
solid of triangular shape and width W. The area of the base is the area of
the triangle with one side equal to D and the other side equal to YD. For
complex shapes it is usually possible to break up the pressure prism into
simpler geometric shapes and compute the wvolume of each simple shape. The
total force is then the sum of the volumes.

A third way to visualize the force on a surface is that it is equal to
pressure at the centroid of the wetted area (called the center of pressure,
Cpr see fig. 2-1) times that area. The total force on an object can always be
correctly computed using this approach alsc. On figure 2-1 the wetted area is |




a rectangle (bcfe), which has its centroid at D/2 feet below the surface. The
force is therefore

F=1pc A= (YW/2) (DW),
Example:

As an example, the horizontal and wvertical components of the force of
the water on the 4-foot wide gate shown in figure 2-2 will be computed. The
pressure prism for the horizontal force is shown on the figure with a height
defined by a b ¢ d a and a base of 4 feet by 8 feet.

Figure 2-2.--Pressure prism for a
submerged gate 4 feet
wide,

a

Solution:

The wolume of the pressure prism may be obtained by breaking it into a
triangle with sides of Blefftz and B8 feet and a rectangle with sides of
4Y1b/ft? and B feet. The total horizontal force, Fy, of the water on the
vertical plane ¢ d x 4 feet is then computed as the sum of these twe volumes.

Fu = 2L (8) (4) + 4y (8) (4) = 256y = 15,974 1b.

The fluid force on this plane is the same as the horizontal component of the
force of the water on the gate because there are no shear stresses when the
fluid is at rest.

The vertical force of the water, Fv, on the plane d e x 4 feet is

computed from the volume of the pressure prism defined by the points de f g d
and the 4-foot width.

Fy = 12y (7) (4) = 336y = 20,966 lb.

This force supports the weight of the water in the volume c d e ¢ x 4 feet:
the balance being the force exerted on the gate. The vertical force of the
water on the gate is therefore

Fy = [127Y(7) {4)] - [(8/2)Y(7) (4)] = 13,978 1b.



The vertical component of force cn any area is egual to the weight of
that volume of fluid that would extend vertically from the area to the free
surface. As a result of this, the buoyant force on any cbject is egqual to the
weight of the water displaced.

The total resultant force is

FR = VFy2 + Fy? = 340.2y= 21,226 1b.

Ancther way to compute the resultant force is to draw the pressure prism
as shown in figure 2-3. This time the force on the surface b ¢ will be com-
puted directly and it should be the resultant force on the gate. As before,
it is natural to break the pressure prism into a triangle with sides Bylb/ft<
and 10.63 feet and a rectangle with sides of 4Tlhfft2 and 10.63 feet. Notice
cne side is 10.63 feet long in this case rather than 8 feet long when looking
at only the horizontal component. The volume of the pressure prism is

Fp = %F (10.63)4 + 47y (10.63)4 = 340.2y= 21,226 1lb,

which is the same result as cbtained above.

Water  suilace

Figure 2-3,--Pressure prism to compute
the tetal force of the
water on a 4-foot wide
gate.

Forces not only have a magnitude and direction but a line of action as
well, The line of action is the location where a single resultant force must
be applied to have the same effect on a body as the distributed forces it
replaces. For example, the center of gravity of a solid body is the point
where a single force must be applied to the body to counter its weight without
causing a torgue (or moment) on the body.

Consider the line of action of the resultant pressure force on the
surface in figure 2-1. The resultant force F must act at a point such that
its moment (or torgue) about any point is equal to the sum of the moments of
each small force dF. Sum the moments about the line b-e and set them equal to
F times yy to determine the distance of the line of action of the resultant

force below the water surface (yy).

10
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2 D D
F yr = (YWD</2) (yr) = J y dF = YW y2 dy = ywn3/3
o o]

from which
yr = .21"3 D+ {2‘3]

Notice the line of action is through the center of gravity of the pressure
prism abcdef. This will always be the case. Complex pressure prisms can
usually be subdiwvided into simpler shapes for which the center of gravity can
be sasily determined. The resultant line of action is then obtained by
summing the moments of each subvolume about a convenient reference point.

Example:

Compute the location of the resultant force of the water on the gate
shown in figure 2-3.
Solution:

The location of the force due the rectangular part of the pressure prism
(Fry) in figure 2-3 is located 5.32 feet from the top of the gate. The resul-
tant force, FRo. due to the triangular part of the pressure prism is located
7.09 feet from the top of the gate. The total resultant force is located by

summing moments.

Frly) = Fry (5.32) + Fry (7.09)

or

¥ = 170.1%(5.32) + 170.1¥(7.09)

340.27 = §._20 feet,

50 the resultant force is located 6.20 feet from the top of the gate, which is
between Fpy; and Fr, as would be expected.

11



PROBLEMS

1.

Determine the total horizontal water-pressure force on a l-foot wide
section of the dam shown below. If this distributed pressure were
replaced by a single resultant hydrostatic force, at what distance below
the water surface y would it be considered to act?

Water surface

16 1t

12




2. Determine the magnitude and location of the resultant water-pressure

- force acting on a l-foot wide section of the gate shown belaw.
Watar surface
2 ]
5N
-

13




3,

Compute both the horizontal and vertical hydrostatic forces acting on a
l-foot wide section of the sloping rectangular gate shown below,

Water surface

14
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4.

Compute the net horizontal force acting on a l-foot wide section of the

gate separating two tanks as shown below.
oil in the right-hand tank is 0.750.

15

The specific gravity of the




S

The quarter cylinder is 10 feet long. Calculate the horizontal and
vertical compeonents of the forces acting on the cylinder.

Water surface

1é




Leason 3 - 5imilitude and Dimensional Analysis
similitud

Many approximations are made in analyzing any but the simplest of flow
problems. And for complex situations it is usually desirable to test the
validity of the computations before large investments in hydraulic structures
are made. In many cases this walidity is firat checked by use of physical
models of proposed structures. It costa very little to build and test a model
of a structure in comparison to the cost of building a prototype, which may
not function as desired. On the other hand, analytical computations are cheap
in comparison to building and testing a scale model, so models are only built
where the validity of the computations are in doubt.

Although the basic theory for interpretation of model results is guite
simple, it is seldom possible to design and operate a flow model from theory
alene. In general, only by use of experience, judgement, and patience can
correct prototype behavior be predicted from model results., Similarity of
flows between the model and prototype requires that certain laws of similitude
be satisfied.

There are many types of similarity, all of which must be obtained if
complete similarity is to exist between fluid phenomena. The first of these
iz geometric similarity, which states that model and prototype must have the
zame shape and, therefore, that the ratios between corresponding lengths in
the model and prototype are the same. In the model and prototype of figure
3-1, for example, geometric similarity exists if

Bn _bm _lm
Bp  Bp  Ip

It follows that the reguirements for geometric similarity are met if the
ratio of all linear dimensions in the model are the same as in the prototype.

T E

T

Vg » Bp bp Prototype
_i_ Figure 3-1.--Flow through constrietion,
[_] model, and prototype.
} Lo=l=
Wy i Bm I’nm Madal
¥ ml

Corollaries of geometric similarity are that corresponding areas vary
with the sguares of their linear dimensions,

Ap _ (lm
Ap @

and that wvolumes wvary with the cubes of their linear dimensions.
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Consider now the flows through the model and prototype, figure 3-1. If
the ratie of corresponding velocities and accelerations are the same through-

out the flow, the two flows are said to possess kinﬁmﬁn;gﬁa;m;la;;tg~ For

kinematically similar flows, the streamline patterns will be similar in shape.

In order to maintain geometric and kinematic similarity between the flow
pictures, the forces acting on the corresponding fluid masses must be related
by ratios similar to these above this similarity is known as dypamic
Similarity. The forces that may exist in a fluid flow are those of pressure,
Fp, gravity, Fg, viscosity, Fy, elasticity, Fg, and surface tension, Fg. The
vector sum of all forces acting on a fluid mass must equal its mass times its
acceleration, which is the inertial force, Fr. Written in mathematical terms
for the prototype

IFP+Pg+Fv+FE+FT‘FI.MI}Pp

in which M = mass of the fluid parcel and I = acceleration of the fluid
parcel. Of course an identical eguation can be written for a mass of fluid in
the model. For the ratioc of accelerations {and therefore velocities) to be
similar between the model and prototype reguires that the ratio of inertial
forces be similar, or

-+ —+ —* - —+ —* -+
;FI}_E Hm_ r_m ‘Fp + Fﬂ + FV + FE + FT]m
—+ = - = = .

-+ — -+ ok
{FIJP HP IP {FF‘ + Fg + Fu- + FE + FT.’P

The ratio of the inertial forces will be constant if the ratio of the inertial
force to each component force is constant, so dividing the inertial force by
each component force cne sees that dynamic and kinematic similarity can only

be achieved provided that
L 2 R .
Fp Fp L '

which states that the accelerations (F1) due to pressure forces (Fp) must be
similar in both the model and prototype and that

- U &

Fy Fy
which states that the accelerations due to viscous forces must be similar,
etc.

Each of the forces is governed by relations between the dynamic and
kinematic properties of the flow and by physical properties of the fluid. For
example, the viscous force is given by the definition of viscosity (eguation
i=1]

A
E‘vwra-ué—:-r—a (1-1)

or

—

| 12 = p vl

Fy = U
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where v = characteristic velocity and | = a characteristic length. Because

the ratios of all velocities and lengths in model and prototype are equal, it
theoretically makes no difference which length or velocity is used in the
equation. The generalized expressions for the forces are as follows

Pressure force, Fp = pl2

2
Inertial force, Fp = MI = p|3 %— = pvel2

Gravity force, Fg = Mg = p|3g‘

|2
Viscous force, Fy = |1 :—; A= -v'l— = pvl

Elastic force, Fg = EA = EI2
Surface tension force, Fp = ol

in which p = pressure, M = mass, E = slasticity, and 0 = surface tension force
per unit length,

Each of the five force ratics, which are dimensionless numbers, have
names. Thesa are as follows:

F v
EL - %r— = sguare of the Euler number

p P
F 1
'E',—Er' - v%— = Reynolds number

F 2
Fl - f— = Square of Froude number
g g

F
Fé - EEE = Sguare of the Mach number

F w2
E} = FT = Weber numker

Fortunately in most engineering problems for open-channel flow, the
compreasibility and surface tension effects can be ignored so only the Froude,
Reynclds, and Euler numbers are important. The Euler number can be ignored
because if four of the five ratios are satisfied, the fifth is automatically
satisfied because the inertial force is the sum of the other forces,

In these ratios, v and | may be any velocity and length provided the

same quantities are used in both the model and prototype. In open-channel
flow, the depth of flow is commonly used for the length term and the mean
velocity for the velocity term.
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Complete similarity is usually impossible to attain even when only the
Froude number and the Reynolds number are significant. For example, if in
figure 3-1 the prototype velocity and depth are 8 ft/s and 10 feet, respec-
tively, can both the Reynolds number and Froude number be the same in the
model and the prototype? The Reynolds number for the prototype at 70 °F is

8 x 10 x 1.94
2.04 x 10°°

RE = - 7.6 x 108

and the Froude number for the prototype is

Ff = 8

o W32.2 x 10

If water is used as the fluid in model and prototype, then density and
wviscosity are the same for both cases. If a depth of 0.5 was selected for the
model, the corresponding welocity for the Froude numbers to be the same would -
be 1.8 ft/s. With a model depth of 0.5 foot, the velocity in the model would |
have to be 158 ft/s to have the Reynolds number in both the model and proto-
type to be equal,

= 0.45

From a practical viewpoint, equality of Reynolds numbers cannot be
achieved for model and prototype in open-channel flow so model studies are
limited to those cases for which the effect of viscosity can be neglected.
This is generally true for highly turbulent flows that occur when the model

Reynolds number is above 10%.

Froude number similarity can be easily achieved so the model approach is e
ideal for rapidly varied flow problems where the gravity force dominates the
flow. The discharge coefficients for dams, culverts, and contracted openings
have all been defined by model studies and are assumed to apply to full scale
situations with an egual Froude number and geometric similarity.

Example:

Laboratory tests were conducted on a box culwert. It is known that
dynamic similarity will be achieved if the Froude number in both the labora-
tory and field are equal. A 1/10 scale model is built and tested. Under te=st
conditions, ‘the laboratory flow rate is measured as 1.0 ft3/s, the velocity at
the wingwall was 1.3 ft/s and it required 1.6 seconds for a water parcel to
move through the culvert. For the prototype culvert operating under similar
conditions, calculate the flow rate, the wvelocity at the wingwall, and the -
time required for a water parcel to move through the culvert,

Solution:

Because the Froude number in the model and prototype must be egqual

Ft = gP

_Ym_ _ _Yp
x - NSlm Valp

glp | 10
Vo = WV, — =y +1/-E-= Vm \[= = 3.16 Vp.
E " 9lm " lm E d %

or
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So any welocity in the prototype will be 3.16 times the corresponding velocity
in the model, and the velocity at the wingwall will be 3.16 (1.3) = 4.11 ft/s
in the prototype.

As will be shown later in the course, the discharge (Q) can always be
computed as the product of the velocity (V) times the flow area (A) and the
area is proportional to the product of twoe lengths so

9 _ Vphp _ Vo lp?
Cn  VmPm  Vm 12

m

—_—

or
10y 2
QP = Om (3.16) (T) = 316 Qm.

The discharge in the prototype under test conditions will be 316 ft3/s.

The time for a parcel of water to move between two points is the
distance between the points | divided by the average valocity of the water as
it traverses the path between the points so

lp/vp _ 1
?E m/ Vi Ti'm () (%) -

The time for a parcel to pass through the prototype structure will be 3.16
{l.6) = 5.06 seconds. :

Dimensional Analysis
Most variables used in engineering are expressed in terms of three

dimensions. These basic dimensions are force (F), time (T), and length (L).
In this section the "bracketa” mean "the dimensions of"

Examplae: the dimensions of pressure can be deaignated as
F
(pl z

All rational equations (those developed by basic laws of physics) must
balance in magnitude and must alsoc be dimensionally homogeneous. That is, the
dimensions of the left side of a rational equation must be the same as the
dimensions on the right side and gach term in the equation must have the same
dimension,

In 1915 Buckingham showed that the number of independent dimensionless
groups of variables (dimensionless parameters) needed to correlate the vari-
ables in a given process is equal to the number of variables involved minus
the number of basic dimensions included in the variables.

Example: If it is known from experience or from experimental results
that the drag force E of a fluid moving past a sphere is a function of the
velocity ¥, mass density p, viscosity |, and the diameter D, then five wvari-
ables (F, V, p, W, D) are involved and by inspecting the dimensions of each of
these variables it is seen that three basic dimensions (L, F, T) are involved.
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Thus, by the Buckingham thecrem ocne should be able to corganize the five wvari-
ables into two basic groupings for correlating experimental results.

The key to successful application of dimensional analysis is to select
all necessary variables. Sometimes this can be done by locking at the appro-
priate physical laws that govern the process., If the appropriate physical
laws are not available, a preliminary test can be run to gather all possible
significant data, combine the wvariables using dimensional analysis, and
discard those that do not have much impact. This may be done in advance by
examining physical evidence of other experiments.

Repeating - the key to practical use of dimensional analysis is to
select only those variables that are significant to the problem.

Once the wvariables are selected, there are numersus methods for combin-
ing the variables such that each remaining parameter is dimensicnless. A
pProcess that is easy and reveals the process is cutlined and applied below.

Keep in mind what the goal is to reduce the number of separate variables
involved in the problem to the smallest number of independent dimensionless
groups of variables (dimensionless parameters).

Bules of the game:

1. Identify all significant wariables associated with the problem and
write the functional eguation.

Z = f {v' D' x; Ij

2. Select a dimension (F, L, T} you wish to eliminate and a variable
that contains this dimension. Then by igspection combine the vari-
able with all other variables that contain the dimension in such a
way that the new terms do not contain that dimension.

Then select another dimension and variable and repeat process above.

If all three dimensions (F, L, T) are involved, the manipulation is
performed three times.

HINTS:

a. Get rid of F dimension first. If p is one of the variables, get
rid of the F first by combining p in an appropriate manner with
each variable that has the F dimension. (Remember MNewton's law

that says force equals mass times acceleration so [F] = M L/T2 in

2
which M is mass so [M] = EE—.# Use a power of p necessary to

cancel the force dimension. Combine p only with the variables that
contain F. The power of p may vary from term to term.

b. If velocity is one of the variables present, get rid of the T
dimension (as in a above).

HNOTE: If only one variable in the entire group of variables has
the T (time) dimension, it is usually advisable to.add the
acceleration of gravity (g) to the list of significant vari-
ables. (It is usually part of the driving mechanism for the
flow.)
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c. If depth is one of the variables, combine it with all terms that
have the L dimension, and eliminate all L dimensions.

d. After all terms are dimensionless, it is perfectly legal to take
terms to any power if it is convenient to do so. Remember each

term is dimensionless so it does not matter if it is raised to a
power and/or inverted.

Example:

Consider all fluid variables that might be significant in a general flow
situation in which pressure difference between two peints in the flow field is
expected to be a function ¢f V, D, p, M, E, O, and Y.

E = bulk modulus of elasticity, FHLE, g = zurface tansion F/L.

Solution:

Because the difference in pressure (AP) is the main variakle of
interest, place it on the left side of the equation

ﬂ.? - f]_ {V; D; p’r H-: E.r G: TJ

in which £3 means AP is a function of the variables in the parentheses,
Display each wariable and its dimension.

F . - _Fr

[AP] = = (V] " [D] L pl = 74
FT 3 F F

W == (2] = =5 (0] = = N = =5

1. Eliminate F dimension by dividing appropriate terms by some power of p
([pl=M/L3 = FT2/14)
€, 1)

Ap

19

-2 (v o b

© o
=]

:
(5] ~ e
[} -5
5] =F-F
;] ~C-k
(5] -d=-2
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2. Eliminate T using some power of ¥
AP - s fp QL B a bi
pv2 T e 2 2

2 mi
[%] '*%2—-:'—2 (dimensionless)
p

[L ._LZT_L

pv T L

r 2 o2

h%?] = ig—ff {(dimensionless)
LP

[ o L3 12 -
pve T2 12

_'LJ . nTd 3

v 72 2 L

3. Eliminate L using appropriate power of D

Ap
pyZ

L E o
" [#VD’ pve’ pven’ psz

1! - L F o
|: ) I (dimensionless)
o L Z .
[pUED] = (dimensionless)
[JE% - 1 (dimensionless)
pv L

Rearranging and inverting as necessary

v - g, (2R v pVeD v
Yap/p H VE/p' g [yaD
¥
Euler Reynolds Mach Weber Froude
number number number number number

If it is known that all of the parameters are significant, AP is a funetion
of all four terms.

If viscosity is not significant, the Reynolds number can be eliminated.

If compressibility is not signifieant, the Mach number can be eliminated.
If surface tension is not significant, the Weber number can be eliminated.
If there is no free surface, the Froude number can be eliminated.
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PROBLEMS

1. A 1:2000 tidal model is operated to satisfy Froude's law. A velocity of
0.02 ft/s is observed in the model. What is the wvelocity at the corre-
sponding point in the prototype? What length of time in the model corre-
asponds to one day in the prototype?

2. An overflow spillway 1,600 feet long is designed to pass 120,000 ft3/s. =&
1:20 model of the cross section of the structure is built in the labora-
tory. It is assumed that the flow is two dimensional so only a l-foot
section (rather than an 80-foot section) is built. Calculate the required
laboratory flow rate for the l-foot section assuming that viscosity and
surface tension can be neglected. The pressure at a point in the model is
observed to be -1.0 psl (-0.067 atmosphere)., How should this be inter-
preted for the prototype?
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X,

4.

Derive an expression for the drag force on a smocth object moving. through
water if this force depends only upon the speed and size of object as well
a8 the density and viscosity of the water.

By dimensional analysis develop a discharge
relation for the discharge over a broad-crested
welr.
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Lesson 4 - The Energy Equation for an Ideal Fluid

Fluid flow may be either steady or unsteady. Steady flow exists when
none of the variables in the flow problem change with time. If any of the
variables change with time, the condition of unsteady flow exists. The
following discussion deals with steady-flow problems.

abreamlipes

R path line is the trace made by a single particle over a period of
time. A streamline is a curve that is tangent to the direction of valocity at
every point on the curve. For steady flow, a path line and a streamline are
identical.

Streamline pictures are both qualitative and quantitative in value. They
allow the flow to be visualized as well as regions of high and low velocity
and regions of high and low pressure to be located. They also alleow the flow
to be visualized.

When streamlines are drawn for steady flow, they form a boundary across
which fluid particles do not pass. Thus, the space between the streamlines
becomes a tube or passageway called a streamtube. The flow in such a tube may
be treated as if it were isolated from the adjacent fluid. The use of the
streamtube concept broadens the application of fluid-flow principles; for
example, it allows treating apparently different problems such as flow in a
passageway and flow about an immersed object with the same laws.

The Continuity E

The application of the principle of conservation of mass (matter can
neither be created nor destroyed) to a steady flow in a streamtube results in
the equation of continuity, which expresses the continuity of flow from
section to section of the streamtube. Consider the streamtube shown in figure
4-1 through which passes a steady flow of fluid. At section 1 the croas-
sectional area is A3 and at section 2 the area is Az. If the mass of fluid
occupying position BBl moves to position ccl in time dt, the conservation of
mass principle yielda

P Ay dsq = p Az ds2,

where ds; and dsp are the displacement lengths at sections 1 and 2, respec-
tively. Dividing by p dt because p is constant yields

dsi - daa_
Al ¢ = A2 R

however, ds;/dt and ds2/dt are the mean velocities of flow past sections 1 and
2, respectively; therefore,

A1V = BoVo = Q, (4-1)

which is the equation of continuity. The product A x V is designated as the
flow rate, Q, and has units of cubic feet per second.
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Figure 4-1.--S5teady flow through a
streamtube. 08y —af

——————e—n

i

The E ;

The fundamental egquation of motion for steady flow may be derived by
applying the principle of conservation of energy to individual fluid parcels.
At this point it will be assumed that an ideal fluid exists for which no
shearing stress occurs. In such a fluid there can be no frictional effects
between moving fluid layers or between these layers and the boundary walls,
and thus no cause for eddy formation or energy dissipation due to friction.
The assumption of an ideal fluid allows a fluid to be treated as an aggrega-
tion of small particles that will support pressure forces normal to their
faces but will slide over cne ancther without resistance. Thus the motion of
these ideal fluid particles is analogous to the motion of a solid body on a
resistanceless plane; from this it may be concluded that unbalanced forces
existing on particles of an ideal fluid will result in the acceleration of
these particles according to Newton's Second Law.

Consider a 1-1b parcel of fluid at Point A in figure 4-2., Compute the
amount of energy contained by this parcel of fluid relative to some arbitrary
datum. The parcel contains energy of three types--kinetic, potential, and
pressure potential. The potential energy of the parcel (relative to the
datum) is its weight times the distance above the datum or simply Zp foot
pound per pound. Notice the units of energy per pound are simply feet. 1In
hydraulics, the term for foot pound per pound is usually called head, or the
potential energy head of parcel A is Zp foot. The second form of energy is
called pressure potential. If 1 lb of fluid at A was placed into a plastic
bag, this fluid could be lifted to the water surface without expending any
energy because the fluid is neutrally buovant and fer an ideal fluid there is
no resistance to motion. Because the parcel at A could exchange places with
the parcel at the water surface without the expenditure of energy, its effec-
tive potential energy per pound is (Zp + ya) in which yp is alse equal to the
pressure at point A divided by the unit weight (equation 1-2). This term is
called the pressure head. Notice that the effective potential energy for any
parcel of fluid (or streamline) at section A is the same and equal to the sum

Total head = conslant

Figure 4-2,.--Flow of an ideal fluid
in an open channel.
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of the water depth plus the elevation of the bed above the datum. The sum of
these two terms is called the piezometric (or hydraulic) head and for open
channels its value is equal to the elevation of the water surface above the
datum.

The kinetic energy of a 1-1b cbiject moving at velocity wp is

Kinetic energy _ Kg/Vol _ pv2 = vZ (fr/s)2
Pound wt/Vol 2y 29 fr/s2 T

Motice the unitas of the kinetic energy per unit weight is also feet and the
term is called the velocity head.

The sum of all three energies (heads) is called the total head and is
often plotted pictorially as shown on figure 4-2. For an ideal fluid with no
resistance to motion, the total energy of a pound of fluid is conatant at all
points along the streamline. For steady flow, the total head (energy) at
section B, therefore, must be equal to that at section A or at any other
section., Expressed mathematically,

¥a2
2g

2
v
+ ya + Zp = ?Er + yp + Zp = conatant. (4-2)

Equation 4-2 is usually called the Bernoulli equation or simply the energy
equation. Almost all open-channel-flow problems are solved by the application
of equations 4-1 and 4-2; therefore, a complete understanding of these esgua-
tions is essential,

By assuming frictionleas motion, the equations are considerably simpli-
fied and more easily assimilated by the beginning student. In many cases,
these simplified equations allow solution of engineering problems to an
accuracy entirely adequate for practical purpecses. In real situations where
friction is small, the frictionless assumption will give good results where
friction is large, it obwviously will not. The identification of these situa-
tions is part of the art of fluid mechanics. However, as a general rule,
accelerative processes are efficient and inveolve very little loss of energy
while deceleration processes involve large losses of energy.

Example:

The discharge in the channel shown in figure 4-3 is 280 ft3/s. The
depth at section A is 5.0 feet and the width is 8.0 feet. At Section B the
width is 10.0 feet. Assuming ideal (frictionless) flow, compute the wvelocity
and depth at section B.

Solution:

The first step is to draw the total head line as shown on figure 4-3,
Because no energy is expended between secticns A and B, the total head
(energy) line is horizontal. The streamline along the bed is one of an infi-
nite number of streamlines that could be drawn for the flow between sections A
and B. Next, label the figure to show the kinetic, potential, and pressure
potential energy terms at each section for the streamline at the botteom. Next,
record the known wvalues of each term of the energy equation on the figure and
compute the unknown walues by use of equations 4-1 and/or 4-2.
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Figure 4-3.--Example problem of
flow down a ramp.

0 = 280 cubic teet pas second

In this example the potential energies of a parcel on the bottom of the
channel at sections A and B are 2.25 and 1.00 £t lb/lb, respectively, the
pressure potential energy of the parcel at A is 5.0 ft lb/lb, and the other
three terms are unknown. For an ideal fluid the velocity at all points in the
cross section are equal so Vp = vp. It is easily seen that the continuity
equation can be used to determine the velocity at section A as

Q = 280 = Va(5) (B.0) = wvp(5) (8B)

or vp = 7.0 ft/s so the velocity head (kinetic energy) at sectien A is seen to be

(7192/2(32.2) = 0.761 £t 1b/lb.

The total energy of a parcel of water passing section A on any streamline is
seen to be

0.761 %+ 5 + 2.25 = B.011 ft 1b/1lb.
For frictionless flow, the total head is constant at all points along a
streamline, specifically the total energy of a parcel at cross-section B on

any streamline is egual te the total energy of a parcel at section A. The
total head is 8.011 feet so writing the energy equation from point A to B:

2
8.011 = %§F-+ Dg + 1.0.

This one eguation has two unknowns, wvg and Dp. However, the continuity equa-
tion alse applies at section B 30 that

Q = 2B0 = Vg Dp(10.0),

or solving for Vg

28
vE"’-"E'B';r

which can be combined with the energy eguation to give
8.011 = (28/Dp)2/64.4 + Dp + 1.0,
or

7.011 = 12202 4 oy
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This is a cubic eguation that may be solved by trial. 1In other words,
different values of Dp are assumed until the right-hand side of the eguation
is squal to 7.011. Below, the value of the right-hand side is tabulated for
different depths,

12.174 12.174
Dp (£t} A D2 Dp (£t) e D2
10.0 10.12 2.0 5.043
8.0 8.19 1.8 5.557
7.0 7.248 1.5 6.911
6.75 7.017 1.49 6.973
ik ik
6.74 7.008 1.48 7.038
6.0 6.338 1.30 8.503
4.0 4.761 1.00 13.174

Notice that a depth of either 6.743 or 1.484 feet satisfies the egquation and
is possible for an ideal fluid. These are called alternate depths. Unlesa
some conatriction downstream caused the water to back up, the flow would
accelerate as shown on the figure and the smaller depth will occur. In this
case, the velocity at the section would be

il 280 -
vp A 10 (1.484) 18.87 ft/s,

and the wvelocity head is

2
-‘% - 5.527 ft 1b/lb.

As can be seen, the total head at section B is

2

% +Dp + 2Zp = 5.527 + 1.484 + 1.0 = 8.011,

the same aa for section A 30 energy is conserved. A 1-1lb parcel of water
on the surface streamline contains 0.761 ft lb of kinetic energy and

2.25 + 5.0 = 7,25 ft 1lb of potential energy as it passes section A. As it
passes section B, it has only 1.0 + 1.484 = 2 484 ft 1lb of potential enerqgy.
The difference 4.766 ft 1lb has been converted to kinetic energy so as it
passes section B it contains 0.761 + 4.766 = 5.527 ft 1lb of kinetic energy.
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FPROBLEMS

1.

2.

500 ft3/s of water flow in a rectangular open channel that is 20 feet wide
and B feet deep. After passing through a transition structure, the width
of the rectangular channel narrows to 15 feet and the bed raises as shown.
The velocity in the contracted section is found to be 6 ft/s.

{a) What is the water depth in the narrow channel?

{b} What are the welocity heads in each section?

(c) Draw and label the total and piezometric (water surface) head lines.

(d) How much does the bed elevation increase in the contracted section?

Waler surlace

Water stands 9 feet deep in a large tank. A hole with an area of 0.1 ft<
is punched in the side of the tank 5 feet above the bottom,

(a} Compute the discharge from the hole,

(b} Draw and label the total and piezometric head lines.

{c) What is the velocity of the water as it hits the ground?

Hote: If the hole is rounded as shown, the answers you compute for an

ideal fluid will be correct to within about 1 percent.

Waler suflace

& e
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Compute the discharge in the 20=-foot wide rectangular channel shown
below. Draw and label the total head line and the water surface pear the

gate,

Total head

r |.u:+l=-

Wit

Compute the diacharge and
depth in the contracted
section for the indicated
rectangular channel.

Elavation 100 it
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PART II - STEADY UNIFORM FLOW OF REAL FLUIDS IN OFPEN CHANNELS

Lesson 5 - Velocity Profiles

General

In 1883 Osborne Reynolds demonstrated that there are two distinectly
different types of fluid flow. He injected a fine threadlike stream of
colored liquid at the entrance to a large glass tube through which water was
flowing. When the velocity of flow in the tube was small, this colored liguid
was wvisible as a straight line throughout the length of the tube, thus showing
that the particles of water moved in parallel straight lines. But, as the
velocity of the water was gradually increased by permitting a greater quantity
to flow through the tube, there was a point at which the flow abruptly
changed. It was then seen that, instead of a single straight line, the parti-
cles of the colored liguid were flowing in a wery irregqular fashion and form-
ing numerous wvortices. In a short time the color was diffused uniformly
throughout the tube so that no streamlines could be distinguished. Later
observations have shown that in this type of flow the velocities and pressures
continuously fluctuate.

The first type of flow i= known as laminar, streamline, or viscous flow.
The significance of these terms is that the fluid appears to move by the slid-
ing of layers or laminations of infinitesimal thickness relative to adjacent
layers, that the particles move in definite and cbservable paths or stream-
lines, and it is alsc a flow that is characteristic of a viscous fluid or at
least a flow in which viscosity plays a significant part. For laminar flow,
the shear stress is determined from the equation

T=H %ﬁ'- {1-1}

The second type of flow, where single water parcels move about within
the flow in an erratic manner, is known as turbulent flow, The distinguishing
characteristic of turbulence is its irregularity. There is no definite
frequency (as in wave action) or any observable pattern (as in the case of
eddies) .

Large eddies, swirls, and irregular movements of large bodies of fluid,
which can be traced to obviocus sources of disturbance, do not constitute
turbulence but may be described as a disturbed flow. By contrast, turbulent
flow commonly occurs in streams that appear to be very smoothly flowing and in
which there is nec detectable scurce of disturbance. The fluctuations of
velocity and pressure are furthermore comparatively small and can often be
detected only by special means of cbservation.

Beynolds Number

Reynolds was able to generalize his results and predict whether the flow
would be laminar or turbulent by use of a dimensiconless ratio later called the
Feynolds number. The Reynolds number is the ratic of inertial to viscous
forces in the flow

wpl vl
RE‘“-,.,I' (5-1}
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in which v = velocity of flow, p = density of fluid, | = a characteristic
length dimension (depth for cpen-channel flow, diameter for pipe flow),
I = dynamic wiscosity, and v = kinematic wvisceosity (W/p).

The concept of a critical Reynolds number delineating the regimes of
laminar and turbulent flow is indeed a useful one in promoting concise gener-
alization of certain flow phenomena. Applying this concept to the flow of any
£luid in cylindrical pipes, it is possible to predict that the flow will
generally be laminar if Rg<2,100 and turbulent if Re>4,000. However, it is to
be emphasized that the critical Reynolds number is very much a function of
boundary geometry. For flow between parallel walls {using mean velocity V,
and spacing l), Rg = 1,000; for flow in a wide open channel (using mean veloc-
ity V and depth D), Rg = 500; for flow about a sphere (using approach velocity
V and diameter d), Rg = 1. Alsoc noteworthy is the fact that such critical
Reynolds numbers must be detarmined experimentally; because of the obscure
origins of turbulence, analytical methods for predicting critical Reynolds
numbers have yet to be developed.

Laminar Flow

Laminar flow only occurs in open channels when the depths are wvery
small, It iz often assumed to occur in sheet flow or flow over the ground
after a rainfall. Consider the uniform flow of constant depth D over a very
wide plane surface as illustrated on figure 5-1. Assume a unit weight of ¥
for the fluid, that the slope is small, the flow is laminar, and a width of W
feet,

Figure S5-l.--Sheet flow over a wide
inclined plane of width W.

Because the flow is uniform, the acceleration of the mass of fluid
enclosed by abecd 13 zero and the =sum of all forces on it must equal zero.
Summaticon of forces in a direction parallel to the bottom gives

IFg = 0 = F1 + wt 3in ® - F2 - TLW.
Because the flow is uniform, the pressure forces (F1 and F2) cancel and the
component of the weight parallel to the flow must be balanced by the shear
force. This gives an expression for shear stress in open-channel flow
YL(D = ¥) W s3in B8 = TLW
Qr

T=v (D -y sin 8, {5=2)

which is wvalid in either laminar eor turbulent flow.
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For laminar flow, the shear stress is given by equaticn 1-1 that when
substituted into equation 5-2 yields an expression for the variation of weloc-
ity with distance from the bed

dv .
T=p - ¥ (D - y) sin @,
Separating the variables and integrating one obtains an expression for the

velocity profile in laminar, open-channel flow

2
v-&ainﬂj (D - ¥y} dy-ﬁsinﬂ(ﬂy-xz—)+c

where ¢ is a constant. Because the velocity must be zero at the bed (fluid
clings to a solid surface), the value of ¢ is zerc. Thusz the velocity distri-
bution in laminar, open-channel flow is given by the paraboliec equation

2
v o= E sin B (Dy = %?) {Laminar) . {5-3})
The discharge per unit width is cbtained by integrating again

D 3
= g ok ”
aq J;~v dy m sin 8 3 - (5-4)

The mean velocity is found by dividing the unit discharge by the cross-
sectional area (D (1))

2

= - I 1 D— -
v : sin @ 3 - {5-5)

oja

The expression for the shear stress given by egquation 5-2 results simply
from a force balance and so it is wvalid in either laminar or turbulent flow.
In turbulent flow, however, the random particle movement causes additional
momentum transfer (or apparent shear) so that the shear stress relation 1-1 is
not valid. Prandtl developed a theory based on momentum transfer and assumed
the shear stress in turbulent flow is giwven by

. -5 12 (a_v)i'
turk P Ay ’

in which | is the distance each parcel of fluid moves from its mean position

during each excursion. This excursion distance is called the mixing length.
Because a boundary limits the excursion length of parcels, the mixing length
should be small near the bed or the surface and increase with distance from
the boundary. An eguation for mixing length that predicts a wvalue of zerp at
both the bed and the surface and a maximum at middepth is
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in which y is measured from the bed upward and X is a censtant called the wvan
Karman kappa value. The turbulent shear stress equation with the above equa-
tion for mixing length can be substituted into equation 5-2 to obtain the most
popular expression for veleecity distribution in turbulent flow,

2
ptz yz (1 - y/D) a4 =% (D - y¥) sin 8.
dy

Rearranging

a_‘L_ﬂP___ﬂnﬂL_ o 1. X

dy p Ky P xy Ky '
where Tg = shear stress at the bed. Because the shear at the bed is egual to
YO 3in O (see equation 5-2), the term ﬂtgfp has the dimensions of velocity and

is called the shear velocity or friction velocity, u, = ﬂtofp. The above

expression can be integrated by separating the variables to give the Prandtl-
von Karman universal velocity distribution law in turbulent flow

o,
v o= 1?-1n (¥/va) (5=-b)

where yo is a constant of integration physically equal to the value of vy at
which the velocity (from equation 5-6) is zero. For points cleser to the bed
than yo, equation 5-6 is not valid because the flow is laminar, not turbulent.

In fact, equation 5-6 indicates that the velocity is negative for values of y
less than yq.

The value of X is generally assumed to have a value of approximately
0.4.

The discharge per unit width of channel is found by integrating the
velocity given by equation 5-6 over the range ¥o to D:

U, D

- Ir ey e

q v dy - I ln(yn) dy ,
Yo Yo

from which

uD D
q = - in EYG) (5=T7)
where e = 2.718... (the base of natural logarithms). The average velocity in
the vertical section of a channel is found by dividing g by D
u
- . L .
v D - in e . (5-8)

It is easily seen by comparing equations 5-6 and 5-8 that v is equal to
V when y is equal to D/e, or approximately 0.368 D. It is common practice to
take single velocity cbservations in shallow streams at 0.6 the depth measured
from the surface. This corresponds closely to 0.368 D in equation 5-8.
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When the channel boundary is smooth; the wvalue of the constant yg has
been found te equal v/%u,. Substituting this wvalue into eguation 5-6 yields

and converting to common logarithms

9yu,

v =5.75 u,log ( ) (smooth surfaces) {5-9)

for the velocity distribution of turbulent flow cver a smooth surface where v
i= the kinematic viscosity. The 5.7% is equal to 1ln 10/0.4 and
In x = (log x)1ln 10.

When the boundary is rough, the constant yq, has been found to be approz-
imately equal to k/30 where k is the effective height of the irregularities
forming the surface. Substituting this expression for vy, yields the universal
velocity distribution for rough boundaries,

v = 5,75, log (2%1) (rough surfaces), (5-10)

where k is the effective height of the irregularities forming the surface.
Example:

A velocity of 3.5 ft/s is measured at a distance of 1.6 feet above the
bottom of a wide open channel that is 4.0 feet deep. The channel slope is
8 = 0.0003 radian., Assuming a fully developed turbulent flow cver a rough
surface, compute the velocity at a point 0.5 foot above the bed. See figure
S=2.

Waier surlace

T
I
I
Figure 5-2.--Velocity distribution in ’

I
a fully developed, rough 4.0 temt v = 3.6 leel fsecond)
turbulent flow.

Solution:

The welocity distribution in turbulent, rough flow is given by eguation
§5=10. To use this eguation the value of shear wvelocity (u,) and the effective
height of the bed roughness k must be known. The shear velocity has been
defined as ﬂtﬂfp where the bed shear stress Tp is given by egquatien 5-2 with
y =0 so
To = 62.4 (4.0 - 0.0) 0.0003 = 0.0749 1b/ft2

and the shear wvelocity is

Ll o s fR0789 ;
Uy - S = 0.1965 ft/s,
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Because the velocity is given at one depth, k can be computed from eguation
5-10 as followsa:

3.5 = 5.75 (0.1965) log ﬂ%-..ﬁl_
giving
3.008 = log -4;5-
or
ff-- 103-098 = 1,254
and

k = 0.0383 £ft.

With k and u, determined, equation 5-10 can be used to compute the wvelocity at
any depth. In particular at y = 0.5,

v = 5.75 (0.1965) log %‘c?s_f'a}" 2.93 ft/s.

At y = 0.0383/30 = 0.00127 foot the wvelocity computed from equation 5-10 is

u=5.75 (0.1965) log (=2EL0L) g ;

and for values of y less than 0.00127, equation 5-10 indicates a unreascnable
(negative) welocity.
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PROBLEMS

1. Water flows down an incline that slopes downward 1 feot for each 1,000
feet of horizontal distance. The water depth is 0.02 foot. What is the
unit discharge, the maximum velocity, the mean wvelocity, and the Reynolds
number? (Assume laminar flow and a water temperature of &0 °F.)

40




2. A wide channel carries a uniform flow at a depth of 5.0 feet on a slope of
0.0001. Compute the shear stress at the bed and the friction wvelocity.

3. The bottom for the channel in problem 2 is smooth and the water tempera-
ture is 40 °F. Compute and plot a curve showing the thecretical welocity
distribution. What is the mean velocity?

y ft r
0.0000146
0.021

0.1
0.2
1.0

1.5

1.84
2.0
3.0

4.0

5.0

3l



4.

Show that if velocity measurements in a deep natural stream are taken at
depths of 0.2D and 0.8D, then averaged where D iz the total depth, the
result is nearly egquivalent to substituting 0.368D in Egquation 5-6.

42




Lesson 6 - The Energy Eguation Applied to Real Fluids

The total energy of a pound of water in an open channel can be expressed
as the sum of three forms of energy: the potential energy, the pressure
potential, and the kinetic energy. The potential energy per pound of fluid at
a section is represented as the distance of the channel bed above an arbitrary
datum. Because the units of the quantity of energy (foot pound per pound of
fluid) is feet, the energy term is commonly referred to as head and the poten-
tial energy per pound of fluid is called the potential head. 1In figure 6-1
the potential head is shown as 271 at section 1 and 22 at section 2.

The pressure potential is equal to the depth of flow (D1 and Dz on fig.

6-1) . The sum of the potential plus the pressure potential energies at a
cross section is called the piezometriec or hydraulic head.

—_ Morzontal line __

Figure 6-1.--Energy diagram for
open-channel flow.

e

_l Tz
— Y __Horzomtsigewm _ _ _ }

11] 12)

Ki ic E

The kinetic energy per pound of fluid is called the velocity head and is

equal to v2/2g where v is the velocity of the fluid. For an ideal fluid, the
velocity of all parcels of fluid passing a section are the same so the veloc-
ity head for any streamline or water parcel at a particular section is the
same. For a real fluid, the velocity wvaries over the cross section, small
near the boundaries and maximum near the surface and center of the cross
section. As a result, a parcel of fluid moving near the boundary has less
kinetic energy (velocity head) than a parcel moving near midstream.

The average kinetic energy of all water parcels passing a section is
needed to apply the energy principle at a cross section. Because the kinetie
energy is proportional to the velocity squared, the average kinetic energy is
always greater than kinetic energy of a parcel moving at the average velocity
V. The average kinetic energy, per pound of fluid, can be computed from the
average wvelocity V, as

2
kinetic energy = % p

where @ is defined as

Ay
r~da & E-\i"_i_aai
v3 a v3 a

o = ; (6-1)
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in which A is the total cross-sectional area, aj is the area of a subsection
where the wvelocity is vj, and o is called the kinetic energy coefficient or
the Coriolis ceoefficient (Chow, 1959, p. 27). Because the average of the
cubes of positive numbers will always be greater than the cube of the average,
the value of 0 will always exceed 1.0.

The value of @ is determined by the variations of welocity in the cross
section with more uniform velocities yielding o cleoser to 1.0, Typical
values of the kinetic-energy coefficient, @, for open channels are given by
Chow (195%) as shown in table 6-1., For low velocities, the welocity head is
small, so @@ is frequently not considered in practical problems dealing with
regular channels.

Table 6.l--Kinetic epergy correction coefficients for patural

channels.
Value of O
Channel type Minimum Average Maximum
Regular channels, flumes, spillways 1.10 1.15 1.20
Matural streams 1.15 1.30 1.50
Rivers under ice cowver 1.20 1.50 2.00
River valleys, overflooded 1.50 1.5 2.00

The average energy per pound of real fluid is computed as the sum of the

piezometric head (D + Z) and the velocity head as uvzfzg and is called the
tetal head, H, where

ave

g i+ R

Epergy LogSs

In an ideal fluid the total head at any peoint along the flow is constant
because no energy is expended in moving parcels of water from one section to
ancther. In a real fluid, however, energy must be expended in moving the
fluid parcels along streamlines so the total head must decrease as a parcel
moves downstream. The energy expended in moving the water from section 1 to

section 2 in figure 6-1 is indicated as h|1'2 and is called the head loss,

Two modifications must be made in the Bernoulli (energy) eguation
derived for an ideal fluid to make it applicable to real fluids. First, the
velocity head must be corrected for the nonuniform distribution of velocity by
use of the o coefficient and, second, the energy expenditure necessary to
move the water between sections must be accounted for. Therefore, the energy
egquation for real fluids moving from section 1 to section 2 is written as

2 2
ay v az vV
—.lzl— + D] + 21 = _ZEL + Dz + Z2 + h11-2 R (6-2)
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Example:

Compute the discharge through the bridge constriction shown in figure 6-2,
The kinetic energy correction coefficients are 1.45 and 1.08 at sections 1 and
3, reaspectively, and all cross sections are rectangular. The head loss between
sections 1 and 2 is 0.25 foot due to boundary friction, and the head loss
between sections 2 and 3 is 0.35 foot because of entrance losses and boundary
friction. The bed at section 1 iz 0.34 foot above the bed at section 3.

Figure 6-2.--Typical flow through
a bridge constriction.

1 12y 13

The firat atep, as alwaysa, is to roughly sketch the energy line and label
the known and unknown parts. As is seen in figure 6-2, the total energy expen-
diture by a pound of water moving from section 1 to 3 is 0.25 + 0.35 = 0.60 ft
1. Assuming the datum is at the channel bottom at section 3, the potential
energy at section 1 is seen to be 0.34 foot. Because both depths are given, the
total piezometric heads are known at both sections leaving only the two velocity
heads as unknowns. The continuity equation may be used to express each velocity
head in terma of the discharge and then the energy equation will contain only
ane unknown, Q.

Apply the continuity equation

il el 2L
A;  6.5(70) 455

PDTIIL . muvegN . )
S.0(40) 200 °

Then applying the energy eguation

0 g _(-2.\?1.08
(455 4.4 + G0 ¥ 0.2 (200 et 5-0 + 0 +0.25+0.35
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simplifying

2
EETCE. ¢ galll = -7
124 = i 14,19 = 1.09) x 1077,

giving
Q2 = 4.00 x 105 or @ = 2,000 £ft3/s.

The relative size of the terms in the energy equation may be evaluated by
computing the size of the velocity heads. At section 1 the velocity is

u1v12

2g

Vi = f% = 4.3% and D.43 ft.

At section 3

2

aszv

V3 = == = 10.0 and 223° - 1 68 £t
A3 2g
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PROBLEMS

1.

The
150

(a)

(k)

{c)

discharge over the spillway is
£t3/s per foot of width.

Elevatan 200 i1 -

Assuming @ = 1.0, compute the
head loss between points A and

B and between points B and C.

Accurately sketch and label the
total head line.

Calculate the temperature rise
of the water passing from point
A to C, (1 BTU will raise the
temperature of 1 lb of water 1
°F and 1 BTU = 778 ft 1lb of
energy.)
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2

The measuring flume has rectangular
sections throughout and the head loss
between points A and B, h|, is

2
hl = 0.1 %’—

(a) Compute the discharge assuming all
o's are 1.0.

(b) The head loss between points B and
C is given by the same expression
as above except the coefficient,
0.1, is different. Compute the
coefficient for the expansion
loss.

{c) Accurately sketch and label the
total head line.
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L i

A flow of 2.5 ft3/s/ft occurs in an infinitely long open channel with a
bottom slope of 10 ft/mi. The head losa per unit length is known to ocbey
the law:

w2
120 o°

h| =

By writing the energy equation between two points 1 mile apart, assuming
a= 1,0 and observing that the depth and welocity cannot increase indefi-

nitely, compute the depth of flow.
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4,

A flow of 50 ft3/s/ft exists in the river and the head loss per unit
length is given by

ve2L

Bl = 125 b-

Compute the water depth at point A assuming @ = 1.0.

50
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Lesszon 7 - Flow Resistance

As indicated previcusly, real fluids differ from ideal fluids mainly
pecause of their resistance to movement, which results in an energy loss as
the water moves along the channel. Accounting for this energy loss, or head
loss, is a major difficulty in hydraulic computations. Consider a flow in a
prismatic channel as illustrated in figure 7-1.

Water surface

Cross ssction

————————y—

1 h1|-2

Figure 7-1.--Flow in a prismatic
open channel.

Applying Newton's law to the water in this secticn of river, one cbtains
IF = MI = F1 + wt 55 = F2 = PL 15 (7-1})

in which I = acceleration of the water mass, S5 = slope of bed (nearcly equal
to sin @ for small angles), P = perimeter of the wetted area. The components
of forces parallel to the bed are summed and set equal to the mass of water in
the section times its acceleration. The forces F] and F3 are the forces
caused by the hydrostatic pressure at the ends of the section, wt is the
waight of the water.

The term PL Ty gquantifies the resistance of the water to movement
through the channel. It is the shearing force on the control volume pictured
in figure 7-1.

The energy expended in overcoming friction when the contrel wolume moves
downstream a distance of ds may be computed as the product of the resistance
force times the distance moved:

Energy Loss = PL Ty da £t 1b.
But the energy expended per pound of fluid in the control wvolume is the head

loss cccurring over the distance ds and it is computed as the energy loss
divided by the weight of fluid so

PL Ty da Tn ds

By pg R
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where the hydraulic radius, R, is defined as the area divided by the wetted

perimeter and ¥ = pg. The slope of the total energy line must be egqual to the
head loss per unit length so

h|
5f = e = (E&) é%'.

or rearranging

T
u, = -\’—P‘l = Vg R 5¢ . (7-2)
Solving equation 7-2 for the shear stress, yields

To = pg R Sf = YR 5¢ . (7-3)

If the energy expenditure is due only to boundary friction, the slope of
the total energy line will be directly related to the boundary shear as
indicated in eguation 7-3. This equation is valid for either uniform or
nonuniform flow as well as both steady and unsteady flow.

A special case occurs for steady uniferm flow. In this case, equat ion
7-1 can be solved directly to ebtain 7-3 by noting that force F1 is equal and
opposite to F2 and that the acceleration is zero. In this case,

wL S
To = 51 "= ¥R So,

in which S5 is egual to Sf because the flow is uniform.

It has been observed in many experiments and in many different situa-
tions that boundary shear is proporticnal to the square of the velocity for
turbulent flow. This empirical observation can be expressed as

't —
V= CIW’T% = cC'u, =C" Vg R S¢ (7-4)

by use cof eguation 7-2 because the density is constant.

As early as 1769, the French engineer Antoine Chezy ran extensive tests
on an earthen canal and the Seine River and concluded that

V = CVRS . {7-5}

Chezy apparently never had a course in dimensicnal analysis so he did not

worry about the fact that the dimensions of ¢Eg-and V are not the same. As a
result, he left out the gravity term. On the other hand, the concept of
gravitational acceleration was relatively new. At any rate, Chezy's equation
today is often written as

VgRS =

v = % % Wai s (7-6)
g

in which C is called the Chezy resistance coefficient.
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After Chezy's formula became generally known, there was a lot of inter-
est in developing formulas to predict the value of C. The most enduring of
the resulting empirical prediction formulas is usually attributed, wrongly
according to Henderson (1366, p. 96), to Robert Manning. After some modifica-
tion, Manning's formula became

O o= --u:-l'-."r-"lq_g Rl.l‘llﬁ , [?..'“,

in which n is the Manning coefficient. According to Chow (1359, p. 98),
Manning developed his formula by combining seven formulas all based on Bazin's
data and verified it by 170 observations. Substituting equation 7-7 into
equation 7-5, the more common form of the Manning expression is

1.49 rl/6y
v - * _1.49 r2/3 Sflfz ) (7-8)

n 4; .2

Combining the centinuity equation with equation 7-8

i __1-:‘3 AR2/3 gel/2 | (7-9)

Notice that Manning was not too concerned about dimensional analysis
either. Egquation 7-7 has the units ft/s on the left and ft2/3 on the right;
thus, the units of n must be s/ftl/3 making n to appear to be a function of
time, which is not realistic. Assuming the 1.49 contains the square root of
the acceleration of gravity, Manning's n has the units of £ft1/6_ These units
are more logical because the resistance the resistance should increase as the
size of the roughness projections of the bed increase. Convearting Manning's
equation to the 5I system, the units of 1.49/n is converted to m!/3s from
ft1333, 80

1.49 _ 1/3 —im 7 1/3 _1 443
[ - ft aec] 3. 28 ft] oy m 8

or in the SI system
v =3 R2/3 g.1/2
n

where the units of V are m/s and the units of R are meters. The numerical
value of n is considered to be the same in either system of unita, and the
conversion is included in the formula.

The Manning (7-8) and Chezy (7-6) egquations are the most common equa-
tions used in the United States to describe resistance to flow in open

channels. Another expression developed for use in pipes is sometimes used in
ocpen channels. This is the Darcy-Weisbach equation whiech can be written for

cpen channels as
V= ﬂf%—ﬂg RSf = Wf%‘u* , (7=-10)

in which £ is called the Darcy-Weisbach friction factor or simply the friction
factor.
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All three velocity equations, the Manning, the Chezy, and the Darcy-
Weisbach, are based on the assumption that the shear stress is proporticnal to
the velocity sguared and the energy dissipation is caused entirely by boundary
resistance.

Example:

Compute the depth of uniform flow in a trapezoidal channel with a 10-
foot bottom width and side slopes of 1 vertical to 2 horizental when the dis-

charge is 4,000 £f£3/s. The channel slope is 0.002 and Manning's n = 0.013,
Splution:

Manning's eguation relates discharge to area, hydraulic radius, and
friction slope

Q= Lr-f—g- apel3 sflfﬁ_

Discharge is given and the friction slope is egual to the bed slope because
the flow is uniform. The area and hydraulic radius can be expressed as func-
tions of depth because the geometry is given. The area is computed as the
area of a rectangle 10 feet wide and D feet high plus two triangles 2 D feet
wide at the top and D feet high so

A= 10D + 2(1/2 D (2D)) = 10D + 2D<,

The slope distance along the sides will be the sguare root of the sum of the
sguares of the two other sides of the triangle so

p=10+2VDZ + (2012 = 10 + 2D V5.

Substituting these expressions intoc Manning's egquation gives cne complex egua-
tion and one unknown that must be solved by trial. A sclution may be cbhtained
by censtructing a table as shown below in which wvalues of depth are assumed
and discharges are computed from Manning's equation. The depth is selected as
the value that gives a discharge of 4,000 ft3f5. It is also convenient to
simplify Manning's eguaticn as follows

Q = =22 222/3 V0.002 = 5.13 AR2/3,

0.013
i - _A _B R=A/P Rr2/3 O
6 132 36.83 3.58 2.34 1,585
8 208 45.78 4.54 2.74 2,925
9 252 50.25 5.02 2.93 3,784
9.1 256 .6 50.70 5.06 2.95 3,878
9,2 261.3 51.14 5.11 2.97 3,973
L2 Hw
9.3 266.0 51.59 .16 2.98 4,068

A= can be determined by interpclaticn, a depth of 9.23 feet will deliver 4,000
ft3/s at uniform flow in the given channel.
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PROBLEMS

L

i

Explain why a uniform flow cannot occur in either a frictionless or a
horizontal channel.

The figure shown is a cross section of a canal forming a portion of the

Colorade River Aqueduct that carries 1,600 ft3/s of water. The canal is
concrete lined with an n value of 0.014. What must be the grade of the

canal in feet per mile?
H 508 ft —-i

‘Water suriace

What would be the capacity of the canal of problem 2 if the grade were 1.2
£t£/mi?

55



4. If the flow in the canal of problem 2 was reduced teo B00 ft3/s, what would '
be the depth of water?

2. Compute the value of the Chezy C and the Darcy-Weisbach -f for the canal of
problem 2.
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6.

Construct a rating curve for the indicated channel.
defines the relation of discharge to depth, or stage.

Watar surface

- ]
5h

1040 e

o —

5= 0.0025

A rating curve

n=003

&

Bi1h

Bh

101t
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Lesson 8 - Computations for Steady, Uniform Flow

Stream channels are rarely, if ever, uniform in nature, Contractions
and expansions of stream width and depth occur in random fashion as one
proceeds along the course of a stream channel. Despite these complexities,
the principles of hydraulics of steady, uniform flow can usually be applied
with only a few modifications to obtain satisfactory results.

The Geclogical Survey uses the Manning equation to determine discharges
in natural channels and the conveyance of the channel section, K, is defined
as

K -J“:njmzf3r (8-13

S50 discharge in a channel may be expressed as

o =va=kK¥s , (8-2)

which is commonly referred to as the slope-conveyance method of computing
discharge. The conveyance is a measure of the carrying capacity of the
channel section because it is directly proporticnal to the discharge, Q. The
slope 5 should be the slope of the energy grade line, S5f; but if the flow is
uniform, the slopes of the bed, water surface, and energy grade line are all
equal. In field applications the flow is assumed to be steady, which is
essentially true for the peak discharge of a flood wave moving down a channel.

The expression ArZ/3 js called the section factor for uniform flow.
From equations f-1 and B-2 it is seen that the section factor may be expressed
as B

2/3 o 109
AR - : {8-3)
1.49vss

The right side of eguation 8-3 contains the values of n, Q, and 5f, but the
left depends only on the geometry of the wetted area. Therefore, it shows
that for a given condition of n, Q, and 5¢, there is gnly one possible depth
for maintaining a uniform flow. The single depth that can deliver a discharge
of Q given a particular n value and slope is called the pormal depth.

Equation 8-3 is wery useful for the computation and analysis of uniform
flow. When the discharge, slope, and roughness are known, egquation B-3 gives
the section factor, AH233, from which the normal depth can be determined
either by trial-and-error computation or by use of design charts for regular
sections., If the wvalues of n, Sf, and D are given, the discharge can be
computed directly from Manning's equation.
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s PROBLEMS

. 1. Determine the conveyance, normal discharge, and velocity in channels
having the following sections for normal depth = 6 feet, n = 0.015, and
¢ = 0.0020,

' {a) A rectangular section 20-feet wide.
(b) A triangular secticn with a bottom angle of 60 degrees.

{c] A trapezoidal section with a bottom width of 20 feet and side slopes
of 2 horizontal on 1 vertical.
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2. If the discharge in the channel of problem 1-C is 1,000 ft3£s, compute the
normal depth.

Depth l'nﬁ Vss A = 20D + 2p2 P = 20 + 20VsS R Q

&0
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PART III - ADVANCED PRINCIPLES OF STEADY FLOW
Lesson 9 - Flow in Channel Sections with Variable Roughness

The cross section of a channel may be composed of several distinect sub-
sections with each subsection different in roughness from the others. Faor
example, an alluvial channel subject tc seascnal floods generally consists of
a main channel and two side overbank channels. The overbank channels are
usually found to be rougher than the main channel; so the mean velocity in the
main channel is greater than the mean velocities in the overbank sections or
in the overbank flow region. For such composite sections, the routine calcu-
lation of hydraulic radius from the total area divided by the total wetted
perimeter and the direct application of Manning's equation will result in
large errors. This is because such calculations imply that the effect of
boundary resistance is uniformly distributed throughout the flow cross sec-
tion, which is clearly not the case. Furthermore, accurate estimation of the
effective value of n is virtually impossible because n for each subsection may
be wvery different,

For composite sections the Manning formula may be applied separately to
each subsection in determining the mean velocity for that subsecticn. Then
the discharges in each subsection can be computed and the total discharge is
the sum of the discharges in each subsection.

This logical (but not necessarily precise) method of treating such
problems is derived by assuming that the total section is composed of parallel
channels separated by wertical boundaries across which there is no shear.
Because the water-surface elevation is generally horizontal acrosa a channel,
the slope of each of the subsections is identical. Writing Manning's egquation
for each subsection and summing, it is seen that the slope can be factored ocut
because it is constant. Factoring out the slope indicates that the total
discharge is equal to the slope times the sum of the conveyances for each
subsection.

The general procedure for computing the discharge in a composite sec-
tion, therefore, is to compute the conveyance for each subpart of the cross
section wherein the roughness and depth are approximately constant and to sum
the conveyances for each subsection to compute the total conveyance of the
composite section. The discharge is then equal to the composite conveyance
times the square root of the slope,

Figure 9-1 illustrates river cross section with overbank flow. The ques-

tion naturally arises: how nonuniform must a section be before subdivision is
necessary? Probably the safest approach is to compute the discharge at a

Water surtace

L=
F—— G

Figure 9-1.--Cross section with
overbank flow.
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number of depths both by subdividing the section and by considering it as a
single section. A plot of each of these discharges versus depth should indi-
cate whether or not & subdivided sectiocn sheuld be used. On the other hand,
the Geological Survey has developed some criteria based on wide experience,
In general, subdivide the cross section if

D
-
42 2

or

W
-{-iia 5 (9-1)

where the symbols are defined on figure 9-1. Davidian (12E4) presents a more
detailed discussion of subdivision considerations.

In applying the energy equation to a stream cross section that has been
subdivided, the kinetic-energy correction coefficient is determined using

el

2t FEST
vin

in which vj is the velocity in each subsecticn of area aj and V is the average
velocity for the entire cross section, A. Equation 6-1 is somewhat inconve-
nient when working with a subdivided section because the velocity in each sub-
section is not normally computed. Computing the velocity as the discharge
divided by the area where the discharge is computed as the conveyance times
the square root of the slope (equation B-2), one cbtains

ki Vs
."'rl = -;:- {EFEJ
aj
and
K Vsg
V===t (9-3)

in which K is the total conveyance of the section.

Substituting eguations 9-2 and 9-3 into equation 6-1 yvields an equation
for @ in terms of the areas and conveyances of each subsection. These values
are usually computed instead of the velocity; and the slope, being constant,
cancels cut of the eguation giving

M
T kid/a;z?
i=1

where N is the total number of subsections. Notice that « can be computed
without knowing the stream slope. It depends only on the depth, geometry, and
roughness as used to determine the conveyance.
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Example:

Given the channel information shown below, compute the kinetic energy
correction coefficient, «, and the slope for a discharge of 2,600 ft3/s

Area Perimeter
Fr2 ft
1 Right overbank la62.5 37.1
2 Main channel 390.0 45.7
3 Left overbank 108.3 26.0
Total 660.8

Sclution:

Applying egquation %-4 to a three-section channel,

o = (k13/2a12 + k23/222 + k33/232)/ (k1 + k2 + k3)3/ (a1 + ap + a3z)2.

It is convenient to construct a table as follows:

B_fL _k ft3/s
1 Right 4,38 10,803
2 Main 8.53 69,334
3 Left 4.17 5,968
Total K = 86,105
9 9
o 2287310 AR ISTRI0 1.54

(86,105)3/(660.8)2  1.462x10%

Q =K VSg = 2,600 £ft3/s = 86,105 vs¢

= oY A =
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0.018x10%
2.257x109




PROBLEMS

1. A flood occurs in the channel shown below. The roughness of the main
channel (B) is 0.015, but dense bush exists on the right flood plain so
that n = 0.12, and a field of corn exists on the left so that n = 0.06.
The slope of the water surface and the bed is known to be 0.00031. Compute
the conveyance, discharge, and velocity by applying Manning's egquation to
the total section (n = (0.06 + 0.015 + 0.12)/3). Compute the conveyance,
discharge, and velocity in each subsection. What is the flood discharge?

- I"“
é ' Watar surlace é‘%
Elgwaison 910 f§ =—
A d;f ‘qf : B M - n:0.12 — Elgvatan 905 i
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n = 0.06 v 1
Elgvaiion 905 i — I
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2,

Compute the velocity head ccefficient, «, for the flow in problem 1.
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Lesson 10 - The Momentum Principle

The impulse-momentum principle provides a third basic tool for the solu-
tion of fluid-flow problems. Sometimes its application leads to the sclution
of problems that cannot be solved by the energy and continuity principles
alone, but more often all three tools must be used together.

Consider the steady flow of water, Q, with velocity, Vi, inte a black
box. For steady flow, continuity requires that a steady flow of Q must exit
the box with a velocity V2. While passing through the box, individual water
parcels are accelerated (or decelerated) from V1 to V2. Newton's law says
that the acceleration of a mass requires a force, that is,

-4 —k —*
=+ Va - V¥
F=MI'H§l-M—2'_‘—1,

At At

where M is the mass being accelerated. In this case, it is the mass of water
in the box

M= P VGJ—:

in which Vol is the volume of water in the box. The walue of At must be the
time required for a water parcel to pass through the box so

At Vol

combining the equations and allowing for several forces

F = pvo ——L—Qvol =pQ (Vy = Vi) (10-1)

Because forces and velocities are vector quantities (containing a magnitude
and direction), equation 10=-1 is a vector eguation. This means it can be
applied in the three coordinate directisns using only components of the
velocities and forces. If V2 is larger than Vi, the parcels are accelerated
and the force on the parcels is in the positive direction.

Equation 10-1 is valid and precise, no matter what the fluid, as leng as
all forces, including shearing forces, are considered.

Interesting hydraulic problems seldom occur for which water is flowing
into and out of a black box. On the other hand, most problems can be analyzed
using the black box principle when a control surface is constructed argund an
element of the flow. Within the control surface or econtrol volums, the
internal pressures and shearing forces existing at the surfaces of adjacent

elements cancel. Only the forces acting on the control surface must be
considered.

Example:

A 2-foot by 2-foot rectangular pier is to be placed in a horizontal
rectangular channel B-feet wide. Laboratory tests indicate that the drag
force, Fd, on the pier can be computed as

Fg = 201 Af vlz ’
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in which Af is the frontal area and Vi is the approach velocity. A flow of

240 ft3/s exists in the channel for which the normal depth is 5 feat., As will
be shown later, normal depth will exist downstream of the pier and the flow
constriction at the pier will increase the water depth upstream of the pier.
Compute the depth upstream of the pier by use of the momentum principle,
Ignore the shearing force along the bed and the weight component of the water
in the control wvolume.

Solution:

The most difficult part of momentum problems is usually selecting the
control volume. In this case, the control volume is shown in figure 10-1 by
dashed lines in which the line a-b is along, but just above the bed, b-c is
Just far enough downstream of the pier to be ocutside the very local distur-
bances, c-d is above the pier, and d-a is upstream of the pier just far enough
tc be outside the very localized effects of the flow around the pier. Along
each boundary of the control volume, forces on the boundary due to water pres-
sure or structural members must be accounted for. Along boundary a-b three
forces are present: the water pressure force Fps the shear force of the bed
on the water Fr, and the drag force of the pier on the water Fq. The pressure
force on the bottom is balanced by the weight of the water in the control
volume and acts vertically. Because we are only interested in the horizontal
components of the forces, these two forces can be neglected. It is assumed
that the shearing force of the bed on the water F; is small enocugh to be
ignored. Aleng lines b-c and d-a the hydrostatic pressure force of the water
on the control volume must be accounted for. No forces occur along line c-d.

Croas ssction
—— 2 m[ —

Water 7// surtece

’i;; Figure 10-1.--Control volume for
fe—— 8 tout — applying the conserva-

tion of momentum equa-
tion for the flow past
a pier,
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The problem gives the walue of the drag force as
Fq = 2.1 (2.0 p1IV12 = 4.2 D1V 2,

and the hydrestatic forces F1 and F2 are easily determined from eguation 2-1
or

F = yWwp2/2 <y
for which
D32
F1 = 62.4 (8) =5— = 249.6 D2
and

2
Fp = 62.4 (8) %?’“ 6,240 1b.

Likewise, the wvelocities Vi and V2 are computed from the continuity equation
as

Vi = 240/8 D1 = 30/D3
and
Vz = 240/B(5) = 6.0 ft/s.
The momentum egquation (equation 10-1) can now be applied as
IF = 249.6 D32 - 4.2 D1V12 - 6,240 = 240(1.94) (6.0 - 30/D1),
where forces and velocities to the right are poesitive., The direction of the

forces is the reaction of the force on the water in the contrel volume. For

example, the pier is assumed to push upstream on the water in the control
volume .

Substituting for the value of V1 in terms of Dy
249.6 D12 - 3,780/D1 - 6,240 = 2,793.6 - 13,968/D1,
simplifying
249.6 D12 + 10,188/D1 = 9,033,

from which the depth D) can be obtained by trial and error as follows:

D1 (ft) 249.6 D12 + 10,1B88/Dq
s LT
5.0 8,277.6
5.2 8,708.4
5.3 8,933.5
> 5.34 ft
5.4 9,165.0
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PROBLEMS

1,

The passage is 4-feet wide normal to the paper, The flow rate is 120
ft3/s. what will be the horizontal force exerted by the water on the

structure?

The flow rate passing over the
thin, sharp-created weir in a
channel 1-foot wide is 3.5

ft3/s. calculate the magnitude
and direction of the force
exerted by the water on the weir
plate. Is the indicated down-
stream depth reasonable?
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3. Water flows in a horizontal open channel at a depth of 2 feet the flow

rate is 40 f£t3/s/ft of width. Calculate the depth just downstream from
the hydraulic jump and the head loss across the Jump.
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Lesson 11 - Specific Energy

Specific energy is defined as the energy per pound of water at any
section of a channel measured with respect to the channel bottoem. Consider,
for example, the energy of two rivers of the same size and slope but one is 10
feet above sea level and one is 5,000 feet above sea level. Both rivers have
the same velocity, assuming they have equivalent roughness, even though the
total energy (measured relative to sea level) of the river at 5,000 feet
elevation is much greater than the river at lower elevation. Likewise, the
total energy of flow in a cross section measured relative to some datum below
the bottom of the channel is not a very good measure of the energy available
for movement in the channel. By contrast, specific energy is determined
directly from the energy equation but excluding the potential energy term, 2,
that is

E=10D + -'5-;-, (11-1)

which indicates that the specific energy is equal to the sum of the depth of
water and the velocity head. Because the velocity is equal to the discharge
divided by the area, eguation 11-1 may also be written as

oo

E=D + =
2gh

(11-2)

It is seen that, for a given channel section and discharge, the specific
energy in a channel section is a function of the depth of flow only.

When the depth of flow is plotted against the specific energy for a
given cross section and discharge, the specific energy curve (fig. 11-1) is
obtained. This curve has twoc limbs: CA and CB. The limb CA approaches the
horizontal axis asymptotically toward the right. The limb CB approaches the
line OF as it extends upward and to the right. The line OF passes through the
origin and is at an angle of 45°, At any point on the specific energy curve,
the ordinate represents the depth and the abscissa represents the specific
angrgy, which is egqual to the sum of the depth, D, and the wvelocity head,
ave/2g.

mT™

Altarnats dapth

r-
A

Figure 11-1.--Specific energy curve.
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The curve shows that, for any specific energy greater than the minimum
value, there are two possible depths, a low depth, Dj, and a high depth, D3.
These two depths are called alternate depths. At point C, the specific energy
is a minimum, It will be proven later that this condition of minimum specific
energy corresponds to a critical state of flow. At the critical state the two
alternate depths become one, which is known as the critical depth, Dg. When
the depth of flow is greater than the critical depth, the wvelocity of flow is
less than the critical wvelocity for the given discharge, and hence, the flow
is subcritical. When the depth of flow is less than the critical depth, the
flew is supercritical. Hence, D1, is the depth of a supercritical flow, and
Dz is the depth of a subecritical flow.

The critical state of flow is defined as the state of flow at which the
specific energy is a minimum for a given discharge. A theoretical criterion
for critical flow may be developed from this definition as follows:

Assuming o to be 1 and differentiating eguation 11-2 with respect to
depth

dE Q2 da Q< v2 5
—ml - Em—n ] - T=e ] - ————-] -F 11-
dD ga3d dD gn3 g(A/T) E e

because the discharge is constant and the change of area with respect to depth
(dh/dD) is egqual to the top width., The guantity A/T is recognized as the

. . " :
hydraulic depth and the gquantity d__hla defined as the Froude number, Fp.
gb

Rearranging eguation 11-3 and recognizing that the rate of change of specific
energy with respect to depth is zerc at critical depth, it follows that:

v.2 b
= T = K
> > (11=-4)

Thus at the critical state of flow, the velocity head is egual to one-half the
hydrauliec depth. Egquation 11-4 may be alsoc written as

v
—_—— 1 =, , (11%8)

NgDle

which means the Froude number, Fr, is equal to 1 at critical flow. Finally,
at critical flow, eguation 11-5 may also be written as

Ve = Vabe , {11-6)

which is the velpocity of a small gravity wave. In other words, at critical
velocity the channel wvelocity is precisely equal to the velocity of a small
gravity wave. For stream velocities egqual to or greater than critical,
gravity waves do not propagate upstream,

For rectangular channels, the ratio cof area to top width is constant and
egual to the depth therefore, equations 11-4, 11-5, and 11-6 can all hawve the
hydraulic depth replaced by the channel depth Deo. &Alsoc, in a rectangular
channel, the discharge per unit width, g, is equal to the velocity times the
depth. Therefore, edquation 11-6 could be rewritten as

q = VeDe = VgDe? or Dg = aqqug . {11=7)
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Of great significance is the fact that critical depth is dependent upon flow
rate only the many other wvariables of open-channel flow are not relevant to
the computation of this important parameter. Egquation 11-7 also suggests the
use of critical depth as a means of flow measurement if critical flow can be
created or identified in a channel, the depth may be measured and the flow
rate determined from equation 11-7. This is the basis for designing "eritical
depth flumes" (Kilpatrick and Schneider, 1983).

Combining equations 11-1 and 11-6, for a rectangular channel with
e =1, yields

E = Do + %ﬂ- = % Pe. (11-8)

For sections where o is not unity, it is seen from equation 11- 3 that
the Froude number may be defined as

v

Fp = —— (11-9)
anfﬂ

provided a is constant. If @ varies with depth, special precautions should
be taken in applying these egquations.

Change of the state of flow from subcritical to supercritical or vice
versa occurs frequently in open channels. Such change is manifested in a
corresponding change in the depth of flow from a high stage to a low stage or
vice versa. If the change takes place rapidly over a relatively short
distance, the flow is rapidly varied. The hydraulic drop and the hydraulic

jump are the two types of rapidly varied flow that may be described as
follows:

Hydraulic drop. A rapid change of flow from a subcritical to super-
critical will result in a steep depression in the water surface. Such a
rhencmena is generally caused by an abrupt change in the channel slope or
cross section or both (see fig. 11-2). At the transitory region of the
hydraulic drop, a reverse curve usually appears, connecting the water surfaces
before and after the drop. The point of inflection on the reverse curve marks
the approximate position of the critical depth at which the specific energy is
a minimum and the flow passes from subcritical to supercritiecal.

b
— —i F
‘J"E".'I‘H.__-.._ E minimu

Figure 11-2.--Flow changes from subcritical and supercritical.
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The free overfall is a special case of the hydraulic drop. It occurs
where the bottom of a flat channel is discontinued as in figure 11-2. There
will be no reverse curve in the water surface until it strikes some surface at
a lower elevation. If the specific energy at the upstream section is E, as
shown on a specific energy curve, potential energy will be converted to
kinetic energy as the water approaches the brink and the total specific energy
will decrease until it finally reaches a minimum energy content Epip. The
specific energy curve shows that the section of minimum energy, or the criti-
cal section, should occur at the brink. The brink depth cannot be less than
the critical depth because a further decrease in depth would regquire an
increase in specific energy, which is impossible unless compensating external
energy is applied. MNevertheless, it should be remembered that eguations 11-7
and 1ll-8 are based on the assumption of parallel flow, which is only approxi-
mately applicable to rapidly varied flow. The flow at the brink is actually
curvilinear, and the curvature of flow is pronounced hence, the brink depth is
not exactly egual to the critical depth. The brink section is the true
section of minimum energy, but it is not the critical section as computed by
the principle based on parallel flow assumptions. It has been found that for
small slopes the computed critical depth is about 1.4 times the brink depth,
or

De = 1.4 Dy

and that Do is located a distance of about three to four times the critical
depth upstream from the brink in the channel. The actual water surface as
well as the thecoretical surface are shown in figure 11-2.

Example:
Flow passes through critical depth as it leaves an B-foot square box

culvert (see fig. 11-3). What is the discharge if the critical depth at the
outlet is measured as 2.5 feet?

Box culwen
Watar surface

_Crincal gepin = 2.5 feel

Figure 11-3.--Critical flow at the Subcrines) flaw 1

outlet of a box culvert.

Solution:
Because critical flow occurs at the outlet, the Froude number is 1.0 or

Ve

Fr = 1.0 =

assuming a = 1.0

ve = Ygpe = V32.2(2.5) = 8.97 ft/s

so the discharge is
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Q= VA = B8,97(8) (2.5) = 179.4 ft3/s.

Likewise equation 11-7 could be used:

Q=8g=8 V32.2(2.5)3 = 179.4 £t3/s.

Hydraulic Jump. A change of flow from supercritical to subcritical
almost always occurs abruptly and the water surface has an abrupt increase in
elevation. This local phenomenon is known as the hydraulic jump. It
frequently occurs in a channel below a regulating sluice, at the foot of a
spillway, or at the place where a steep channel slope changes to a flat alope.

Sometimes when the flow is only slightly supercritical, the jump will
not rise abruptly but the flow will pass from a low stage to a high stage
through a series of undulations gradually diminishing in size. Such a low
jump is called an undular jump.

When the flow is highly supercritical, on the other hand, the change in
depth is great and sudden and the jump is called a direct jump. The direct
jump involves a large amount of energy loss through dissipation in the turbu-
lent body of water in the jump. Therefore the energy content of the flow
after the jump is much less than that before the jump and the energy eguation
is of little value in predicting the downstream depth.

The water depth before the jump is always less than the depth after the
jump. The depth before the jump is called the initial depth and the depth
after the jump is called the segquent or conjugate depth. The initial and
sequent depths can be shown on the specific energy curve (fig. 11-1). They
should be distinguished from the alternate depthsa, which are the two possible
depths for the same specific energy on the specific energy curve. The initial
and sequent depths are actual depths before and after the jump in which the
energy less is h|. In other words, the specific energy, Ej, at the initial

depth is greater than the specific energy, E2, at the sequent depth by an
amount equal to the energy loss, h|. If there were no energy losses, the

initial and sequent depths would become identical with the alternate depths in
a prismatic channel.
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PFROBLEMS

L3

BOO ftafs flow in a rectangular channel of 20-foot width having

n = 0.017. Compute the specific energy at the intervals shown in the
table. Plot the specific energy diagram using the same scales for D and
E. Determine from the diagram (a) the critical depth, (b) the minimum
specific energy, (c) the specific energy when the depth is 7 feet, and (d)
the depths when the specific energy is B feet. What type of flow exists
when the depth is: (e) 2 feet, (f) 6 feet; what are the channel slopes
necessary to maintain these depths? What type of slopes are these, and
{g) what is the critical slope? Show graphically that Dg = 2E/3,

D ?EHEg E
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2. A hydraulic jump occurs in the channel of problem 1. The upstream depth
is 2 feet. Compute the downstream depth. Label your plot of problem 1.
Compute the energy loss.
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A uniform flow at a depth of 5 feet occurs in a long rectangular channel

of 10-foot width and having a discharge of 289 ft3/s: (a) Calculate the
minimum height of hump that can be built on the fleor of this channel to
produce critical depth. What happens if the hump is larger than your
computed value? lower? (b) Without the bottom hump, what is the maximum
width of contracted section to produce critical depth?
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PART IV - GRADUALLY VARIED FLOW IN OPFEN CHANNELS
Lesson 12 = Determination of Flow Resistance in Open Channels

Messyr £ gt
The Manning equaticn for the mean wvelocity V is defined as

Vo= ﬁ-n2f351f2 ; (7-9)

where ¢ equals 1.0 when using metric units and 1.486 when using inch-pound
units, R is the hydraulic radius, 5 is the friction slope, and n is the
Manning coefficient. In applying the Manning equation to open-channel flow,
the greatest difficulty lies in determining the coefficient, n. The value of
n indicates not only the flow resistance caused by the sides and bottom of the
channel, but alsc all other types of irregularities of the channel that add to
flow resistance. Cheoosing the proper value of n remains largely a matter of
engineering judgment and experience. To the untrained beginner, the selection
of a resistance coefficient can be no more than a guess with different
individuals obtaining different results,

The following discussion will emphasize ways to estimate Manning's n,
but this coefficient is directly related to other measures. The Darcy-
Weisbach eguation for open conduits is written as

V- (B—E‘T-) Y2 Jms (7-10)

where £ is the Darcy-Weisbach friction facter. The Chezy eguation is written
as

Vo= Jgs (T=8)
where C i3 the Chezy resistance coefficient.
Comparing equations 7-%, 7-8, and 7-11, it is seen that

) 1/2 _ 1.49 rl/6

C {12-1}

n=1.49 Rr1/6 ('aig"

or that

8 1.49 rl/6 c
g R —— (12-2)
g

It is not uncommen te think of a channel as having a single value of n
for all occasions. In reality, the value of Manning's n is highly variable
and proper selection is dependent upon a basic understanding of the factors
affecting this variaticn. The factors having the greatest influence upon the
Manning ccefficient in both artificial and natural channels are listed below:

Surface roughness
Vegetation

Channel irregularity
Channel alignment
Silting and scouring
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Cbstructiona

Size and shape of channel
Stage and discharge

Seascnal change

Suspended material and bedlead

It should be noted that these factors are somewhat interdependent; hence, the
influence of one factor may include the effect of another. All the above
factors, however, should be studied and evaluated. They provide a basis for
determining the proper value of n for a given channel., As a general guide, it
may be assumed that cenditions tending to induce turbulence and cause retar-
dance of the flow will increase the n value while those tending to reduce
turbulence and retardance will decrease the n value,

&pproaches for Estimaring Resistance in Stable Channels

Stable-bed channels are those in which bedload transport is negligible
and the channel boundary is rigid. Possibly the chief contributors ta
hydraulic resistance for these channel types is grain roughness and internal
, distortien of the flow (form resistance) generated by relict or remnant bed
forms of previous fleoods,

In order to provide gquidance in determining the proper value of the
Manning coefficient, four general approaches will be discussed namely:

1. Understanding the factors that affect the walue of n and thus
acquiring a basic knowledge of the problem., The Cowan procedura
illustrates this appreach.

2. Consulting a table of typical n values for channels of various
types. Abbreviated tables presented by Chow (195%) will illustrate
this approach.

3. Comparative methods that are based on examining and becoming
acquainted with the appearance of some typical channels whose
Manning coefficients are known.

4. A number of formula are presented that compute the value of n from
measures of the bed material size and other geometric data.

Cowan's Procedure for Estimating Manning's Coefficient

Recognizing several primary factors affecting the Manning coefficient,
Cowan (1956) developed a procedure for estimating the value of n. By this
procedure, the value of n may be computed as

n= (ng + n1 + n2 + n3 + ng)ms, (12-3)

whare ng is a basic n value for a straight, uniform, smooth channel, in the
natural materials invelved, ny is a value added to ng te correct for the
effect of surface irregularity, n2 is a value added to account for variations
in shape and size of cross secticns, n3 iz a modifying value for obstructions,
ng is a correction wvalue for the retarding effect of vegetation, and ms is a
correction factor for channel meanders.

Arcement and Schneider (1984) modified and extended the Cowan methed to
develcp procedures to aid engineers in the selection of Manning coefficients
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for channels especially with overbank flow. Their methed is especially appli-
cable for flow through heavily vegetated flood plains in which n values as
large as 0.2 have been documented.

In the selection of the modifying values associated with the five
primary factors, it is important that each factor be examined and considered
independently. In considering each factor, it should be kept in mind that n
represents a quantitative expression of retardation of flow. A discussion and
tabulated guide to the selection of modifying values for each factor is given
under the following procedural steps.

Eirst step.--Selection of basic n value, ng. This step requires the
selection of a ng value for a straight uniform channel in the natural materials
involved. The selection involves consideration of what may be regarded as a
hypothetical channel. The conditions of straight alignment, uniform cross
section, and smooth side and bottom surfaces without vegetation should be kept
in mind. Thus the ngp will be visualized as varying only with the materials
forming the sides and bottom of the channel. The wvalue of ng, for natural or
excavated channelsa, may be selected from the table below. Where the bottom and
sides of a channel are of different materials, this fact may be considered in
selecting ng.

— Charactex of channel = _7g0
Channels in earth 0.02

Channels cut inte rock 0.025
Channels in fine gravel* 0.024
Channels in coarse gravel® 0.028
Channels in very coarse gravel* 0.032
Channels in cobbles* 0.03e

*See table 12-3.

Second step.--Selection of modifying wvalue for surface irregularity, nj.
The selection is to be based on the degree of roughness or irregularity of the
surfacea of channel sides and bottom. Consider the actual surface irregularity
first, in relation to the degree of surface smocthness obtainable with the
natural materials involved, and second, in relation te the depths of flow under
consideration. The table below may be used as a guide to the selection.

Degrea of
irregularity —  Surfaces comparable to L
Smooth The best cbtainable for the 0.000
materials involved.
Minor Good dredged channels; slightly
eroded or scoured side slopes
of canals or drainage channels. 0.005
Moderate Fair to poor dredged channels;

moderately sloughed or eroded
side slopes of canals or drainage
channels. 0.010
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Severe Badly sloughed banks of natural
channels; badly eroded or sloughed
sides of canals or drainage
channels; unshaped, jagged, and
irregular surfaces of channels
excavated in rock. 0.020

Ihird Step.--Selection of modifying value for variations in shape and
size of cross sections, n2. In considering changes in size of cross sections,
judge the approximate magnitude of increase and decrease in successive cross
sections as compared to the average. Changes of considerable magnitude, if
they are gradual and uniform, do not cause significant turbulence. Greater
turbulence is associated with alternating large and small sections where the
changes are abrupt. The degree of effect of size changes may best be wvisual-
ized by considering it as depending primarily on the frequency with which
large and small sections alternate and, secondarily, on the magnitude of the
changes.

In the case of shape variations, consider the degree to which the
changes cause the greatest depth of flow to move from side to side of the
channel. Shape changes causing the greatest turbulence are those for which
shifts of the main flow from side to side occur in distances short enough to
produce eddies and upstream current in the shallower portions of those
sections. Selection of modifying values may be based on the following guide,

Character of variations in

—=adze and shape of cross sections e
Changes in size or shape occurring
gradually. 0.000

Large and small sections alternating

cccasionally, or shape changes causing

occasional shifting of main flow from

side to side of the channel. 0.005

Large and small sections alternating

freguently or shape changes causing 0.010
frequent shifting of main flow from to
side to side of the channel, 0.015

Eourth step.--Selection of modifying value for cbstructions, n3i. The
selection is to be based on the presence and characteristics of chstructions
such as debris deposits, tree stumps, exposed tree roots, large boulders,
fallen and lodged logs. Care should be taken that conditions considered in
other steps are not reevaluated or double counted by this step.

In judging the relative effect of obstructions, consider: the degree to
which the obstructions occupy or reduce the average cross- sectional area at
various stages; the character of the obstructions {(sharp-edged or angular
objects induce greater turbulence than curved, smooth-surfaced objects): the
position and spacing of cbstructions both transversely and longitudinally in
the reach under consideration. The follewing table may be used as a guide to
the selection.
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Relative

effect of
obatructions n3
Negligible 0.000
Minor 0.010 to 0.015
Appreciable 0.020 to 0.030
Severe 0.040 to 0.060

Eifth step.--S5election of modifying value for vegetation, ng4. The
retarding effect of vegetation is due primarily to the turbulence induced as
the water flows around and between the limbs, stems, and foliage, and, secon-
darily, to the reduction in cross-sectional area. As depth and velocity
increase, the force of the flowing water tends te bend the vegetation. There-
fore, the ability of vegetation to cause turbulence is partly related to its
resistance to bending. Furthermore, the amount and character of foliage is
important (that is, growing season versus dormant season). In judging the
retarding effect of vegetation, critical consideration should be given to the
following: the height in relation to the depth of flow; the capacity to
resist bending; the degree to which the cross section is occupied or blocked
out; the transverse and longitudinal distribution of vegetation and the
different typesa; and densities and heights in the reach under consideration.
The following table may be used as a guide in the selection.

— Vegetation and flow conditions Degree of affect ng

Dense growths of flexible turf grasases Low 0.005 te 0.010
or weads (for example, Bermuda and

blue grasses) where the average depth

of flow is two to three times the

height of wvegetation.

Supple seedling tree switches such as
willow, cottonwood, or salt cedar
where the average depth of flow is
three to four times the height of the
vegetation.

Turf grasses where the average flow is Moderate 0.010 to 0.025
one to two times the height of the
vegetation,

Stemmy grasses, weeds, or tree seedlings
with moderate cover where the average
depth of flow is two to three times the
height of the wvegetation.

Brushy growths, moderately dense,
similar to willows 1 to 2 years old,
dormant season, along side slopes of
channel with no significant vegetation
aleng the channel bottom; where the
hydraulic radius is greater than 2 feet.
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— Vegetation and flow copditions

Turf grasses where the average depth
of flow is about equal to the height
of the wegetation.

Dormant season, willeow or cotteonwood
trees B to 10 years old, intergrown
with some weeds and brush, none of the
vegetation in feoliage, where the
hydraulic radius is greater than 2 feet.

Growing season, bushy willows about 1
year old intergrown with some weeds in
full foliage along side slopes, no
significant vegetation along channel
bottom, where the hydraulic radius is
greater thanm 2 feet,

Degree of effect

High

ny

0.025 to 0.050

Turf grasses where the average depth
of flow is less than one-half the
height of the vegetation.

Growing season, bushy willows about 1
year old, intergrown with weeds in
full foliage along =side slopes; dense
growth of cattails along channel
bottom; any value of hydraulic radius
up to 10 or 15 feet,

Growing season, trees intergrown with

weeds and brush, all in full foliage;

any value of hydraulic radius up to 10
or 15 feet.

Very high

0.050 to 0.100

Sixth step --Determination of the modifying value for meandering of

channel, msg.
foellowing way. Let

The modifying value for meandering may be estimated in the

ls = the straight length of the reach under consideration, and
lm = the meander length of the channel in the reach.

Compute the modifying walue mg in accordance with the following table.

Ratio lp/ls Degree of meandering ms

1.0 to 1.2 Minor 1.00
1.2 to 1.5 Appreciable 1.15
1.5 and greater Severe 1.30

Where lengths for computing the ratio

degree of meandering can usually be judged reascnably well by field inspection.

lm/ls are not readily obtainable, the
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Seventh step.--Computation of n for the reach. The value of n for the
reach under consideration is cbtained by adding the values determined in steps
1 through 5 and multiplying this total by the modifying value found in step 6.

This method was developed from a study of 40 to 50 small to moderate
sized channels. Therefore, the method is questionable when applied to large
channels where the hydraulic radii exceed, say, 15 feet. In the case of flood
plains, the estimate of n would be based on all factors except meandering
{that is, mg would be taken egual to 1.00).

Tables of Manning's n

The follewing table 12-1 contains parts of a table presented by Chow
{1959) and gives a list of n values for various types of channels. For each
type of channel, the minimum, normal, and maximum values of n typically
observed are shown. The normal walues for artificial channels given in the
table are recommended only for well-maintained channels, This table was
compiled from a variety of sources and will be found useful as a guide to the
quick selection ¢f the n value to be used in a given problem. The tabular
approach is somewhat like the Cowan approach in that the Manning coefficient
is selected based on a written description of boundary texture and form.
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Table 12-1.--Y¥alues of the Manning resistance coefficient

{from Chow, 1959)

BE

Type of channel and description Minimuam Normal Maximum
A. Closed conduits flowing partly full
A-1. Metal
a. Brass, smooth 0.00%9 0.010 0.013
b. Steel
1. Lockbar and welded 010 .01z .014
2., Riveted and spiral .013 .016 017
c. Cast iron
1., Coated .010 013 L0014
2. Uncoated .011 014 .0l6
d, Corrugated metal
1. Subdrain 017 .019 L2l
2. Btorm drain 021 24 030
A-2. HNonmetal
a. Lucite .008 .0089 .010
b. Glass 009 L3100 L0013
c. Cement
1. Heat, surface .010 011 013
Z. Mortar .011 L013 .015
d. Concrete
1. Culvert, straight, and
free of debris 010 011 J013
2. Culvert with bends,
connections, and
some debris .011 AL13 014
3. Sewer with manholes,
inlet, etec., straight 013 015 017
4. Unfinished, rough wood
form .015 L0177 020
e, Wood
1. Stave L0110 AL 014
2. Laminated, treated 015 LT 020
f. Clay
1. Common drainage tile 011 .013 017
2. Vitrified sewer with
manholes, inlet, ete. .013 .015 L017
g. Glazed bhrickwork .011 013 .015
mortar 012 .015 017
h. Sanitary sewers coated with
sewage slimes, with bends
and connections 012 013 .016
i, Paved invert, sewer, smooth
bottom Q16 015 020
j. Rubble masonry, cemented .018 025 .030
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Table 12-1.--}alues of the Manning resistance coefficient

(from Chow, 1959%)--continued

Type of channel and description Minimum Normal Maximum
B. Lined or built-up channels
B-1. Metal
a. Unpainted amooth steel
surface 011 012 .014
b. Corrugated .021 .025 030
B-2. HNocnmetal
a. Concrete
1. Finished, with gravel
on bottom .015 .017 .0z20
2. Gunite, goad section .016 .019 023
3. Gunite, wavy section .018 .022 .025
4. On good excavated rock .017 020
5. On irregular excavated
rock .022 027
b. Concrete bottom float
finished with sides of
1. Dressed stone in mortar .015 017 020
2. Dry rubble or riprap .020 .030 035
c. Gravel bottom with sides of
l. Formed concrete .017 .020 .025
2. Dry rubble or riprap .023 .033 .036
d. Asphalt
1. Smooth 013 .013
2. Rough .0186 016
@. Vegetal lining .030 ——— .500
C. Excavated or dredged
a. Earth, straight and uniform
1. Clean, recently
completed .016 .018 .020
2. With short grass, few weeds ,(022 027 .033
b, Earth, winding and sluggish
1. Mo vegetation .023 025 .030
2, Dense weeds or agquatic
planta in deep channela .030 .035 .040
3. Cobble bottom and clean
sides .030 .040 .050
¢. Dragline-excavated or
dredged
1. No vegetation .025 .028 .033
2. Light brush on banks .035 .050 060
d. Rock cuts
1. Smooth and uniform . 025 .035 .040
2. Jagged and irregular .035 .040 .050
@. Channels nect maintained,
weeds and brush uncut
1. Dense weeds, high as
flow depth .050 .080 .120
2. Clean bottom, brush on
sides 040 .050 .080
3. Dense brush, high stage .0BO .100 .140
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Table 12-1.--¥alues of the Manning resistance coefficient

(from Chow, 1959)--continued

Type of channel and description Minimum Normal Maximum
D. Natural streams
D-1. Minor streams (top width at
flood atage <100 feet)
a. Streams on plain
1. Clean, straight, full
stage, nc rifts or
deep pools .025 .030 .033
2. Clean, winding, some
pools and shoals .033 .040 L0458
3. Sluggish reaches,
weedy, deep pools .050 .070 .080
4. Very weedy reaches,
deep pools, or flood-
ways with heavy stand
of timber and underbrush 075 L100 .150
. Mountain streams, no vegetation
in channel, banks usually steep,
trees and brush along banks
submerged at high stages
1. Bottom: grawvels, cobbles,
and few boulders 030 .040 .050
Z. Bottom: cobbles.with
large boulders 040 . 050 070
b-2. Flood plains
a. Pasture, noc brush
1. Short grass .025 .030 035
2. High grass L030 .035 .0s50
b. Cultivated areas
l. No crop .020 030 .040
2. Mature row crops .025 L035 .045
3. Mature field crops 030 .04 .050
€., Brush
1. Scattered brush, heavy
waeds .035 050 .070
2. Medium toc dense brush,
in winter .045 .070 .110
3. Medium to dense brush,
in summer .070 100 .160
d. Trees
1. Dense willows, summer,
straight 110 .150 200
2. Cleared land with tree
stumps, no sprouts .030 .040 L0580
3. Heavy stand of timber, a
few down trees, little
undergrowth, fleood stage
below branches .080 100 2120
4. Same as above, but with
flocd stage reaching
branches .100 L120 .1la0
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Table 12-1.--¥alues of the Manning resistance coefficient
{from Chow, 1959)--continued

Type of channel and description Minimum Normal Maximum

D-3. Major streams (top width at flood
stage >100 feet). The n wvalue is
less than that for minor streams
of similar description, because
banks offer less effective

reaistance
a, Regular section with no

boulders or brush 025 ——— .060
b. Irregular and rough section .035 - .100

Comparative Methods

Photographs of a number of typical channels, accompanied by descriptions
of the channel conditions and the corresponding n values, are contained in a
report by Barnes (1967). These photographs represent a wide range of channel
conditions and facilitate selection of an n value for a given problem.

Sites used in Barnes (1967) were selected for study after a major flood
had occurred in a given region. Each site met the following criteria:

1. the peak discharge of the flood was measured by the current-meter
method or determined from a well-defined stage-discharge relation:

2. good high-water marks were available to define the water-surface
profile at the time of the peak:

3. a fairly uniform reach of channel was available near the gage; and

4. the flood discharge was within the channel banks--that is, exten-
sive flow in flood plains did not exist.

A transit stadia survey of each reach was completed shortly after the
flood. The necessary information was cbtained in this survey to plot accu-
rately to a common datum the water-surface profile as determined by high-water

marks, a plan view of the reach, and cross sections at intervals along the
reach.

Photographa of the reach were taken during the time of the survey. Tha
photcgraphs shown in Barnes (1967) thus represent conditions in the reach
immediately after the flood.
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A size description of the bed material at some of the sites is included
in the reach description. The bed samples were, in general, taken several
years after the floocd for which the Manning coefficient was determined and,
therefore, may not be representative of the bed material at the time of the
peak. Fregquency distributions of the bed material size were determined by
sieve analysis where the medium size of the material was less than 50 mm and,
where the material was too large to sieve, by measuring the intermediate axis
of particles selected at random from the bed surface,

Equatiecns for Manning's n Based on Measures of Roughness

A number of egquations have been develeoped for predicting Manning's n
based on a measure of the bed particle size, usually in the form of a repre-
sentative particle diameter, dp, which is larger than p percent of the bed
material. This measure of roughness is typically related to n either directly
or as a dimensionless ratioc of roughness, Hfdp, which is often called the
relative roughness (or relative smoothness). These eguations are generally
applicable to gravel or cobble bed streams, and only a few of these eguations
are presented in table 12-2. Table 12-3 contains reference sizes for bed
material of various descriptions. The table is not complete in that only the
major size classes are shown.

cpecial Consid . : {le-Bed CI ,

Mobile-bed channels are theose in which the bedload transport rate is
significant and in which the channel boundary deforms. Two types of mobile-
bed channels will be considered those whose beds are composed of sand and
those whose beds are composed of coarser material (that is, gravel, ccbbles,
and boulders).

Gravel-Bed Channels

In contrast to sand-bed channels, which can have a variety of bed forms,
apparently only dunes or bars can develop under subecritical flows on the
channel bottoms of gravel-bed rivers. When the channel boundary is stable,
the resistance to fully turbulent flow in straight, regular reaches cf coarse
gravel-bed rivers have been found to be largely dependent on the relative
roughness. Eguations listed in table 12-2 are generally applicable. For
channels with active bedlcad transport where the boundary is mobile and bed
forms develop, flow resistance was found by Griffiths (1981) to depend on a
mobility parameter as

[ {1.2"‘4]

NEETS )n.34

n = 0.042 ( v

where mobile boundary conditions were assumed to occur if

dgpg < 11lRS.

Notice that a= the wvelocity increases, and more material is moving, the resis-
tance to flow decreases. This relation of decreasing resistance with
increased bed-material movement is often cbserved. The rolling bed-material
particles act much as marbles on the floor reducing the resistance between the
flowing water and the stationary bed.
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Table 12-2.--Equations for resistance based opn bed-material =zize

Equation*

Channel description

Investigators

0.034 dggl/6
0.032 dggl/®

0.039 dq5l/6

0.35 + 2.03 log(R/dsp)

( 0.0927 Rr1/6

0.048 dgg0-179

0.126 rRY/E (R/dgg)~0-281

( 0.0927 R1/6

0.248 + 2.36 log(R/dsg)

( 0.0927 r1/6

0.760 + 1.98 log(R/dsp)

0.104 rL/6 (EEE

0.39 §0.38 g-0.16

0.245 p0.14 (EEE) -0.44 (

-0.297 (

Gravel-bed rivers
in Switzerland

Sand mixtures in
flumes

Canals lined with
cobbles

Gravel-bed rivers
in California

Gravel=-bed rivers
in Alberta, Canada

Gravel- and cobble-=
bed rivers in the
United States,
Canada, New Zealand,
and England

) 0.103 H

Steep streams in
Coclorado with
cocbbles and small
boulders

Gravel- and cobble-
bad rivers in the
United States

Strickler (1923)
Meyer-Peter and
Mueller (1948)

Lane and Carlson
{1953)

Limerinos (1970)

Bray (1979)

Griffiths (1981}

Jarrett (1984)

Froehlich (15%78)
unpublished

*A1l length dimensicns are in feet
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Table 12-3.--Sediment grade scale (Guy, 1969)

Sediment in Size in

millimeters inches Class
=256 40-20 Boulders
256-128 10-5 Large cobbles
128-64 5=2.5 Small cobbles
32-16 1.3-0.6 Coarse gravel
B=4 0.3-0.16 Fine gravel
1-0.50  mmseeaa- Coarse sand
0.50-0.258  —em—memm——— Medium sand
0.25-0.125  ==mmeeea- Fine sand
0.062-0.031 ———————— Coarse silt
0.016-0.008  =—=——ee- Fine silt
0.004-0.0020 |  =—=————— Coarse clay
0.0010-0.0005 = ======== Fine clay

Sand=Bed Channels

Fesistance to flow in sand-bed channels wvaries between wide limits
because the configuraticn of the channel bed is a function of the flow itself.
Estimation of flow resistance in sand-bed channels is a complex subject that
cannoct be treated adequately here. For further detail the reader is referred
to Simons and Senturk (1377). Flume experiments and field cbservations have
shown that bed forms can be classified on the basis of a lower, a transitionm,
or an upper flow regime. The bed forms that occur are ripples, ripples on
dunes, dunes, washed-cut dunes, plane or flat bed, antidunes, and chutes and
pools. These specific bed forms and the regime classification, as indicated
in figure 12-1, are asscociated with a specific mode of sediment transport and
a specific range of resistance teo flow. An example of the effect of bed-
material size and Froude number on the bed form and Manning's n is given in
figure 12-2. 1In an B-foot wide laboratory sand channel, it is nated that
ripples generally cause Manning's n to range from 0.020 to 0.028; dunes, from
0.020 to . 0.033; washed-out dunes, from 0.013 to 0.025; antidunes, from 0.014
te 0.020; and chute and pools from 0.020 to 0.026 (Guy, 1970).

It is important to note that different bed forms and flow regimes may
occur side by side in a stream cross section or one after another in time. The
relatively large resistance to flow in the lower regime results mostly from
form roughness whereas most of the resistance in the upper regime results from
grain roughness and wave formation and subsidence., Resistance to flow for a
plane bed is less when the bed material is moving than when the bed material
is not moving.
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A, Typical ripple paitern, littla sediment movemant E. Plana bed
Smooth surface Water surtace, littls turbulance

- 0. Waahed-oul dunes of transition W. Chute snd pool
Water !"".!"“

-

; 4

s,
& E"'ﬁ.'.-.t

Figure 12-1.--Eight types of roughness found in sand-bed channels.
Types A through C are representative of the lower
flow regime where the Froude number is usually <0.4,
E through H are representative of the upper flow
regime where the Froude number is usually >0.7, and
D represents the transition regime. Modified from

- Simons and Richardson (1966, p. J5).
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Figure 12-2.--Effect of size of bed material and Froude
number on the bed form and Manning's n for a
range of flow conditions with sands of 0.28-
and 0.45-millimeter median diameter in an
B-foot wide flume. Modified from Guy (1970).

The Manning coefficient for a plane bed with motion depends primarily on
the size of the bed material. Values of Manning's n for plane bed flow may be
selected from the following table, which shows the relation between median
grain size (dsp) and the Manning n.

fodi Grain Si I R
0.2 mm 0.012
.4 .020
. 6 .023
0 025
1.0 .028

After the discharge and velocity are computed from the Manning eqguation,
it must be shown that the bed configuration is actually in the assumed flow
regime. This can be done by using figure 12-3 below, which relates unit
stream power teo the type of flow. In the lower flow regime the form resis-
tance of the dunes greatly increases the value of n.
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Figure 12-3.--Relation of stream power and median
grain size to the bed form.
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EROBLEMS

1.

s

At a gaging station on the Mississippi River near New Orleans, a dis-

charge of 1,200,000 ft3/s was measured when the cross-sectional area was
202,000 £ft2, the wetted perimeter was 2,700 feet, and the slope was 0.168

ft/mi. Assuming uniform flow, compute the Chezy discharge coefficient,
¢, the Manning, n, and the friction facteozr, £f.

Use the Cowan method to estimate the Manning n for the channel reach
described below.

Reach description: Straight, approximately 660 feet long. Cross
section has wery little variation in shape; wvariation in size is
moderate, but changes are gradual. Side slopes are fairly
regular, but the channel bottom is uneven and irregular. Soils in
the channel consist of a vellowish-gray clay along the bottom and
light-gray silty clay loam along the banks. Banks are covered
with a heavy growth of poplar trees 2 to 3 inches in diameter,
large willows, and climbing vines during the summer growing
season. There is a thick growth of water weed on the channel
bettom. At bankfull stage, average depth and top width are about
8.5 and 40 feet, respectively.

Using three appropriate eguations, compute the Manning n for the feollow-

ing twe channels.

Chanpnel 2 == Chanpel B
ERrea (£ft2) 6,976 589
Top width (ft) 429 118
Wetted perimeter (£ft) 435 117
ds50 (ft) 0.44 0.31
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Lesson 13 - Classification of Water-Surface Profiles

Uniform open-channel flow is a limiting condition that is approached
asymptotically but never attained. That is, any local nonuniformity of the
channel boundary will produce a nonuniformity of the flow that--though contin-

uocusly decreasing in magnitude--thecoretically extends extremely far upstream
or downstream.

Assume, for example, that a canal of constant cross section and bottom
slope is designed to carry a discharge, Q, at a normal depth, Dg, which is
greater than the critical depth, D¢, as indicated by the dashed line in figure
13-1. If the sluice gate in the channel is partly closed, the depth will
increase directly upstream until the head on the gate corresponds to the
discharge, Q. Then, howewver, the decrease in velocity resulting from the
increase in depth causes the rate of energy dissipation to be leas than that
for normal uniform flow conditions. As a result, the free surface and the
total head lines must have slopes that are less than that of the bed. Because
the total head line has a slope that is flatter than the bed slope, the
specific energy increases in the downstream direction. For subcritical flow,
an increase in specific energy results in an increase in depth as shown on
figure 13-1. Because the degree of departure from uniformity decreases as the
depth approaches normal depth, the resulting lines of total head and surface
elevation approach their limits asymptotically far upstream as shown on the
figure. The vertical scale on figure 13-1 is greatly exaggerated, backwater
effects commonly extend many miles upstream in natural channels. Nonuniformity
of this type is called gradually varied flow to distinguish it from rapidly
varied flow (for example, in the immediate wvicinity of a hydraulic jump).

Slukce gate
’
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Figure 13-1.=-=-Gradually varied flow in an open channel--
longitudinal scale greatly reduced.
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Directly downstream from the sluice gate, at point C, the depth is less
than either the critical or the normal depth. Because the wvelocity is higher
than normal (depth less than normal), the slope of the total energy line is
greater than the slope of the bed. This large slope of the total head line
indicates a decreasing specific energy with increasing distance downstream,
For supercritical flow, a reduction in specific energy results in an increase
in depth as shown in figure 13-1. The depth tends to increase with distance
in the downstream direction approaching the critical depth as a limit. If the
flow reached the critical depth, a paradox would develop because the flow
would need to continue decreasing its specific energy; however, the critical
depth would be the point of minimum specific energy. This situation cannot
exist so before the flow reaches the critical depth, a sudden change occurs in
the form of a hydraulic jump. The flow shifts suddenly from a supercritical
depth to a subcritical depth resulting in a large decrease in total energy.

The depth just downstream of the hydraulic jump is at the normal depth.
This is proven by assuming first that the flow depth downstream of the
hydraulic jump is less than normal depth. The velocity would be larger than
normal so the head loss per foot would be larger than normal and the specific
energy would decrease with distance downstream. Decreasing specific energy
results in decreasing depth (for subcritical flow) so the flow departs further
from normal rather than approaching it. Furthermcre, if the water depth is
greater than normal just downstream of the hydraulic jump, the velocity would
be less than normal so the energy dissipation per unit length cof the channel
ithe slope of the total head line) would be less than the bed slope and the
specific energy would increase with the distance downstream. Because the flow
is subecritical, the water depth would alsoc continually increase, resulting in
ancther impossible situation. Therefore, the water depth downstream of the
jump must be at the normal depth for the channel.

The flow at the brink is at critical depth as was seen before. Just
upstream of the overfall the welocity will be larger than normal and the head
loss will be larger than normal therefore, because the flow is subcritical,
the depth will decrease with increasing distance downstream. The water-
surface profile would approach the normal depth asymptotically with distance
upstream from the brink.

Water-surface profiles of all types can be sketched for wvarious combina-
tisns of channel reaches and transitions. Keep in mind that if the depth is
greater than critical (subcritical fleow), the surface profile will be con-
trolled by a downstream transition because the velocity is less than the
celerity of even the smallest disturbance. 1If, on the contrary, the depth is
less than critical (supercritical flow), the surface profile will be con-
trolled by an upstream transition because disturbances cannot travel upstream
in supercritical flow. Any disturbance that is large encugh to travel
upstream in supercritical flow, will, in doing so, change the depth to a wvalue
larger than the critical value (as does the hydraulic jump), and the control
will shift downstream.

In figure 13-2 water-surface profiles are categorized in terms of the
bottom surface slope (whether steep, critical, or mild) and the water depth
whether it is greater than both critical and normal (case 1), between critical
and normal (case 2), or less than both critical and normal (case 3). A more
complete version of this table can be found in Vennard (1962).

To qualitatively sketch water-surface ﬁrnfiles, the following apprecach

may be used, First, if the depth is greater than normal, specific energy will
increase in the downstream direction. Likewise, if the depth is less than
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normal, specific energy will decrease. Second, if the depth is greater than
critical, an increase in specific energy results in an increase in depth and
if the depth is less than critical, an increase in specific energy results in
a decrease in depth. In sketching the water-surface profilea, first draw the
bed, critical depth, and normal depth in their proper relative positions.
Mext, consider what happens to the depth if the water surface is in any of the
three zones: above both normal and critical depth, between the two, or below
both depths. Thaen draw the water-surface shape from figure 13-2 in each zone
indicating the direction of depth change, provided the water surface is within
the zone. These shapes will be found very helpful in sketching the water-
surface profile because the true water-surface shape must be continuous and
have the indicated shapes in each zone.

On figure 13-1, for example, suppese the channel slope is mild and the
water level is at point A that is above normal depth. Because the depth is
greater than normal depth, the flow gains specific energy as it moves down-
stream (it will have a smaller velocity and energy loss per unit length than
normal). Because point A is also at a depth greater than critical depth, an
increase in specific energy is accompanied by an increase in depth. Therefore,
the depth will increase in the downstream direction as shown by the shape of
the M1 water-surface profile. Because the depth passes through critical at
the drop off and the shape of the Mj curve is concave up, it is impossible for
the jump to raise the water above the normal depth.

On the other hand, if the water level is at point B, the depth is less
than normal depth. This causes the velocity to be greater than normal and the
flow loses specific energy as it moves downstream, Point B is still greater
than the critical depth and so the decrease in specific energy causes the
depth to decrease as shown by the Mz profile. This curve is consistent with
the true water-surface profile provided that the brink is not too far away.
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Finally, if the depth were at point €, the flow will lose spacific
energy as it moves downstream and the flow is supercritical so the reducticn
in specific energy causes an increase in depth as shown by the M3 water-
surface profile.

Qualitatively drawing the water-surface profiles aids visualizing many
natural flow phenomena and understanding these profiles can be useful in
stream-gaging applications.
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PROBLEMS

1,

A wide channel flows from a reach where the slope is 0.001 toc a reach

where the slope is 0.0005. The discharge is 100 ft3/s/ft and the rough-
ness is 0.015. Compute the critical depth, the critical slope, and the
two normal depths. Draw the critical depth, normal depths, and the
water-surface profile through the transition between slopes. Label the
wataer-surface profile.

101



2, A wide channel flows from a reach where the slope is mild to a reach
where the slope is 0.003. The discharge and roughness are the same as in
problem 1. Compute the normal depth in the steeper reach and draw the
water-surface preofile,

d. Repeat preblem 2 except the upstream reach slope is mild and the down-
stream slope 1s steeper than the upstream reach but still mild.
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4. Repeat problem 2 except both slopes are steep; that is, the flow passes
from a steep slope toc a steeper slope.
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Lesson 14 - Local Energy Losses in Natural Channels

The Manning, Chezy, or Darcy-Weisbach equations can be used to compute
the slope of the energy grade line (energy loss per unit distance) for
channels where all resistance to flow is caused by boundary friction.

Boundary friction will be the dominant source of resistance in prismatic
channels with no lecal disturbances. Natural channels are seldom prismatic,
however, and so energy losses are generally greater than in prismatic channels
such as flumes or lined canals. Examples of disturbances that increase energy
losses in natural channels include boulders, fallen trees, bridge constric-
ticns, bends, and natural contractions and expansions. Generally speaking,
the resistance caused by small cbstructions is lumped in with boundary fric-
tion and the resistance coefficient is modified to account for the greater
energy loss,

Major disturbances such as expansions and contractions are generally
accounted for separately and the energy loss, hg, is assumed to occur instan-
tanecusly. The energy is converted to turbulence or to turbulent eddies that
in turn convert the energy to heat as they dissipate while moving downstream.
Figure 14-1 shows the usual way of drawing the water surface and energy grade
line in the vicinity of a local disturbance. The true shapes probably look
more like the dashed curves.

Total haag

J——Deteswiee
e

———————— =

71
M

Figure l4-1.--Energy grade lines at a local cbstructien.

Applying the energy equation between points 1 and 3 (point 2 is not a
good point because the location of the total head is indeterminate), one
chtains

2 2

v
Elz—gl— + hy = EEL?— + h3 + hel™2 4+ hg273 4+ ng, (14-1)
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in which h; and hp represent the sum of the potential plus pressure potential
energies (the hydraulic head), and hf represents the head loss due to fric-
ticnal resistance. The local energy loss, he, is generally computed as a per-
centage of the velocity head. Percentages (loss coefficients, ky) for various
geometric forms of cbstructions are tabulated in handbocks of hydraulics.

Here we are mostly interested in head losses at expansions and contractions.
The head loss at either an expansion or contraction is usually computed as

Iulvl2 = n3U§2I
2g

he = ke . (14-2)

where the absolute value of the difference in velocity heads allows the same
expression to be used for either an expansion or contraction. For a sudden
contraction the value of kg is usually found to be about 0.5. Its wvalue
decreases as the transition becomes more gradual or streamlined. For a sudden
expansion the value of kg is usually found to be 1.0 which implies that all

the kinetic energy {u1v12f2g} in excess of that in the expanded channel is
lost to turbulence. As the expansion is streamlined, the value of ke
decreases but usually not wvery much. As can be seen by plotting the enerqgy
and hydraulic grade lines for an expansion, if the value of kg is 1.0, there
is no increase in water surface elevation as the flow passes through the
expansion. You probably recall that this is what is usually observed in the
field. For subcritical flow, however, the water level will always decrease as
the flow passes through a contraction,

Local energy losses become important when computing flow from changes in
water-surface elevations such as cccur at width constrictions. Figure 14-1
could be used as the definition sketch for flow through a bridge opening; for
example, where section 1 is a short distance upstream of the bridge, section 2
is at the upstream side of the embankment, and section 3 is at the downstream
edge of the opening. After a flood, peak water-surface elevations can be
determined at sections 1 and 3, usually from high-water marks. The diacharge
can then be estimated as the value that allows the energy egquation 14-1 to
balance. PRewriting equation 14-1 in expanded form, in which the friction
slope is expressed as a function of discharge and convevance and the local
entrance loss is expressed by equation 14-2, one cbtains

2 2 2 2 2 v 2
EEL + h = ﬂ + h + 3— L & -Q—. L + k (% i, El.—l_) 14_3

in which L3z and L23 are the distances from section 1 to 2 and 2 to 3, respec-
tively, V1 = Q/A] and V2 = Q/A3. Because the areas and conveyances are all
functions of the gecmetric shape of the section, roughness, and depth, equa-
tion 14-3 contains only one unknown (Q) besides the roughness coefficients in
reach 1-2 and 2-3 as well as the contraction loss coefficient ke. Measurement
of the water-surface elevations hj and h3y as well as the channel shape and
assuming the roughness coefficients and ke allows the peak discharge to be
computed (by trial and error) from the energy equation 14-3.
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PROBLEM

1. After a flood the data in the table were measured at a bridge site.

Section 1 was located 40 feet upstream of the bridge opening and section 3
was located 15 feet downstream of the bridge opening, but still within the

zone of contracted flow.

compute the peak discharge.
(Matthai, 1568, p. 43), compute the actual value of ke.

total and hydraulic grade lines on the sketch.

Assuming a contraction loss coefficient of 0.5,

Assuming a true discharge of 575 ft3/s
Draw and label the

Water-surface Area Conveyance
Section elevation (ft) fe2 ft3/s o
1 10.81 148.2 10,840 1.39
3 10.00 g2 .2 &, 560 1.0
Total
Q head
2 2
v azv
Assume i - a3 hel2 he23 B
2g 2g
(£t} (ft) (£t) (ftr) (ft) {ft)
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Lesson 15 - Water-Surface Profile Computaticns
Mathods of Computation

A common problem in epen-channel hydraulics is to determine the water-
surface profile of a stream under specific discharge and channel conditions.
The term "backwater curves" is applied to such profiles.

Backwater curves are used to determine grade lines for flood-preotection
works, highways, and bridges. They are used to determine tailwater ratings
for hydroelectric power plants, canal headworks, and energy dissipaters. They
are also used to determine areas subject to flooding.

The computation of water-surfacae profiles basically invelves solution of

the energy equation for gradually varied flow. Broadly classified, there are
three metheds of computation:

1. the graphical-integration method,
2. the direct-integration method, and
3. the step method,

Explanations of both the graphical- and direct-integration methods may be
found in Chow (1959) as well as other texts, Only the standard-step methed
will be discussed here.

Step method computaticns require the channel to be divided into short
lengths, or reaches, which have relatively small variatiens in conveyance,. In
a series of steps starting from a point ©f control, each reach is solved in
succession. For suberitical flow the computations proceed upstream from a
downstream contrel and for supercritical flow the computations must proceed
downstream from an upstream contrsel, It is wvery helpful, almost necessary, to

qualitatively analyze the problem using the methods developed in lesson 13
before detailed computations begin.

The standard-step method allows computation of backwater curves in both
nenprismatic natural channels and nonuniform artificial channels as well as in
uniform channels. This method invelves solving for the water-surface alava-
tion at wariocus locations along a channel. The energy balance used in the
standard-step method is accomplished by writing energy equation between the
upstream section, u, and the downstream section, d, in figure 15-1 as

2 V2

v
hy + ay E§ = hg + ag 53 + h| {15-1)

and solving for the water-surface elevation at the unknown section by trial
and error.

Except for representing the hydraulic head, h, as the sum of the poten-
tial and pressure potential heads (D + Z), equation 15-1 is identical to the

standard energy equation 6-2. Tha total energy loss in the reach, h|, is com-
puted as

h| = hg + he, {15-2)

whera he = §¢ L = energy loss due to frietion and
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Figure 15-1.--Water-surface profile

au"."E /2

computatieon, |
h i
U E hd
Y g % ;
hg = kg Ty 29 - g 2g = addy losses due {14-2)
to expansion ar
contraction of
the flow,
Eddy losses allow a three-dimensional flew to be modeled using a cne-dimen-
sional theory. In nenprismatic channels, eddy losses may be appreciable.
Solving egquation 15-1 for the hydraulic head at the upstream section
(assuming suberitical flow), ocne chtains
2 2
Ve Oy Vi
hy = hg + 2g 23 + hf + ha. (15-3)

The equation computes the upstream water-surface elevatien from the
downstream elevation when backwater computations are made for suberitical flow

because the control iz downstream.

The computation is carried out in steps, going from one cross section to

the next.

The general computational procedure is as follows:

l. Starting at a cross section with a known water-surface elevation,
compute the necessary cross-sectional properties.

2. Estimate the unknown water-surface elevation at the next cross

section.

3. Calculate the hydraulic properties that correspond to the estimated

water-surface elevation.

4. Determine the energy losses that correspond to the estimated water-

surface elevation.

5. Calculate the water-surface elevation using the energy equation
{equation 15-3) and the energy losses computed in step 4.
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6. Compare the estimated and computed water-surface elevations. If
they are close enough, go to step 1 where the just computed water-
surface elevation is considered to be known. If they are not close
enough, estimate a new water-surface elevation and go to step 3.

pos .

Friction loss in a channel reach is computed by integrating the friction
slope along the reach:

4
hf = J 2 5S¢ dx. {15=-4)
%1

Egquation 15-4 is approximated by
he = S¢ L, (15-5)

where Ef = the average friction slope for the reach, and
L = the reach length.

The product of Ef and L approximates the area under the actual 5S¢ curve on
figure 15-2. In general, the shape of the friction slope curve is unknown and
depends on the type of water-aurface profile (that is, M1, M2, etc.).

Waiar Surface

Figure 15-2.--Variation of friction
glope with distance
along the channel,

Possible ways of calculating gf include the following:

Weighted Average

-

Sg = (1-8) s5£4 + 0 5S¢, {15-6)
1/2; Arithmetic Average

for 8=
n/4; Elliptic Average

Geometric Mean

Ef = ﬂSfd Sty {15=7)
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Harmonic Mean

Average

2 Sfj Sf“
S5f =

(15-8
Sfq + Sfy !

Conveyance

- 2
- (Qut O e
S¢ (Ku T Ra (15-9)

Any of the friction slope eguations will produce satisfactory estimates
of friction loss provided that the reach lengths are sufficiently short =so
that the conveyances at either end do not vary too much. The advantage sought
in using alternative friction slope formulas is to maximize reach lengths

without
various

sacrificing profile accuracy. Table 15-1 presents the results of
investigations in a form that will enable proper selection of a fric-

tion slope formula. The Geometric Mean equation is the preferred friction-
slope formula for all prefile types in the Geological Survey step-backwater
Computer programs.

Example:

Table 15-1.--Criteria used to select friction slope equation

Profile type Is 5¢, > 5f4 Equation used
Subcritical Yes (M1, 51) Arithmetic Average
No (M2) Harmonic Mean or

Elliptic Average

Supercritical Yas (52) Arithmetic Average
No (M3, 53) Geometric Mean

where Sg4 = the known friction slope at the downstream cross
section, and

5f, = the estimated friction slope at the upstream cross
section.

A 100-foot wide rectangular channel has a slope of 0.0006 and a
Manning's n = 0.03. At a discharge of 1,669.2 ft3/s the cbserved depth is 4.5
feet. What is the depth 300 feet upstream? Assume all a's = 1.0 and expan-
sion/contraction loss coefficients of 0.0 because it is a prismatic channel.
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Sclution:

. The first step is to qualitatively determine the type of backwater
profile present, First, compute the Froude number to see if subcritical or
supercritical flow exists.

_9Q._ 1,669.2 _
Ve Tireien 3.71 £t/

" PR SN— ¢ S

Vgo  V32.2(4.5)

Because the Froude number is less than 1, the flow is subcritical and the
problem is well posed because the control will be downstream and backwater
profiles should be computed in the upstream direction. Also, the ecritical
depth is less than 4.5 feet and less than 5.0 feet.

Next, compute the normal depth. For normal depth the friction slope and
the bed slope are equal so

_ l.49 2/34 & = 100 b\ 2/3
0= FarAR 0.0006 = 1.22 (100 ) (oo=2=)

Solving by trial and error as shown below

S i
4.5 1,408.9
4.6 1,459%.7
4.8 1,563.2
Normal depth — 5.0 1,669.2
5.2 1,777.86

The normal depth of 5.0 feet is larger than the critical depth so the slope is
mild. The local depth is less than the normal depth and greater than critical
depth 30 an M2 profile exists that is concave down as can be seen on table
13-1. In other words, the depth 300 feet upstream will be larger than 4.5
feet and less than the normal depth of 5.0 feet.

The exact value of the depth is computed from the energy equaticn as
expressed in equation 15-1 or 15-3. Because the right side of equaticn 15-3
is a function of the unknown upstream head, h,, a trial-and-error solution
will be required, and it is convenient to organize the computations by use of
a table such as 15-2.

The first step is to compute each term in equation 15-3 that pertains to
the downstream section (which is called section 1) as follows:

The conveyance at the downstream section is

1.49 450\ 2/3 3
K = 0_03) (450) (109 = 57,518 ft /s,

50 the friction slope is

se = (2) % - (A2 % - o 000eaz,
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Table 15-2.--Computation sheet for backwater analvsis

2
Cross Depth Hater-surface elevation K Sf he v %%r
section (ft) Assumed Computed (ft3/s) (££) (ft/s)

1 4.5 4.5 57,518 0.000842 3.71 0.214
0.000785 0.236

2 4.7 4.88 4.75 61,690 0.000732 3.55 .196
0.000821 .246

2 4.57 4.75 4.75 58,966 0.000801 3.65 -207

the velocity is

ve 2E2 391 g,

and the velocity head is

avZ _ 1.0(3.71)2
2g 64.4

= 0.214 ft,

These values are recorded in table 15-2 on the line marked section 1 with a
known water-surface elevation and depth of 4.5 feet.

The next step is to assume a depth at the upstream section. Because we
know the depth will increase upstream (M2), an assumption of 4.7 feet is made.
The bed raises 0.0006 x 300 = 0.18 foot so the assumed water-surface elevation
(hy) is 4.88. The next step is to compute the conveyance, velocity, etc., for
section 2 (the upstream section) just as for section 1. The results of these
computations are shown as the third line of table 15-2.

With the third line completed, compute the head loss terms and record
the results on line 2 because the values represent the head loss between the
two sections. The friction slope at section 1 is 0.000842 and at section 2
for the assumed depth of 4.7 feet is 0.000732. The average slope is computed
as the geometric mean

s¢ = V0.000842 (0.000732) = 0.000785

so the friction loss between section 1 and 2 is

nlz? = 0.000785 (300 fr) = 0.236 ft.

The loss term is recorded on line 2 of table 15-2. The next step is to
compute the water-surface elevation at the upstream section by use of eguaticn
15-3 using data contained in table 15-2
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hy + 0.196 = 0.214 + 4.5 + 0.236 + 0.0

or hy = 4.75, which is recorded as the computed water-surface elevation at

section 2. A poor assumption was made because the computed and assumed eleva-
tiona at section 2 are not equal.

Ancther try is made by assuming the water-surface elevation at secticn 2
is equal to the computed value of 4.75 feet. The conveyance, velocity, etc.,
are recomputed with the new assumed depth of 4.75 - 0.18 = 4,57 and the
results recorded on the fifth line of table 15-2., The head loss terms are
recomputed for the reach using data contained in lines 1 and 5 and the results
are recorded between the sections on line 4., The second estimate of the
upstream water-surface elevation is then computed as before as

hy = 0.214 + 4.5 + 0.246 - 0.207 = 4.75,

which is equal to the assumed value. So the approximate water-surface
elevation 300 feet upstream of the measurement point is 4.75 feet and the
depth is 4.57 feet, which is greater than 4.50 as it should be for an M2
curve. The conveyance at sections 1 and 2 differ by only 3 percent so the
methed used in averaging the two friction slopes (gecmetric mean used hare)
ia not very important., If the convevance at the two sections differed by
more than 20 percent, the computations probably should be made for sections
that were closer together. For example, to get the water-surface elevaticn
300 feet upstream, one might first compute it at 150 feet and then at 300
feat,

113



PROBLEM

1.

A channel with a trapezoidal cross section as shown below has a constant
slope of 0.0016 and carries a discharge of 400 ft3/s. Manning's n has
been computed to be 0.025. Compute the normal depth. Compute the back-
water profile created by a dam that backs up the water to a depth of 5.0
feet immediately behind the dam. Use the standard-step method. Estimate

the average friction slope, S5f, as a geometric mean, Assume that

ke = 0.0 for contractions and expansions, and @ = 1.0. Locate cross
sections 500 feet apart. Compute the profile until the depth is within
0.10 feet of the normal depth. What type of profile is this fe.g., M1,
M2, etec.).

5= 00016
. Waled surtace n=0.026

For a channel with a trapezoidal cross section:

Area = (b + zyly

Wetted perigeter = b + 2y ¥1 4 z¢

{b + zvly

b + 2y V1 + 22

Hydraulic radius =
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PART V - DISCHARGE COMPUTATIONS FOR RAPIDLY VARIED FLOW
lesson 16 = Rapidly Varied Flow at Constrictions

The contraction of a stream channel by a roadway crossing creates an
abrupt drop in water-surface elevation between an appreoach section and the
contracted section under the bridge provided the upstream flow iz subcritical
(Fr < 1}. The contracted section framed by the bridge abutments and the
channel bed is, in a sense, a discharge meter that can be used to compute
floodflows. The piezometric (hydraulic) heads are defined by high-water marks
and the geometries of the channel and opening are defined by field surveys.
The energy eguation is used to relate the change in piezometric heads to the
discharge. This lesson describes the theory behind using contracted sections
as flow meters. Details of the procedure are presented by Matthai (19%68) and
Schneider and others (1977).

Consider the theoretical water-surface profile that occurs for steady
flow through a contracted section of a rectangular channel which is 500 feet
wide with a Manning's n of 0.03 and a slope of 0.0002 while the discharge is

5,075 ft3/s. Figure 16-1 is a plot of the theoretical water-surface and
total=-energy profiles that would occur if the constricted channel was a 100-
foot wide rectangle with the same roughness and bottom slope as the natural
channel. The opening is assumed to be 48 feet long (parallel to the flow) and
have contraction (entrance) and expansion (exit) loss coefficients of 0.5 and
1.0, respectively.

[ 136 fout tefe—— 4B et ——f
Plan witwe e OO leai !l * I
100 feal
7 48 leet . — T.48 test
TR - — e = 76 |
! o hg-065Tem by
6 83 fow —L‘— ™o Tousi g, .
v 6 80 tout
Local effects -ﬁ.‘ \
\ I h,l1.54l“‘l"\
550 tmat =——%= p1., Wi *
hy =7 46 tugt 0 = 6075 cubic feer pes second T 2 Ly - i *.
P Al
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|

Figure 16-1.--Theoretical water-surface and energy profiles
through a contracted opening.
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Within the contracted section, the normal depth, Dy, is 14.43 feet, as
can be seen by use of the Manning equation, and the critical depth is

3 3_[50.75
De = -\j%- -\,f TR

while the wide channel has a normal depth of 5.0 feet and a critical depth of
1.47 feet. For normal depth in the wide secticn the velocity is 2.03 ft/s and
the Froude number is 0.186,

The flow is subcritical throughout because Dg > De throughout and there
is no sudden drop in bed elevation. For subecritical flow, the control is
always downstream. As can be seen by applying the water- surface profile
shapes discussed in lesson 13, normal depth must exist all the way up to the
opening on the downstream side. For the present discussion we ignore the
local effects and assume the velocity is capable of suddenly changing from cne
value to another as the water leaves the constriction and enters the expanded
section. Therefore, just downstream of the ocutlet (section 3A) the depth is
5.0 feet, the velocity is 2.03 ft/s, the velocity head is 0.06 foot (assuming
@ = 1.0), so the total head is 5.06 feet (assuming the bed is at zeroc eleva-
tion at the outlet).

The depth just upstream of the outlet, section 3, can be computed from
the energy equation as

V32 V3pl v3Z  vap?

—§;+ng+u-—§g—+n3a+u+1.u[-23;-—%),
where the values of ® are assumed to be 1.0 and the expansion loss coeffi-
cient is assumed to be 1.0. Because the expansion loss coefficient is 1.0,
the velocity heads exactly cancel so the value of D3 is equal to the value of
D3a, and the thecretical water surface is continuous at the expansion. Had
the expansion loss coefficient been assumed to be 0.8, however, the theoreti-
cal value of D3 would have been 4.64 feet for example, This would have indi-
cated that the water surface suddenly increased by 0.36 foot as the flow
expanded. In other words, 0.36 foot of the kinetic energy at section 3 would
be converted instantaneously to pressure energy raising the water surface by
0.36 foot. With the loss coefficient of 1.0, figqure 16-1 indicates the instan-
tanecus head loss at the expansion is 1.54 feet.

Within the contracted section, the depth is less than the normal depth
of 14.43 but greater than the critical depth of 4.31, so an M2 profile is
indicated as plotted on figure 16-1. Projecting the water-surface profile
back to the entrance (using the methods as outlined in lesson 15), the depth
and total energies at section 2ZA are as indicated on figure 16-1. Both the
water-surface profile and energy line is concave downward as required by the
M2 profile, but the curvature is probably too slight to detect on figure 16-1.

The next step is to compute the depth at section 2 by use of the energy
egquation

2% 2
v v
o + D2 +# 0.01 = 1.33 + 5.49 + 0.01 + 0.5 (1_33 ” .zﬁg_) A

from which the wvalue of D7 is seen to be 7.44 feet,.
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The wvelocity and velocity heads are 1.36 ft/s and 0.03 foot, respec-
tively, at section 2. The energy loss at the entrance is seen to be 0.65 foot
compared to the exit loss of 1.54 feet. The theoretical water-surface profile
is discontinucus at the entrance because it has been assumed that the velocity
changes instantaneously as it passes the opening and that the energy is
suddenly dissipated. Of course this discontinuity does not exist in nature
and the actual water-surface profile and energy line will look somewhat as
shown by the dashed curves. In general, these effects, which are due to
streamline curvature, are very localized,

Upstream the depth is greater than both normal and critical, so an M1
curve is indicated. The Ml curve is very slightly concave upward. For
example, at 136 feet upstream of the entrance the thecretical depth is reduced
to only 7.42 feet and it requires 36,300 feet for the depth to be reduced to
5.06 feet, which is still 0.06 foot above normal.

The Geological Survey is frequently faced with the problem of estimating
the discharge based on high-water marks left after a flood. A bridge opening
offers an ideal place to make this estimate. This is because there is gener-
ally a large difference in water-surface elevations that are directly related
to the energy equation. For example, if the energy equation is written from
sections 1 to 3

5 2 2 2
oV asv v v
_thgl_+l:l-1 + 2y -—32?L+D3+ 23 + hel=2 4 ne2-3 4 kg (-g-g——-—z%) {16-1)

in which there are sewveral unknowns but the unknowns tend to be small. For
example, if Dy, 23, D3, and Z3 are measured in the field, the walues of Ay and
A3z can be computed from the geometry of the cross section so that

2 2 2 2
[+ § [ 4 -
LE + hl - -—EE + h3 + hfl_E + hfz_:i + kE "FZ_A - vz_ <
2g A1 2g A3 2g Zg

In this equation, the unknowns are o1, O3, hfl'z, hf2‘3, ke, V2p, and
Va. Solving for Q

2 = ——IL h e h = h .1-2 _- h 2-3 i h.
Q - o (1 3 £ £ e)
(ﬂsz AIEJ

in which the entrance loss term is represented by he. For the example given
in figure 16-1, hy - hy = 2.46 feet, hgl™¢ = 0.01 foot, hee™3 = 0,23 foot,
and hg = 0.65 foot. The accuracy of the result would not be very much
affected by substantial errors in hfl-z or hf2-3 and even the entrance loss is
not large, so that a significant error in this can be tolerated. The wvalue of
03 will be nearly 1.0 because the section under the bridge is generally very
regular in shape and the actual value of o i3 rather insignificant because
1/a32 is 56 times larger than the value of 1/A1Z.

The depth and total energy lines are strongly affected by local condi-
ticns at secticns 2 and 2A. At sections 3A and 4 additional unknowns are
added, the expansion loss and the friction loss between 32 and 4. The exit
loss term is also large, 1.54 feet in this example, so estimates of its walue
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should be avoided if pessible. For these reasons, sections 1 and 3 are almost
always selected as application points for the energy equation.

Figure 16-2 shows typical streamlines for flow through a sharp-edged
cpening. The water following streamline A approaches the opening at a
significant angle and is unable to change directions instantly upon passing
the opening. The active jet, therefore, continues to contract in the down-
stream direction for a short distance after it paases the opening. The wvena
contracta is defined as the point where the active area is smallest (often as
much as 20 percent less than the gross area). At the vena contracta the flow
is nearly parallel so the energy equation can be applied with accuracy. The
energy equation should not be applied upstream of the vena contracta because
the curvature of the streamlines is large and the simple one-dimensicnal
assumptions are not applicable.

Figure 16-2.--5treamlines for flow
through a sharp-edged
opening.

The upstream section should be selected such that it is upstream of the
local drawdown caused by the converging streamlines. Generally the drawdown
effects extend upstream less than one opening width. Wide, heavily vegetated
floodplains present unique problems that have been addressed by Schneider and
others (1377).

Detailed procedures for computing discharges at contracted openings are
presented by Matthai (1986). The basic equation used in this manual can be
derived from eguation 16-1 by assuming the entrance loss can be estimated as

,.,L&_u_

instead of the expression given in egquation 16-1. This assumption is desir-
able and reasonable because the wvelocities at section 2 are not generally
known and V3 = Vzp while V2 << Vop. Expressing the entrance loss as indicated
above and replacing V3 by Q/A, equation 16-1 can be written

2 2
v - 1-3 . Q5. 23
2g + hj h3y + hf + A32 2q (1 + kal

or solving for Q yields

2
Q = ‘\/ g(ah » B hfl-3) ; (16-2)
Vo3 (1 + ke) 2g
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which is identical to Matthai's equation 1

where
1

"4{13{1 + kg}

and Ah is the fall in water-surface elevation

C =

Ah = D1 + 21 - D3 - 23 = hy - h3.

The entrance loss coefficient ke is dependent on the shape of the
entrance, the angle of the approach flow, the length of the opening, etc.
Values of C, which are mainly a function of kg, have been measured for many
shapes and hydraulic conditions using laboratory studies. The results of
these studies are presented as tables and charts by Matthai (1968}, It was
found that the dominant factor in determining the value of C is the channel-
contraction ratio (m) which describes the degree of contraction imposed by the
constriction on the normal stream channel. The contractien ratic is a measure
of the portion of the total flow that enters the contraction from the sides of
the channel. It can be computed from the eguation

m= {Q -4q'}/Q (16=-3)

in which Q is the total discharge and g' is the discharge that would hawve
passed through the area of the cpening if the constriction was not there. For
the example shown in figure 16-1, Q@ = 5,075 and g@' = 5,075/5 because the
channel is uniform so one-fifth of the flow would have passed through the
center 100 feet had the constriction not existed. For very wide flood plains
{width of floed plain greater than five times the width of the cpening), or
very rough approach conditions (Manning's n greater than 0.05), special pre-
cautions are needed. For these conditions the special procedures developed by
Schneider and others (1977} should be used,.

The total value of C is then computed as
C=2C"' kf k¢ ... (16-4)

in which C' is a function only of m and L/b where L and b are defined in
figure 16-3C and kg, k$. etc., account for other factors such as shape.

Figure 16-3 contains a copy of some of the figures for a type 1 opening
(Matthai, 1968). For this opening, the wvalue of C' is determined from figure
16-3A. The value of C is egual to C' if the Froude number is 0.5, the corners
are not rounded, etc. If the Froude number is pot 0.5, the correction for ¢!
can be determined from figure 16-3BE if the corners are rounded, the correction
can be determined from figure 16=3C, etc,
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TYPE 1

Without wingwalls

&, Curves for base coefficient of discharge
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Figure 16-3.--Coefficients for type 1 opening, vertical embankments,
and wvertical abutments.
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FROBLEM

Compute the flood discharge through a highway bridge opening in a practically
straight, uniform reach of a river. The bridge spans the main channel and
completely blocks both overbanks. The bridge opening is 180 feet wide and 30
feet in length with wvertical embankments and vertical abutments (Type 1 open-
ing) and no piers as shown in the figure beleow. The average water surface at
the contracted section was found to be 3.0 feet below that at the apprecach
section. Data for the approach section and the contracted section are given
below. The approach section is located 180 feet upstream from the obstruc-
tion.

Subarea A _(£+2) P_(ft) o R K K3/A2
Approach section:

Left overbank 4,930 403 0.045

Main channel 5,000 225 0.035

Right eoverbank 2,760 246 0.052

Total

Contracted section:

Trctal 4,480 230 0.035
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Solution Procedure:

{a) Compute conveyances at appreoach section.
{b) Compute welocity head correction factor at approach section (ol).
{c) Compute conveyance at contracted section.
{(d) Compute channel contraction ratio, m, and length-to-width ratio, L/b.
(e} Determine C' for a Type I opening from figure 16-3A.
(£) Assuming a Froude number of 0.5, determine the discharge coefficient
(C) from figures 16-3A and 1l6-3C.
{g) Compute the discharge through the contracted opening using equation
16-2 and the following table,
Assumed
" oV 2 " 1-2 1.1222 . 2-13 L23g2 * " " a
"'l_]"'zg f K1K3 4 !‘-:32 3 3 F
25,000
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Lesson 17 - Flow Through Culwverts

When a roadway cros=ses & small stream, the streamflow is usually carried
under the roadway by use of a culvert. Like a bridge opening, the culvert
invariably constricts the flow and the channel transition usually results in
rapidly varied flow wherein acceleration rather than boundary friction domi-
nates the flow pattern. Because acceleration is an efficient process, the
energy losses are small and peak discharges through culverts can be determined
from high-water marks that define the headwater and tail-water elevations.
This indirect method is used extensively to estimate flood discharges from
=small drainage areas,

Culvert flow has been studied in laboratories by the Geological Survey,
the Bureau of Public Roads, and many universities. Detailed procedures for
indirect discharge measurements are outlined by Bodhaine (196B). The purpose
of this lesson is to review the theory upon which these procedures are based
and to briefly outline the procedures that are used.

In all cases the flow rate is computed by writing the energy eguation
between a point upstream of the culvert and a second point within or down-
stream of the culvert, then solving for the discharge in terms of an estimate
of the energy loss. The procedure has much in common with that used at bridge
openings. Figure 17-1 represents a schematic of the flow through a culvert
with the sections and terms defined. For culverts the best point to use as
the downstream control (second point in energy eguation) depends wvery much on
the flow conditiens. In general there are six types of flow possible. These
are summarized in figure 17-2.

Hangontal line

1-2
---—-___‘---. _h1

hg = Entrance loss

*T-ThT—Ei'ﬂTETjLE“‘__ - e

ayvisze |

— 0

= Grimn =l

1
Appioach sechion

121
Culwart antrance

Culvert outhat (4} ==
2 = distance from delum 1o culverl @nliance nverl Tailvwaies section

Figure 17-1.-=-Definition sketch of culvert flow.
Note: the loss of energy near the entrance is related to the

sudden contraction and subsequent expansion of the live stream
within the culwert barrel.
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TYPE

EXAMPLE

1
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Figure 17-2.--Claszification of culwvert

flow (after Bodhaine,
P-

2).
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The discharge equation for type 1 flow will be derived to illustrate the
procedure. Writing the energy eguation from section 1 to secticon 2

2 2
v v

where 02 is assumed to be 1.0 because the flow velocity should be fairly
uniform in the culvert. The entrance loss, heg, for the contracticn is
approximated as

2
v
. _22.::;' ; (17-2)

The value of ke has been found, by use of many experiments, to range from 0.1
toe 0.6 depending on the shape of the entrance,

Solving for v:z

2 2 2
NE e MR - L b Sl - pel=2
29 ka 2g hy z + g Dz hf

in which z is the distance from the datum to the culvert invert, but Vz = Q/a7
and A = RAg, D2 = De since critical depth occurs at the inlet so

2 oV 2
+{1+k31 -hl_z+—L-L—_Dc_hf1‘2
Act 29 2g
Define the coefficient of discharge, C, as
C = 1 {(17=3)
V1 + ke
then solve for Q as
2
av
Q-Act:'\lzg [hl = Z.+-12_gL"Dc*hfl-2) (17-4)

and the formula in figure 17-2 is obtained. Notice as ke varies from 0.1 to
0.5 the value of C ranges from 0.95 to 0.B2 in excellent agreement with the

values given in figure 17-3, which is a reproduction of Bodhaine's figure 23
{196B). The walues in figure 17-3, as for most other figures in Bodhaine's

report, were derived from laboratory experiments on scale models. The head

loss term i1s computed as

2
1-2 o L@ -
hf K1K3 (17-5)

in which L is the distance from section 1 to section 2.
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o "T:::“z Figure 17-3.--Base coefficient of
C =095 discharge for types 1,
080 = 2, and 3 flow in box
Box culvart having square snirance culverts with square
070 L 1 1 1 L 1 entrance mounted flush

“93 04 0% 08 07 _ 08 03 10
FROUDE NUMBER (F = V/4/gD] AT SECTION 3

COEFFICIENT OF MSCHARGE 1C)

in vertical headwall.

The critical depth at section 2 must be determined to apply equaticn
17-4. It will be recalled from lesson 11 (equations 11-4 and 11-8) that
critical depth is uniquely related to specific energy and velocity head or

2

v

- - L -
De = 2/3 B =2 5= . (17-6)

The specific energy at section 2 can be easily computed by referring to equa-
tion 17-1 or figure 17-1 as

E; = hy +a1—21;-- g = hel=2 o ke—zzg— (17-7)

letting Hi be defined as the specific energy at section 1 relative to the
bottom of the culvert entrance

2
Hy = hy + 212-1— -z (17-8)
g
and combining equations 17-6 and 17-7 it ia seen that
1-2 Dg
E2 = 1.5 Dg = H1 - h¢ = ke S

or that

Hy - hel=2
(1.5 + 0.5 ke) °

Dg = (17-9)
If the entrance and friction losses were zero, Hi would equal Ez and Ds would

be 0.667 Hjy. However, kg and hfl“z are never really zero so Do is always
less than 0.667 Hy1. The ratio of Dg to H; is called the d. factor and its
value is computed from the coefficient of discharge (Bodhaine, 1968, p. 24).

For example, assume C = 0.96 and hfl™2 = 0., From equation 17-3 the entrance
loss coefficient can be computed as

1
1 + ke

(0.96)2 =

giving kg = 0.085 so
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which agrees with the value given by Bodhaine (1968, p. 25).

As can be seen from figure 17-2, the six types of culvert flow can be
divided into two groups (1, 2, 3) and (4, 5, &) depending on whether or not
the inlet is submerged. For suberitical upstream flow, critical depth is the
smallest possible depth at the inlet to the culvert. So if critical depth at
the inlet is larger than the pipe diameter, Dpr the inlet will be submerged.
If you ignore the welocity head at section 1, the frictien loss between
sections 1 and 2 and the entrance loss, it can be seen from equation 17-9 that
if hy - z is greater than 1.5 Dp, the inlet will be submerged.

The flow eguations for types 2 and 3 are obtained in the same way as the
equation for type 1 except the downstream energy point is section 3 and the
energy loss in the barrel must be accounted for,

Types 4, 5, and b occur when the inlet is submerged. In this case the
velocity head at section one is ignored because it is assumed it would be
negligible due to ponding upstream from the culvert.

The eguation for type 4 is derived by writing the energy equation from
section 1 to section 4:

2 2
a1v aaVv
hl + -—%E—gl—.= h4 + sz_q_ hf1_2 + hE + hf2—3 " hg + hfa-qr

in which hg and hg are the entrance and exit losses, respectively. Because of
the large flow areas at sections 1 and 4, these velocity head terms are
assumed to be negligible as is the friction less from 1 to 2 and 3 to 4. The
exit loss for a sudden expansion is computed in the usual way

A . ¢ i SO i O

hg = 1.0 o 29 29
50 rewriting with these assumptions
2 w2
Yp© 2-3 , Yp_
= +

computing the friection less in the pipe from Manning's equation

L Vp2 nZ

2=3 .
e 1.492 gp4/3

solving for Vp

2 2
1'2-‘;—(1+ke+—2“—‘1‘——1*—}=h1-n4

but 2g/1.492 = 29.01 so

2 2
—E—— {1+ ke) [1 y —i 238 L] = hy - hyg
Fl.p Eg
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letting 1—:%1:— = c2 as before
a

(h] - N4l 29
Q= e
Ap 3 oy 28 c2 n2 1
NYE

where C accounts for the entrance loss just as it does in all other cases.
The entrance loss coefficient is mainly a function of the rounding of

the entrance as shown by table 17-1, which has been reproduced from Bodhaine's
report (1968, p. 42).

Table 17-1.--RDischarge cgefficients for

box or pipe culverts set
flush in a vertical head-
wall: types 4 and & flow
r!Dfp or £fD c

0 D.84

0.04 D.88

0.08 D.96

0.12 0.98

r = radius of curvature of bell
entrance

Type 5 acts as an orifice where the velocity at 2 is QZg[hl - z) and
the C accounts for the vena contracta (contraction) at the crifice. Type 6 is
treated as an orifice at section 3 (no contraction), but the head losses at
the entrance and through the pipe must be accounted for.
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FROBLEMS

1.

A 5-foot diameter concrete culvert is 180 feet long and has a Manning's n

of 0
bell
pipe
that
5.50

oo W

.015. It has a bell entrance for which the radius of curvature of the
is 0.4 foot, the pipe is set flush in a vertical headwall, and the
slope is 0.002. High-water marks observed after a flood indicate

the headwater elevation was 7.36 feet and the tailwater elevation was
feet. The pipe is set flush in a headwall.

Was the outlet submerged? (See figure 17-2)
Was the inlet submerged? (See figure 17-2)
What type flow occurred? (See figure 17-2)
What was the flow rate? (See table 17-1)
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2.

A box culvert B-feet sgquare is set on a steep slope and has a free getaway
so there is no backwater. It has a sguare entrance mounted flush with a

vertical headwall. The headwater elevation for a flood was observed to be
10 feet, which is B feet above the entrance inwvert. The approach section,

which is 20 feet upstream of the culvert entrance, had an area of 330 ft?

and a conveyance of 38,900 ft3/s. The Manning's coefficient in the pipe
is 0.015.

a. How do you know it was not type 4 flow?
b. How do wou know it was not type 5 or 6 flow?
c., How do you know it was not type 2 or 3 flow?

2

v
d. Make a rough estimate of the flow assuming 1&;'- 0 and Dg = 2/3 Hi.

e. Compute the actual critical depth at the entrance by accounting for
the entrance loss by use of equation 17-9. Ignore the friction loss.

f. Using the approximate discharge computed in step d as a first guess,
compute the flow through the culvert by use of equation 17-4. Compare
your results with those given in example 2 of Bodhaine (1968, p. 53).

g. Draw the energy and hydraulic grade lines between sections 1 and 2 on
a figure like that shown in figure 17-1 and compute the values of all
compeonents of the curve.
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Lesscon 18 = Flow Over Weirs

cinit

A weir is an obstruction in a channel that causes water to back up
behind it and flow over it, usually through an opening, or notch, of regular
form. The term is also applied to the structure containing such a notch.
Thus a weir may be a depression in the side of a tank, reserveoir, eor channel
or it may be an overflow spillway of a dam. 1In addition, weirs are the
simplest, least expensive, and probably the most common type of devices used
to measure flow in open channels. Detailed procedures for measuring peak

r

discharges using dams, weirs, and embankments are described by Hulsing (1967).

This lesson will only give the background theory and briefly introduce the
methods.

The edge or surface over which the water passes is called the grest of
the weir. If the edge of the weir is thin or beveled with a sharp upstream
corner so that the water springs clear of the crest on the downstream side,
the weir is referred to as a sharp-crested weir (fig. 1B8-1). 1If the weir
notch is mounted in a wall or some other structure that is too thick for the
water to spring clear, the weir is called a broad-crested weir {fig. 1B=2).

Wailer suiface

Crast

— —

Figure 1B-1.--Definition sketch for a contracted,
sharp-crested weir,

I Wi ater

viszg 1 he

iy

Eu

Figure 18-2.--Definition sketech for a broad-crested weir.

132

F E—




The sheet of water flowing over the weir crest is called the pappe.
When the water surface downstream from the weir is far enough below the crest
so that air moves freely beneath the nappe (aeration), the discharge is said
to be free or critical. When the water level under the nappe rises to the
point where free aeration is not possible, the nappe is not ventilated. When
the downstream water surface rises to a level above the crest, the flow is
said to be submerged or drowned. When the downstream water surface is above
the weir crest a distance equal to about two-thirds or more of the distance
between the crest and the upstream water surface, the flow rate will be
appreciably affected.

Broad-Crested Weirs

Consider the flow over a broad-crested weir as shown in figure 18-2. A
flow constriction occurs so potential energy upstream of the weir is being
converted to kinetic energy as the water accelerates over the weir and there
is a drop in water-surface elevation. If the tailwater elevation, he, is less
than the elevation of critical depth over the weir (= 2/3 Hj), the flow rate
will be independent of the tailwater elevation.

To develop the flow equations for a broad-crested weir, write the energy
equation from secticn 1 to 3 on figure 18-2. Let section 3 be located at the
critical depth point that will be near the downstream side of the weir if the
crest slope is less than critical. If the slope of the crest is greater than
the critical slope, the critical depth will occur near the upstream side of
the weir. In either case, applying the energy equation between section 1 and
the critical depth (section 3) yields

2 2
av v
—12-&-]- + h] = H] = —-zc—g- + Dc + hgl=2 4 hg + hee=3, (18-1)

Because the velocity upstream of the weir is usually small, it is common to
assume hfl-z = 0. Likewize the length of the weir, L, is usually small soc the
value of hf2‘3 is alsoc ignored. The value of he is approximated as usual by

ve2  ovi?
he = ke b P 29 .

where V1 is approximately zero, so simplifying equation 18-1 gives

Ve
H1 = D= + ?Er {1 + ka). (18-2)

Recall from equation 11-8 that critical depth in a rectangular channel is
related to the total specific energy and velocity as

vel
Dc-z-z?—zm Ec = 2/3 Hy,

50

2 B ¥l
Hl 3 H.]_ 3 zg (1 + kg]
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or

- S S
Yo YT » ke >

The discharge can be directly computed as

- Ay |- ST U %
Q=bDcVe=b3 ﬂ#3l1 o {18=3)

This egquation can be written simply as
g=bcC Hl-3, (18-4)

where the theoretical discharge coefficlent is

ey M | )
c 3 301+ ke {1B-3)

Figure 18-3 has been extracted from Hulsing (1967) to illustrate the
wariation of C with weir height.

As stated before, the value of ke generally ranges from a low of 0 for
very smooth openings or where the contraction ratic is small (h/L is small) to
a maximum value of about 0.5 for sharp nonstreamlined openings and a large
contraction ratioc. As ke varies from 0.0 to 0.5, the theoretical wvalue of C,
based on equation 18-5 varies from 3.09 to 2.52, which are within the range of
values indicated on figure 18-3. For values of h/L larger than 1.0, the
length of the weir (L) is short and the weir begins behaving more like a
sharp-crested weir, which as will be seen, has a larger coefficient of dis-
charge. The efficiency of the weir increases (C increases) as the upstream
face iz sloped. This in effect streamlines the entrance and reduces the wvalue
of ke.

F P

)
t
P
i

Figure 18-3.--Coefficients of dis-
charge for full width,
broad-crested welrs 380
with downstream

slope = 1:1, and vari- 160
ous upstream slopes it
(Hulsing, 1967, p.

10) . w 3320
1.00

280

260
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The coefficient of discharge in equation 18-4 is actually a function of
many variables besides kg. In general, it is a function of the shape of the
entrance and other variables as defined by

h ¢
C = f L' L’ Hi, etc.) {18-6)
in which r is the radius of the rounding on the upstream corners. The effect
of many of these variables has been quantified by laboratory experiments and
the results are presented by Hulsing (1967). Corrections for other wvariables
are accounted for by letting

C=20C" kr ka ... {(1B=-T7)

in which C' is determined from figure 18=-3 and the k's are determined from
other figures or tables. For example, if the slope of the downstream face of
the welr is flatter than 1:1, the values of C from figure 18-3 must be multi-
plied by the factor, ks, given in the following table (Hulsing, 1967, p. 9).

Value of kg for a downstream slope of

h/L 2:1 3:1 4:1 S:1
0oL 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00
1.0 0.98 0.96 0.95 0.94
2.0 0.98 0.94 0.91 0.8%0

If the upatream weir face ia vertical and the entrance corner is
rounded, the value of C from figure 18-3 must be multiplied by a factor, kg,
given in the following table (Hulsing, 1967, p. 9).

r/h 0 .02 .04 .06 .08 .10 .12 .14

ke 1.00 1.01 1.03 1.04 1.05 1.06 1.08 1.09

Sharp-Crested Weirs

If the corner of the upstream face of the weir is wvery sharp and the
length of the weir, L, is small, the water jet (nappe) will spring clear of
the weir as shown in figure 18-1. In writing the energy eguation for a sharp-
crested weir, consider section 3 to be immediately downstream of the weir
plate. Actually, the streamlines will have strong curvature at the face of
the weir so the one-dimensional assumptions will not be strictly wvalid but
nevertheless useful approximations result.
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Because the jet at section 3 is not supported from below, the pressure
at all points in the jet is zero and does not increase from zero at the
surface to YDg at the bottom as it does for a broad-crested weir. The
hydraulic head (potential plus pressure-potential energy) therefore is not D
at section 3 but simply the average potential energy of parcels passing
section 3. The potential energy of a water parcel on the bottom of the jet is
zerc while that of one on the top of the jet is D ft-1b/lb. Assuming the
average potential energy of parcels passing section 3 is equal to the poten-
tial energy of the parcel passing through the centroid of the cross section,
the energy eguation yields

2 2 2
¥et ;B 1-3 L s
Hi 29 + 5=+ ht + ke 29 25 {1B-8)

because the centroid of the cross section {a rectangle) will be Dn/2 feet
above the crest of the weir. Eguation 18-8 is identical to egquation 18-1
except that the hydraulic head is adjusted to account for the fact that the
pressure in the free jet is zero and so the average potential energy of water
parcels passing section 3 is Do/2 ft-1b/lb rather than De ft-1lb/lb, which
would occur if the pressure were hydrostatic. Because the depth upstream of
the weir is generally large compared to the depth at the weir, we will con-
sider Vi and hgl™3 to be zero.

With this slight modification to the energy eguation, the flow over a
sharp-crested weir can be analyzed exactly like that for flow over a broad-
crested weir., The depth should be at critical depth at the weir plate so
Do = 2/3 Hy, which can be substituted into equation 18-8 to determine the

average veleocity in the jet
g vl R —
c FEL + kol L

Comparing the velocity in a free jet as computed above to that on a broad-
crested weir computed previously, it is seen that the average free jet . is
two times faster. This is because there is no pressure in the jet holding the
water parcels back,

BRectangular Weirs

Computing the discharge for a sharp-edged rectangular weir from the
velocity and the area, ocne obtains

= - (2 qﬂ___is___.ﬁr"_ 2 .,I.__EE____ gic
0= VA (3 b H]) 301+ ko) Hi 3 b T+ ke Hy :

Again this equation is usually written as

g=bic a5 ora=5cHld {18-9)
The wvalues of total head (H) or piezometric head are often used interchange-

ably because the velocity head upstream is usually negligible. The theoreti-
cal value of the coefficient of discharge is
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-i.,(_iﬁr_ _
C 3 3L+ kel' {(18=-10)

As the entrance coefficient varies from 0 to 0.5, the theoretical
discharge coefficient varies from 4.37 to 3.57, which is close to the experi-
mental values presented by Hulsing (1967, p. 6). The minimum discharge

coefficient presented by Hulsing is 3.27 for a very small weir (h/P — 0) and
the maximum value is 4.29.

If the width of the weir is less than the width of the channel (b < B on
fig. 18-1), then the flow tends to contract downstream of the weir plate (a
vena contracta is formed). The discharge coefficient is reduced because of
the smaller effective width of the jet. As can be seen from figure 3 in

Hulsing (1567, p. 6), this contraction can reduce the flow area by almost 30
percent.

If the nappe is not fully ventilated, a partial vacuum is created under
the jet that reduces the pressure in the jet below atmospheric and increases
the discharge just as reducing the pressure in the jet increases the diacharge
relative to the flow over a broad-crested weir,

; 1 ;

Triangular (V-notch) weirs permit the accurate measurement of much lower
discharges than do horizental rectangular weirs,

A definition sketch for the V-notch weir is shown in figure 18-4, The

theoretical discharge for a V-notch weir is derived in the same manner as that
for the rectangular weir.

Figure 18-4.--Definition sketch of a
V-notch (triangular)
sharp-crested weir,.

Section 3 is again just downstream of the opening and the pressure in
the jet is zero so the average potential energy of water parcels must be used.
For a triangular weir, the centroid of the cross-sectional area is at 2/3 Dga
{see fig. 18-4) so0 the energy equation becomes

2 2 "y.2
= }FL —2.- vi. o EL.. 1-3 -
H1 29 + 3 De + ke (Zg 29 + hf F (18-11)

The critical depth in a triangular channel is not equal to two-thirds of the
total specific energy as in a rectangular channel. It can be easily shown
that critical depth in a triangular channel is
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2
v 4 4
Dc-‘l"zi"-‘gEtng (18-12}

by use of equation 11-3. 5o the vwelocity at the critical section can be
determined by use of egquations 18-11 and 18-12 as

itk ’_14*5__ JEo %
V: 15!_1 + kel H.l {lﬂ 13]

and the discharge is computed as

4 2 6 _ | 14g —
Q‘ A,:V,: (5 Hl) tan 2 15(1 + ke} H]_ :18'1‘”

or
i 5f2
2 = tan ) CH

in which the theoretical discharge coefficient

2 N15(1 + ke) ~

For a sharp, constricted entrance, the wvalue of ke should be about 0.5 yield-
ing a theoretical discharge coefficient for a V-notch weir of 2.86. Experimen-
tal values of C range from 2.46 for a 60° weir to 2.48 for a 90° weir
{Daugherty, 1937, p. 148).

A correction factor, k¢, for submergence of sharp-crested V-notch weirs
is given by Villemonte (1947) as

5/2 0.385
ke = [1 - G}i—) ] (18-17)

in which hy = tailwater elevation above the weir crest. This egquation was
found to apply equally well to all types of sharp-crested weirs if the expo-
nent of the term (hy/H1) is egual to the exponent in the free-discharge egua-
tion of the particular weir.

ot} S —Cr i Hed

The Cippoletti (trapezoidal) weir is similar to a rectangular weir with
side contractions except that the sides are inclined ocutwardly with slopes of
4 vertical to 1 horizontal as shown in figure 18-5. The excess flow permitted
by the flared sides of the Cippoletti weir corresponds to the decrement of
flow induced by the lateral contraction. Therefore, the discharge can be com-
puted using equation 18-9 with the coefficient selected as for the rectangular
weir and no correction is needed for the side contractions.

Other types of sharp-crested weirs are used which have been developed to
achieve certain head-discharge relations or to achieve some benefit peculiar
to a particular type of site, The most common of these special types of weirs
is the sutro, or proportional, weir (fig. 1B=-6a). ©Other special purpose weirs



include the approximate linear weir (fig. 18-6b), the approximate exponential
weir (fig. 18-6c), and the Poebing weir (fig. 18-6d).

1 Crest langth

Figure 18-5.--Definition sketch of a
Cippoletti (trapezoidal)
sharp-crested weir.

A, Sutro or proportional weir

C. Approximale sxponanial weir
Ty Water iface

Figure 18-6.--Various other sharp-
crested weir profiles.

0. Posbing wair
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PROBLEMS

1,

A broad-crested weir 5 feet high and 10 feet long has a rounded upstream
corner with a radius of curvature 0.3 foot, a downstream slope of 1:1, a
vertical upstream face, and spans the entire width of a 20- foot wide
rectangular channel, What is the discharge over the weir when the
upstream water surface is 3 feet above the crest of the weir?
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2.

Estimate the discharge over a vertical sharp-crested rectangular weir
extending over the full width of a rectangular channel 5 feet wide if the
weir is 3 feet high and the head is 0.84 foot.
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3.

A rectangular sharp-crested weir having a horizontal crest length of 3
feet is located 2 feet above the bottom and is centered in a channel 5
feet wide. Determine the discharge when the head is 0.40 foot.
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4.

A 10-foot wide rectangular irrigation canal carries a flow of 200 ft3/s.

At what height should a rectangular sharp-crested weir spanning the entire
channel be installed in order to raise the water surface to a level § feet
above the canal bottom?
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The head on a 60° V-notch weir located 1 foot above the channel bottom is
0.5 foot. The approach channel is 4 feet wide. Compute the discharge and
the velocity head in the approach channel. Is the velocity head in the
approach channel significant?
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ANSWERS TOC PROBLEMS

Lesson 1

2. specific weight = 49.27 1b/ft3
specific gravity = 0.79

3. 187.2 1b/ft2

4. 0.01417 1lb s/£t2
Lesson 2

1. Fy = 7,020 1b
y = 10 ft

2. F = 6,240 1b
yr = 5.83 ft below top of gate

4,000 lb —

3. Fg
3,000 1b 4

Fy

4, Fy = 444 lb —

w

m
=
]

32,760 lb —
28,308 1b T

L]
<
]

Lesson 3

[
-

o
[]

0.89 f£ft/a Tp = 32.1 min

0.838 ft3/s APp = -1.34 atmosphere (impossible cavitation
will occur)

-3

3. F/pv2L? = £ (u/pvL)

(. —S.¢ (80, B & M)
g h3/2 h1 " h1 " h1 " h

Lesson 4

1. (a) 5.56 ft, (b} 0.15 ft and 0.56 ft, (d) 2.03 £t
2. (a) 1.605 ££3/s, (c) 24.07 ft/s
3. 1,716 ft3/s

4. Q = 1,200 £ft3/s Dy = 2.0 or 3.5 ft
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Lesszon 5

1. g = 0.0071 £t2/s, wmax = 0.529 ft/s, V = 0.355 ft/e,
Fe = 584 (barely Laminar)

2. 1o = 0.0312 1b/ft2, u, = 0.127 ft/s

3. wvp,1 = 2.80, vi = 3.53, v3i = 3.88, v = 4.04, V= 3,72
Lesson 6

A-B B=-C

I, hl = 10.69 :';'1:4.111 = £3.30 ft, AT = 0.1 °F

2. (a) 21.49 £c3/s, (b) 1.125
3. 3.018 ft
4. 24.05 £t
Lesson 7
2. 0.784 ft/mi
3. 1,980 £t3/s
4. 7.10 ft

5. C = 145, £ = 0.0123

6. ¥ Q
1 121 ft3/s
5 1,610
*
5.1 920
6 1,815
10 8,100

lesson 8
1. (a) K= 28,711 ft3/s, 0 = 1,287 ft3/s, Vv = 10.72 ft/s
(b) K = 2,707 ££3/s, Q = 121 ft3/s, V = 5.82 ft/s

{c) K = 48,855 ft3/s, Q = 2,185 ft3/s, Vv = 11.38 fr/s

2. 3.95 ft
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Lesaon 9

| 9 K ft3/s g fti/s Vv ft/s
Total section 293,528 5,188 1.03
Right 6,200 109 0.22
Center 881,500 15,520 7.76
Left 180,300 3,175 1.27
Subdivided 1,068,000 18,800 3.76

2., 3.53

Lesscn 10

1. 1,065 1b —
231 198.4 1b —» , yes (the head loss is positiwve)

3. D2 = 6.12 ft, h| = 1.43 ft

Lesson 11
1. (a) 3.676 £t, (b) 5.515 ft, {(c) 7.51 ft, (d) 7.57 fr, 2.04 f£t,
{e) supercritical, (f) subcritical, 0.0263 sateep, 0.0010 mild
{g) 0.00413

2, Dz = 6.12 fr, h] = 1.43 ft

3. (a) 1,08 ft, (b) W= 7.21 ft
Lesson 12
l. € =122, n = 0.0251, £ = 0.0174

2. n=20.02+0.01 +0.05=20.08

3. Egquation Channel A Channel B
Strickler 0.030 0.028
Limerinos 0.0486 0.049
Bray 1979 0.041 0.039
Bray 1979 0.073 0.075
Bray 1979 0.037 0.039
Griffitha 0.038 0.038
Griffiths 0.040 0.043
Froehlich 0.028 0.035
Lesson 13

1. Dc = 6.77 ft, Se = 0.0017, Dy = 7.97, 9.82 ft
Ml, Normal depth

2. Dy = 5.73, M2, Critical depth, 52
3. M2, Normal depth

4. Normal depth, 52
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Lesson 14

1. @ = 551 £t3/s, ke = 0.338
Lesson 15

1. Dy = 3.362 £t, M3, Dsgg = 4.39 £t
Lesson 16

1. (a) KL = 8.67 x 105, Ky = 1.68 x 108, kg = 3.96 x 105 ft3/s

(b) 1.42
(e} 1.37 = 106 £ed/s
(d} 0.429

(e} 0.75

(£) 0.78

(g) 49,080 ft3/s

Lesson 17
1. fa) 5.5 = 5.0 > ves
(by {7.36 - 0.36)/5.0 > 1, ves

(c) Type 4
(d) 153.5 ft3/s
2. (a) Free getaway
(b) (10 - 2)/B < 1.5

{c) Steep slope, no backwater

(d) 555 ft3/s
(e) 5.15% ft

(£) 533.6 £ft3/s

Lesson 1B
1. 319 £t3/s
2. 13.73 £t3/s
3. 2.46 ft3/s

4, 3.1 ft

5. 0.292 ft3/s, 0.00003 ft
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