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Chapter VI
Newton-Raphson Method

Introduction

In Chapter II the Newton-Raphson method (Eq. 2-17), one of the
most widely used method for solving implicit or nonlinear equations, was
described. Most books dealing with numerical methods or numerical
analysis provide additional treatment of the Newton-Raphson method. It
is widely used because it converges rapidly to the soltuion. In review of the
discussion of the Newton-Raphson method in Chapter 11, - solution to the
equation F(x) = 0 is obtained by the iterative formula x m+1) = x(m) .
F(x(m))/F'(x(M)), Mathematically the convergence of the Newton-
Raphson method can be examined by using Taylor’s formula to evaluate
F(x) = 0 from the function at some iterative value n?_v“ or

0 = F(x) = Fx™) +e-x™) F' ™) + (x-x™)? F (g2

in which £(M) lies between x(™) and x. Solving for x gives

= ), _Fx ™) o my2 F
- Foc ™ ¢ vwm.?a

2Lt |y my2 __F"
X=X x-x'"™) FF )

Thus the error of the (m+1)th iterate is proportional to the square of the
error in the mth jterate. Convergence of this type is called quadratic
convergence and in simple terms it means that each subsequent error
reduction is proportional to the square of the previous error. Thus if the
initial guess is 20 percent (i.e. 0.2) in error, successive iterations will
produce errors of 4 percent, 1.6 percent, 0.026 percent, etc.

The Newton-Raphson method may be used to solve any of the three
sets of equations describing flow in pipe networks which are discussed in
Chapter IV, i.e. the equations considering (1) the flow rate in each pipe
unknown, (2) the head at each junction unknown, or (3) the corrective
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116  PIPENETWORK ANALYSES

flow rate around each loop unknown. The Newton-Raphson method

requires an initial guess to the solution. Since the other two systems of
equations are fewer in number than the Q-equations, the Newton-
Raphson method is probably the best method to use for larger systems of
equations. It requires less computer storage not only because of the fact
that few simultaneous equations are included in the H- or AQ-equations,
but also because it requires less storage for a given number of equations.

Before describing how the Newton-Raphson method can be used to
solve either of the latter two systems of equations, it is necessary to extend
this method from a single equation to a system of simultaneous equations.
Notationally this extension is very simple. The iterative Newton-Raphson
formula for a system of equations is,

2 mH) o m) plE (B3 ot A (6-1)

The unknown vectors X and F replace the single varible x and function F
and the inverse of the Jacobian, D!, replaces 1/dF/dx in the
Newton-Raphson formula for solving a single equation. If solving the
equation with the heads as the unknowns (i.e. the H-equations) the vector
X becomes the vector H and if solving the equations contain g the
corrective loop flow rates (i.e. the AQ-équations) ¥ becomes AQ. The
individual elements for H and AQ are

H, with the known AQ 1

Hy | Homittedfrom -~ _ |AQ
=1 - 2| davector oo AQ= |.72

H AQ,

The Jacobian matrix D consists of derivative elements, individual rows of
which ate derivatives of that particular functional equation with respect to
the variables making up the column headings. For the head equation the

Jacobian is,

oF, oF 9F, |

9 9 9%

M. OH., ° ° ° 3H

_ 1 2 J

: oF, 3F, 3F,

D= H, 9H, H,

9F; 3F; 3E
LoH, 9H, dH;
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in which the row and column corresponding to the known head are
omitted..

The last term D"'F in Eq. 6-1 contains the inverse of D, since division
by a matrix is undefined. However in application of the Newton-Raphson
method the inverse is never obtained and premultiplied by F as Eq. mo._
implies. Rather the solution vector Z of the linear system DZ = F is
subtracted from the previous iterative vector of unknowns. Selecting the
H-equations in the following notation, the Newton-Raphson iterative
formula in practice becomes

H@D - fm Som) B, M (6-2)

The equivalence of Egs. 6-2 and 6-1 is evident since m-"lb. IE. Since fewer
computations are needed to solve the linear system Dz = F than to find
the inverse D! obviously Eq. 6-2 is the form of the Newton-Raphson
method used in practice. The Newton-Raphson method, therefore,
obtains the solution to a system of nonlinear equations by iteratively
solving a system of linear equations. In this sense it is similar to the linear
theory method and can call on the same algorithm for solving a linear
system of equations as does the linear theory method. It turns out,
however, that the Jacobian is a symmetric matrix, and consequently an
algorithm for solving a linear system of equations with a symmetric matrix
might preferably be used for greater computational efficiency. The ,
Newton-Raphson method does require a reasonably accurate initialization
or it may not converge.

Head-equation

The Newton-Raphson method will be illustrated in detail by using it
to solve the H-equations for the simple one loop network shown below. To

simplify the problem the Hazen-Williams equation will be used so that K
and n in the exponential formula are constant. The values of K for the
three pipes are: Ky3 = 1.622, Kjy = 0.667, Ky = 2.432. The heat at
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118  PIPENETWORK ANALYSES

junction 1 is known and equal to 100 ft. The heads H; and H, at junctions
2 and 3 are unknown and to be determined. To determine these two
unknowns the H-equations will be written at junctions 2 and 3 (see Eq.
4-17 for the nature of these equations), giving

H, -H\"?  (m - H,)\ "2
F, = - AL—nInW + ALNI.PV +15=0

12 23
1/ng3 AMn13
QAEV Amr_wv +30=0
3 K;3 K3

The equation at junction 1 is not written since H; = 100 ft is known, but
might have been used in place of one of the above equations. Upon
substituting known values for H; and the K’s and n’s those equations
become:

0.54 0.54
_ . (00-H " (H, - EV el A
F,=- 183 0.667 :
e :».:&p% A_oc.muvo.%;o i
377 \0.667 T\ 2432 y
LAY
H, H,
The Jacobian D =
LAY
has the following elements
w3 1 3l
23
oH, K, K2 Kys \ Ky
-0.46 -0.46
- (100-H, gt s H, -H,
= 0383\ 41553 . 0.667

: 1,

£ il -0.46
oF, - 0,54 Azu - muv 2 H, - H,

= Q.NOQA 0.667 v

oH; =" Kyy \ Ky,
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i -0.46
9F; _ o054 AE i muv & S A=~ ] =uv
oH, " K, 3 0.667
-1 ‘ .-_.—l-—
23 13
3F; 054 AE.:“V , 054 Az_.mb
oH, Ky \ Ky Kis \ K3/
. H.\0.46 L H_\0.46
= 0.809 Azn s +0222 (2 =uv
y 0.667 : 2432
H, 95
If the initialization H = = is used by the Newton-
H, 85
Raphson equation, Eq. 6-2, the solution to
0432| |.0.233| |z,| | 3.98
0.233| | 0329f |z,| |-398

is za = 4.34 and z3 = :9.04. When these are substracted from the initial

-guesses H; = 90.66, Hy = 94.04. After completing six iterations the

uo___mo__wumnﬂs.amwgazun8.3? ﬁumw_m z.nmo—_oo._:_.oaoi
rates are computed as: Oz = 2454 cfs, Q,, = 0.954 cfs, and Q,, = 2.046
cfs.

A simple version of a FORTRAN computer program for solving the
H-equations by the Newton-Raphson method is listed below.

INTEGER N1(50),N2(S0),NN(45) JB(45,7),JC(45)
REAL H(45),D(50),Q(50),CHW(50),QJ(45),K(45),F (45 ,46), V(2)
C NP-NO. PIPES, NJ-NO. OF JUNCTIONS, KNOWN—~
C JUNCTION NO. OF KNOWN HEAD, MAX-MAX. NO. OF
C JUNCTIONS ALLOWED, ERR-ERROR PARAMETER
98 READ(S,100,END=99) NP,NJKNOWN,MAX,ERR
100 FORMAT(415,4F10.5)
DO 2 [=1,NP
C Ni(1) JUNCTION NO. FROM WHICH FLOW IN PIPE COMES
C N2(D) JUNCTION NO. TO WHICH FLOW IN PIPE GOES
C D()-DIAMETER OF PIPE IN INCHES
C CHW()-HAZEN-WILLIAMS COEFFICIENT FOR PIPE
C L-LENGTH OF PIPE IN FEET
READ(S,101) N1(1),N2(1),D(1),CHW(),L(T)
D()=DaY/12.
2 K(1)=4.727328*L() (CHW(1)**1.85 185185 *D(1)**4.87037)
101 FORMAT(215,5F10.5)
NIM=NJ-1
DO 4 J=1,NJ Je2

C I-JUNCTION NO.



C QI()~-EXTERNAL FLOW AT JUNCTION, MINUS IF QUT
C FROM NETWORK
C H()-ESTIMATE OF HEAD AT JUNCTION USED TO
C INITIALIZE N-R SOLUTION
4 READ(5,102) 1,QI(1),H()
102 FORMAT(IS,5F10.5)
DO 5 J=1,NJ
NNP=0
DO 6 I=1,NP
IF(N1(I) NE.J)GOTO 7
NNP=NNP+1
JB(J ,NNP)=I
GOTO 6
7 IF(N2(I) .NE.J) GO TO 6
NNP=NNP+1
JB(J,NNP)=-1
6 CONTINUE
5 NN(J)=NNP
NCT=0
20 SUM=0.
JE=0
DO 10J=1,NJ
IF(J .EQ. KNOWN) GO TO 10
JE=JE+1
JIE=J-JE
DO 15 1J=1,NJ
15 F(JE,J1)=0.
NNP=NN(J)
DO 11 KK=1,NNP
II=JB(J KK)
I=ABS(ID)
11=N1Q)
12=N2(1)
ARG=(H(I1)-HA2)/K ()
FAC=II/1
FAC5=.54*FAC
ARGE=ARG**.54
13 FOE,NI)=F(JE,NI)*ARGE*FAC
IF(I1 .EQ. KNOWN) GO TO 14
IF(I1 .GT. KNOWN) I1=11-1
F(JE,I1)=F(JE,11)+*FAC5*ARGE/(K(I)*ARG)
14 [F(I2 .EQ. KNOWN) GO TO 11
IF(12 .GT. KNOWN) 12=12-1
F(JE,I12)=F(JE,12)-FAC5*ARGE/(K(I)*ARG)
11 CONTINUE
FQE,NN=F(JE,NI)-QI(J)
10 CONTINUE
V(1)=4.
_om:._. GIJR(F,46,45 NJM, z_.sﬁn.s
=0
DO 24 J=1,NJ
IF(J .EQ. KNOWN) GO TO 24
JE=IE+1
DIF=F(JE,NJ)
SUM=SUM+ABS(DIF)
H()=H{J)-DIF

24 CONTINUE
DO 25 I=1,NP
I1=N1{)
12=N2(l)
IF(H(I1) .GT. H(12)) GO TO 25
WRITE(6,225) 111,12

225 FORMAT(‘ FLOW HAS REVERSED IN PIPE’,315)
N1(@)=12
N2(1)=11
11=11
28 NNP=NN(II)
DO 26 KK=1,NNP
IF(IABS(JB(I1,KK)) .NE. I) GO TO 26
IBULKK)=-JB(II,KK)
GO TO 27
26 CONTINUE
27 IF(I1 .EQ.12) GO TO 25
1I=12
GO TO 28
25 CONTINUE
NCT=NCT+1
WRITE(6,108) NCT,SUM
108 FORMAT(* NCT="15," SUM="E12.5)
IF(NCT .LT. MAX .AND. SUM .GT. ERR) GO TO 20
WRITE(6,103)(H(J) J=1,NJ)

103 FORMAT(* HEADS AT JUNCTIONS’,/,(1H ,13F10.3))
WRITE(6,104)

104 FORMAT(* FROM TO DIAMETER LENGTH
$CHW FLOWRATE HEAD LOSS HEADS AT
$JUNCTIONS")

DO 17 I=1,NP
I1=N1(1)
12=N2(1)
DH=H(11)-H(12)
Q()=(DH/K(D)** .54
19 WRITE(6,105) [1,12,D(I).L(1),CHW(D),Q(1),DH.H(I1),H(12)
105 FORMAT(2I5,2F10.1,F10.0,4F10.3)
17 CONTINUE
GO TO 98
97 WRITE(6,306) JC(1),V

306 FORMAT(* OVERFLOW OCCURRED-CHECK SPEC.
$FOR REDUNDANT EQ. RESULTING IN SINGULAR
$MATRIX ,15,2F10.2)

99 STOP
END

Example Problems Based on the H-Equations

1. Solve the network below for the heads at each junction. From these
computed heads compute the flow rates in each pipe. The head at
junction 3 is to be maintained at 100 ft.
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Solution:
The system of equations for this network is:
. A—.m— e —.—NVQ.MA Am.—— . :&VO.MA
= ——— + —————— - d =
1 18.19 49.22 L0
0.54 0.54 0.54
F. = .A_.: -_.mv + A=~.=mv + Amu.zuv =0
s - | 2 3 =
18.19 49.22 12.12
0.54
kt A H, - Ev AF - _Sv .
4" \p22/) *t\73833) 0¥ =0
ak Amn . :uvo.ua A_co H, 0.54
5 T\ 1212 "\ 69.40 + 0248 ¢

If as initialization, H, = 115’, H; = 103’, Hy = 103’, and Hy = 99’, then

0.057 -0.036 -0.021 00 7 [z 0.266
o 0,036 -0.150 00 -0.074| |z | _ |-0.029
Dz=Fbecomes 10021 00 053 00 ||z 0,039

00 -0074 00 -0129) |z 0.151

A solution of which gives: z, = 5.78, z; = 0.86, z, = 1.55, and z3 =
-0.67 producing H, = 109.22, H; = 102.14, Hy = 101.45, H; = 99.67.
After two additional iterations: Hy = 109.74’, H; = 102.19°, H; = 100,
H, = 101.63', Hy = 99.58', and Qy3 = 0.622 cfs, Q4 = 0.378 cfs, Qs =
0.128 ﬂ@- Onc = 0.436 ﬁﬁm. Onu =0.186 n@- Ouu = 0.064 cfs.

2. Obtain the elevation of the HGL at each junction and the flow in each
pipe in the network below

e e o

ﬂ_ns.
i @

10" - 1000° 8" - 2000"
g
1.0ch b
° ;31
15ch
Solution:
The system of equations is:
ANQO.I&V@&& | A—.—n umuvo.u& +A=~ .—.—uvo.mA o
B =\ 9615 7.211
0.54 0.54
F, =- Amw.muv + =u.=.¢v -10=0
3 7.211 9615
0.54 0.54 0.54
N TN R LT L W) pg PP
4 9615 7211 3.243
0.54 0.54 0.54
g Amn.:uv A Amm .:& +A=u -=..v
s ="\ 9615 9615 7211
H. - H.\05¢
5777 -
+A 58.55 v P
0.54 0.54
P sl +A=a.=qv +10=0
6 9.615 29.27
0.54 0.54 0.54
. u.Aza.Fv .Amu.mﬂv .AF.FV S
7 3.243 58.55 3.243 :

Solving these equations by the Newton
183.5', H; = 174.1°, Hy = 134.2’, H;

-Raphson method gives: Hy =
= ﬂuQ.ono :. = ﬂgucﬁn :Q =

129.2', and the flows are: Qy; = 3.5, Qa5 = 2.344, Q33 = 1.156, Qg =
2.156, Qg = 0.599, Qg7 = 0.335, Qg = 0.910, Q4 = 1.255, Qs = 0.090

allin cfs.
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Corrective Flow Rate Equations

In applying the Newton-Raphson method to solve the mwun.oa of
Bﬂﬂmgn an_-._-a-. considers the corrective flow rates in each loop as the
unknowns, the same procedure is followed except the unknown vector i
Eq. 6-1 is AQ and the Jacobian is, d - "

3F;  3F aF
QDO— waN ° > . UDOF
m—uN w—uN 0 w—u_..
D= 9AQ, 9AQ, S Seljes 3AQ,,
L} . L ] : P
0—....—.. w—u.—. w—u.—..

1 94Q 34Q, T AQ

With Z defined as the solution to D(M)Zm) = F(i) a5 previous where F
now becomes the equations evaluated from the mth iterative values of
>OABV. the Newton-Raphson method becomes -

AQIM = pQm 2 ... (63)

The Newton-Raphson method will be illustrated in solving the
AQ-equations by giving the details involved in solving the two loop
network shown below. The table to the right of the sketch contains values
of a possible initial flow rate in each pipe of the network which satisfy the
junction continuity equations and which will be used to define the
corrective loop flow rate equations. To simplify the illustration the
Hazen-Williams formula will be used.

10cfs K =207 .,
* HW [2] _n—_! 14.94 _u_%u.a_.- mumvn No. OOAOWV
5.0
2.0
2.5
5.0
3.0
0.5
4.5

©)

Ky =11.20
2
=378
8
® K, =3033

)
2
3
2
K
T
"
E

50ch

SN O\ D WM

Since there are two loops, there are two corrective flow rates, AQ, and

AQ; which are unknown. Writing the energy equation around these two
loops (with head losses in the clockwise direction as positive), gives the
following two simultaneous equations to solve for these two unknowns.

Fp =207(G+ AQ '8 +3.78 2+ AQ, -AQy)'88
-60.65 (2.5-8Q)"% - 11.20(5 - 2Q)'¥ = 0

F, = 14.94 (3 +4Q,)"% +30.33 (5 +aQ,)' ¥’
- 5.04 (4.5-4Q,)" ¥ -3.78 (2 - 2Q, +AQ))

The four elements of the Jacobian are:

185 _

.85 .85
1 | 383(5+a0, "%+ 699 2 +aQ, -20,)"*
WDO— 0.85
+112.20 (25 +AQ,)  +20.72 (5 +AQ )"
oF, 10.85
|w|D|uON = .6.99 AN +DO— .DONV

6.99 (2 +4Q, -AQ, )08

aw
m
(]

F ) 0.85
2 _ 97,64 (3 +AQ % +56.11 (5 +4Qy)

.85
+9.32 (4.5 -00,)"%*+6.99 2 -aQ, +4Q,)’

Note that the Jacobian is a symmetric matrix as was the Jacobian from the

H-equations.
Starting the Newton iteration with AQ, = AQ; = 0, then

3535 126 | | z, | _|-497.
126 1475 | | zp | =| 274

results upon evaluating the functions F, and F; and the elements in the
Jacobian. Solution of this system produces z, = - >O..=..I.. -1.399, z; = -
AQ,*® = 0.0654. For the second Newton-Raphson iteration,

2225 202 |z, |_[903
202 1511 ) |z |7 546

which gives z, = -0.414, z; = -0.0914, and AQ,® = 1.813 and AQ,® =
0.026. After two additional iterations changes in corrective flow rates are

insignificant and the solution is accepted as AQ, = 1.866 and 4Q,=
0.0331. The flow rates in each pipe can now be computed by adding these
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corrective flow rates to the initially assumed values which satisfy the

junction continuity equations. From these flow rates, the frictional head
losses can be computed. These results are:

Pipe No. 1 2 3 4 5 6 7

Q (cfs) 687 | 3.83 | 0.634| 3.134 | 3.03]/0.533 | 447
hg (ft) 73.5 | 455 |[26.1 |929 |[116.6 |9.46 | 80.6

A listing is given below of a simplifed FORTRAN computer program
for carrying out the computations described above for solving the
AQ-equations. Below this listing is a listing of the input data required to
solve example problem 1 below by this program.

FORTRAN program for solving the corrective loop flow rate equation by
the Newton-Raphson method for analyzing pipe networks.

REAL D(50),L(50),K(50),CHW(50),QI(50),DQ(50).DR (50,
$51),v(2),A(3),B(3),HO(3),DELEV(3)
INTEGER LP(42,7),NN(42),LO(3),LLP(3),LOP(50,4),
$NLOP(50)
C NP-NO. OF PIPES, NL-NO. OF LOOPS, MAX-MAX. NO.
C OF ITERATIONS ALLOWED, NPUMP-NO. OF PUMPS,
C NSL-NO. OF PSEUDO LOOPS.
98 READ(S5,100,END=99) NP,NL,MAX NPUMP,NSL
NLP=NL+1
100 FORMAT(1015)
C 1I-PIPE NO., D(11)-DIAMETER OF PIPE IN INCHES, L(I1)-
C LENGTH OF PIPE IN FT, CHW(ID~HAZEN WILLIAMS COEF.,
C QI(I)-INITIAL FLOW SATISFYING CONTINUITY EQS.
DO 1 I=1,NP
READ(S,101) 11,D(D),L(1),CHW(1),QIII)
DAnN=DAI)/12,
1 K(@I1)=4.77*LAN/(D(11)**4.87*CHW(I1)**1.852)
101 FORMAT(1S,7F10.5).
DO 21=1,NL
DQ@)=0.
NNP IS THE NUMBER OF PIPES AROUND THE LOOP
LP(,J) ARE THE PIPE NO. AROUND THE LOOP. IF
COUNTERCLOCKWISE THIS NO. IS -
READ(S,100) NNP,(LP(1,5),J=1 ,NNP)
2 NN(1)=NNP
LLP(I)-LINE NO. CONTAINING PUMP (MINUS IF
COUNTERCLOCKWISE, A, B, HO-PUMP CHAR
IF(NPUMP .EQ. 0) GO TQ 30
DO 31 I=1,NPUMP
31 READ(S,101) LLP(),A(I),B(1),HO(I)
LO(1)-NO. OF PSEUDO LOOP, DELEV(1)-ELEV. DIFF. ON
RIGHT OF = IN ENERGY EQ.
DO 32 I=1,NSL
32 READ(S,101) LO®),DELEV(I)
30 DO 501=1,NP
NLO=0

00 nnon

an

DO 51 L1=1,NL

NNP=NN(LI)

DO 51 KK=1,NNP

IF (JABS(LP(L1,KK)) .NE. 1) GO TO 51
NLO=NLO+1
LOP(,NLO)=L1*LP(L1,KK)/I

51 CONTINUE
50 NLOP(I)=NLO

NCT=0

10 SUM=0.
DO 31=1,NL
DO 12 J=1,NLP

12 DR(1,1)=0.
NNP=NN(I)
DO 3 J=1,NNP
=LP(LD)
1I=IABS(1))
Q=QI(IM)
NLO=NLOP(iLl)
DO 52 KK=1,NLO
L1=LOP(IlJ KK)
LL=IABS(L1)

52 Q=Q+FLOAT(L1/LL)*DQ(LL)
QE=ABS(Q)**.852
FAC=1J/I1}
DR(I,NLP)=DR(I,NLP)+FAC*K(I{]J)*Q*QE
DO 53 KK=1,NLO
L1=LOP(1lJ ,KK)
LL=IABS(L1)

53 DR(L,LL)=DR(1,LL)+FAC*FLOAT(L1/LL)*1.852*K(I1))*QE

3 CONTINUE

IF{NSL .EQ. 0) GO TO 40
DO 33 I=1,NSL
1I=LO(I)
DR(IILNLP)=DR(II,NLP)-DELEV(I)
NNP=NN(II)
DO 33 IK=1,NPUMP
IL~1ABS(LLP(IK))
DO 33 KK=1,NNP
IF(IL .NE. IABS(LP(11,KK))) GO TO 33
Q=ABS(FLOAT(LLP(IK)/IL)*QI(IL)+DQ(11)
HP=(A(IK)*Q+B(IK))*Q+HO(IK)
IF(LLP(W .LT. 0) GO TO 35
DR(I1,NLPF)=DR(II,NLP)-HP
DR(ILIL)=DR(I111 }+2.*A(IK)*Q+B(IK)
GO TO 33

35 DR@I,NLP)=DR(II,NLP)+HP
DR(L,I1 )=DR(ILII )-2,*A(IK)*Q+B(IK)

33 CONTINUE

40 V(1)=4.
CALL GJR(DR,51,50,NL,NLP,$98,D,V)
DO 7 I=1,NL
SUM=SUM+ABS(DR(I,NLP))

7 DQ(N=DQ()-DR(I,NLP)

NCT=NCT+1
WRITE(6,202) NCT,SUM,(DQ(1),I=1,NL)
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202 FORMAT(* NCT="12,(12F10.3))
IF(SUM .GT. .001 .AND. NCT .LT. MAX) GO TO 10
“JF(NCT .EQ. MAX) WRITE(6,102) NCT SUM
102 FORMAT(' DID NOT CONVERGE ~NCT=",I5,' SUM=',
$E12.5) o
DO 81=1,NL
NNP=NN(1)
DO 8 J=1,NNP p
13=LP(1,))
Iu=1ABSQ)) °
8 QIILN=QI(IN)+FLOAT(1J/IL})*DQ(I)
WRITE(6,105) (QI(1),1=1,NP)
105 FORMAT(* FLOWRATES IN PIPES’/,(1H ,13F10.3))
DO 9 1=1 NP
9 D(=K(1)*ABS(QI(I))**1.852
WRITE(6,106) (D(1),1=1,NP)
106 FORMAT(* HEAD LOSSES IN PIPES'/(1H ,13F10.3))
GO TO 98
99 STOP
END

w._.n input data cards needed in order to use the previously listed program
‘ollow:

7 15 1 1

6
1 12, 1000. 130. 25 )
2 8. 1000. 130. 1.0
3 10. 1200. 130. a5
4 10. 900. 130. 2.0
5 10. 1000. 130. .5 | Pipe diameters,
6 10. 2500. 130. 1.0 | lengths, and coef.
7 8. 1000. 130. .25 V O:i and initial
8 10. 1400. 130. 75
9 12. 2000, 130, 5 [ flowrnte Q,
10 8. 1200. 130. 2.
11 8. 1300. 130. 1.
12 10. 1600. 130. 5
13 10. 1000. 130. 1.
14 10. 1300. 130. 1.
15 12, 900. 130. 2.25
16 12, 500. 130. 25)
4 2 3 4 -5
4 -7 8 -15 -3
4 2 <7 8 -6
3 11 12 9 Pipe Nos. in Loops
3 9 .10 -8
3 10 13 -14
4 16 7 -2 -1
-1 -2.505  16.707 155.286 Pump characteristics
7 150. Pseudo Loop No. & A Elev.

Input data needed for example problem 1 which follows:

8 3 10

1 12, 2000.  95. 5.

2 10. 1500,  95. 2.

3 6 2000.  95. 25

4 8. 1500.  95. .

5 8. 2000,  95. 3. Fipe Information
6 6 1000. 95. 5

7 10. 2000, |95. 45

8 10. 3000, 95. 2.

P 1 20 8

4 5 6 7 -2 Pipes in Loop
38 3 -4

The input data needed for a more extensive computer program using
this method is given in Appendix C. This latter computer program permits
pumps, reservoirs, etc., to exist in the network does not require
information about pipe numbers in each loop, generates its own
initialization and for large networks is efficient in computer time and
storage since it orders loops in such a manner so that all nonzero elements
of the Jacobian are concentrated in a band near the diagonal elements.

Including Pressure Reducing Valves in Analyses
Based on the AQ Equations

An important fact which allows pipe networks to be analyzed by
the system of AQ equations is that junction continuity is satisfied
regardless of what values each corrective loop flow rate AQ takes on
provided the initializing flows, Qg;, satisfy all junction continuity
equations. Thus after establishing initial flows which satisfy continuity
at each junction no additional equations, or provisions, need be
incorporated in the solution procedure to insure that the solution
satisfies the conservation of mass principle. Special procedures must
be followed as described below, however, if PRV’s are present in the
network and the analysis is to be based on solving a system of
equations in which corrective flow rates (the AQ's) are the only
unknowns. )

For networks without PRV’s each equation in the system of AQ
equations is obtained by summing the head losses around the loop
through which that particular corrective flow rate AQ is thought of as
circulating around. That is the mth equation will contain the mth AQ
in each term of the equation. This procedure always automatically
produces exactly as many independent equations as there are unknown
AQ's for which a solution is sought. When PRV's are present this
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