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Abstract
A method is described for the analysis of general fluid-flow problems in which there is a nonlinear
relationship between pressure and flow. The practical application is illustrated by solving gas-distribution
networks, and a comparison of different methods of ordered elimination as applied to the problem is also
included. In general piping networks, the solution based on loop analysis produces the best convergence
characteristics, while nodal analysis is more convenient for the formulation of equations with maximum
sparsity. Using electrical theory, the method described combines the mesh and nodal formulation into an
efficient hybrid method.
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List of principal symbols
Qi = flow through branch /
Q$ = vector (i.e. single-column matrix) of the flow through

the pipes, dimension j8
P, = pressure drop across branch /
P P = vector of the pressure drop across the branches,

dimension /?
Ki = coefficient of friction in branch i

= load at node k
— vector of the loads, dimension a
= nodal-pressures vector, dimension a
= loop-incidence matrix
— transpose of Dy^
= nodal-incidence matrix
= transpose of Cap
= loop Jacobian matrix
= resistance of branch i in the equivalent electrical

network
= current of branch i of the electrical analogue
= vector of the currents in the cotree branches of the

electrical analogue
= diagonal matrix of the branch resistances in the

electrical analogue
= error in satisfying the loop equations
= number of nodes in the network excluding the

reference
= number of branches
= number of loops

1 Introduction
The choice of a method for network analysis depends

on many factors and is usually based on either the loop or
nodal formulation. The important factors are the convergence
characteristics, storage requirements and computation time.

The equations of gas networks (and piping networks in
general) are nonlinear and therefore require an iterative
solution such as Newton's method or the Newton-Raphson
method. Newton's method does not result in any storage
difficulty because the equations may be solved sequentially
within the iterative scheme. The Newton-Raphson method
possesses better convergence properties but, as a matrix
method, requires excessive storage and computation unless
efficient sparsity techniques are employed. The use of sparsity
techniques with the Newton-Raphson method provides the
means for the efficient solution of large networks.

In general, it is easier to formulate the nodal equations
which inherently possess maximum sparsity, i.e. the number
of nonzero elements is a minimum. Because of the non-
linearity of the flow equations, the convergence properties of
the nodal formulation are not as good as those of the loop.
Although there are fewer equations in the loop formulation,
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maximum sparsity is not inherent unless special measures are
taken to ensure that this is so.

The paper describes a general method of solution of fluid-
flow problems which have a nonlinear pipe-flow relationship,
with particular reference to low-pressure gas-distribution
networks.

The term 'hybrid' is used to describe the method because
it is intended to utilise the advantageous properties of both
loop and nodal formulations. In doing so, an equivalent
electrical network is set to represent the linearised equations
of the Jacobian matrix, which is then solved by nodal analysis.
This method has been thoroughly tested, and the results for
actual gas systems have been obtained. With the collaboration
of the North-Western Gas Board (NWGB) a commercial
program is now being implemented.

2 Formulation
Any network, whether electrical, structural, gas, or

other fluid, can be represented in terms of topological matrices
derived from the structure of the network. To illustrate this,
consider the gas-distribution network shown in Fig. 1.

Fig. 1
Distribution network

From Kirchhoff's first law (the algebraic summation of the
flow at any given node is zero) the nodal equations of the
network are as follows:

-Qx
+Qx

-Qi -i

+<23

-QA

+Q4

= L 1

- G 5 =
+G5 =

• (l)

These equations are dependent, and hence one of them is
redundant. By eliminating the equation for the reference node,
the nodal equations take the following general form:

"k = S
i = l

(2)

where Lk = load at node k
Qj — flow in branch /
a = number of nodes excluding the reference
/? = number of branches
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and

Cki =
'-hi if the flow in branch / enters node k
— 1 if the flow in branch / leaves node k
0 if branch i is not incident to node k

Eqn. 2 can be represented in matrix form as

(3)
where La = load vector of dimension a

Qp = vector of the flow in the branches
Cap = nodal connection matrix of a rows

columns.
and j3

The above equations relate the flow in the branches of a
network to the loads at the various nodes. In a similar
manner, the equations relating the pressure drop across the
branches to the nodal pressures are

CT p _ Ap (A\

where Pa is the nodal-pressure vector
APp is the vector of pressure drop across the branches
CJa is the transpose of Cap

and the pressure at the reference node is taken to be zero
(i.e. atmospheric pressure).

Eqns. 3 and 4 are derived from pure topological considera-
tions, and subsequently they are applicable to any network.
Hence, if the variable Pa represents the nodal voltages and
La the nodal currents, they can be used for electrical networks
also.1

Another set of equations necessary for the solution of a
network are the branch-flow equations. In a fluid-flow
system, these equations relate the pressure drop across a
given branch to the flow in that branch, while in the electrical
network they relate the voltage drop to the current in the
branch.

In general,
(5)

or, in vector form,

Conversely,
yields

(6)
can be expressed as a function of APp, which

(7)
For an electrical network this equation is linear and obeys
Ohm's law. For gas networks and other fluid-flow problems,
the equation is nonlinear.

2.1 Nodal analysis
The nodal-analysis equations of the solution are

derived by substituting eqns. 4 and 7 into eqn. 3, which gives
^ « ) (8)

There are various methods of solution, such as the Gauss-
Seidel3 method, which is commonly used in the electrical load
flow. In general, for a fluid system, the method of solution
depends on the complexity of the equations. In gas systems,
the solution by nodal analysis is possible using the Newton-
Raphson2-6 method, but can result in convergence difficulties
owing to the presence of square-root terms in the equations.
However, it has the advantage of using a highly sparse
Jacobian matrix. An alternative approach is to use the loop
method.

2.2 Loop analysis
The equations for loop analysis are derived from

Kirchhoff's second law (the pressure drop around any given
loop is zero). For the example shown in Fig. 1, the two loop
equations are

AP3 + AP2 - APj = 0
A P 4 - A P 5 + APj = o

In general form, the loop equations can be written
P
S/>yAP/ = 0 (i = l y) (9)

1608

where fl if branchy is in the same direction as loop i
Du = < — 1 if branchy is in the opposite direction

[0 if branch y is not in loop /
y = j8 — a = number of loops in the network

In matrix form, this can be expressed as
Z>YpAP3=0Y (10)

Substituting eqn. 6 into eqn. 10, the loop equations are
expressed in terms of the branch flows as

^YP^P(GP) = 0y ( l i )

The equation of the solution for the loop analysis is obtained
by combining eqns. 3 and 11. Consider eqn. 3, which can be
partitioned as

or La = Caa0a + QYGY . . . . . . . . (13)
Rearrangement of the above equation gives

(?a — C~^La — C~^Ca^Qy (14)

Thus it is possible to solve for Qa provided that the inverse
of Caa exists. This can be ensured by forming a tree (i.e.
minimum number of branches connecting all the nodes) for
the system, where Q a is the nodal-incidence matrix for the
tree branches and QY is that for the cotree, i.e. the loop-
forming branches.

Combining eqns. 14 and 11 (see Appendix 11.1) yields the
loop equations

where Q^ = ~~— (16)

and Z)IV = I »~- I (17)

Eqn. 15 is the equation of the loop-analysis formulation. In
gas networks, the equations are quadratic, resulting in good
convergence properties.

2.3 Low-pressure gas networks
Low-pressure gas networks consist of supply and load

nodes interconnected by pipes, with the pressure at the supply
nodes fixed and independent of the flow. Thus, a supply point
can be represented by a branch connecting the supply node
to the reference node (atmosphere with zero pressure) with
the flow equation

</>(£>,) = AP, = constant (for all supplies) . . (18)
This is shown schematically in Fig. la.

cw
AP = constant

a
b

AP =KQ'

Fig. 2
Network elements

The loads are fixed and are assumed to be independent of
the nodal pressures. The pipe-flow equations used in the gas-
network analysis can be approximated to the form

AP/t = Pj — Pj = KkQ% (for medium pressure)
APfc = P, - Pj = KkQl (for low pressure)

or in general form as
<f>(Qk) = APfc = KkQn

k (for all pipes) . . . (19)
where n is a constant; for the low-pressure gas network
n = 2 is usually considered as a good approximation.
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To illustrate the various system parameters, a schematic
diagram is given in Fig. 3.

Fig. 3
Typical gas network

3 Method of solution
The procedure of solution used is the Newton-

Raphson method, of which the theory is well known.3 It
consists essentially in solving a set of nonlinear equations,
Fy(Qy) = 0, by an iterative scheme. Thus at the rth iteration,
the next estimate for Qr is obtained from

G r + l r%r <£r p (nr\ (0tt\
Y — J ^ Y ey Y Y V * y v / • • • • • • • y ^ v / l

= />FY(fiT) (21)or
where flyy =

(22)
and Jyy is the Jacobian matrix of the first partial derivatives
of Fy(Qy) with respect to Qy.

The above procedure can be used to solve eqn. 15, i.e.
Dy^{Ql + DjyQy) = 0

The Jacobian matrix for the above equation is
/YY = D.

p
with
and

(23)

(24)

• (25)

Substituting eqns. 23 and 24 into eqn. 21, and rearranging
the terms, yields

(26)

As mentioned previously, it is desirable when using this
approach to define the loops so that the Jacobian matrix has
maximum sparsity. However, to find the optimum loops is a
difficult task which may require a great deal of computing
time. After a series of investigations, a combination of the
nodal and loop approach has been developed whose algorithm
is described in Section 5.

The pipe-network equations are inherently better condi-
tioned when expressed in terms of loop analysis, and therefore
for large networks it is imperative to preserve this property.
However, to enable an efficient formulation of the equations
to give maximum sparsity and hence minimum storage and
computation time in solving the equations, a nodal analysis
is utilised. This is done by transforming the loop equations
of the Newton-Raphson method to equivalent nodal equa-
tions using the electrical model.
PROC. IEE, Vol. 118, No. 11, NOVEMBER 1971

4 Electrical analogy
By analogy, it is possible to build a d.c. electrical

network whose loop equations are identical to eqns. 26. This
is achieved by replacing every tree branch by a resistive
branch and every cotree branch by a resistance in series with
an e.m.f. Since the flow equation for the electrical network
obeys Ohm's law, the following equations are evident:
(a) for tree branches

</>(/,) = R;I, (27)
(b) for cotree branches

<£(/,) = Ej + Rjlj (28)
Furthermore, since the injected currents are zero (i.e. La = 0)
eqn. 15 reduces to

Dy^{Dlyly) = 0 (29)

By substituting eqns. 27 and 28 into eqn. 29, the loop equa-
tions of the electrical network become

D R Eft I = E (30^

If /?pp is set equal to d^p/^Qp, and if Ey is set equal to FY
of eqn. 26, then Iy becomes equivalent to A<2y. The resistance
of any given branch / in the electrical analogue takes the value

" = s | <31>
Hence, for the supply branches,

'/ = 0 (32)

and, for the pipe branches,

r, = 2Kt\Q,\ (33)
The e.m.f. in any given cotree branch is equal to the error in
pressure around the corresponding loop. Furthermore, since
the resistance between any supply node to ground of the
electrical analogue is zero (eqn. 32), all the supply nodes are
connected directly to the reference node. Subsequently, the
number of the nodes in the equivalent network will be
reduced.

The relationship between the voltage drop and the current
in the branches of the electrical network is obtained from
eqns. 27 and 28. Thus, for the tree branches,

A Fa = /?aa/a (34)
or / a = / ? - i A F a (35)
For the cotree branches,

TV f/ D T 1 IJ"1

On rearranging, this becomes

or
where ly = RyyEy

(36)

Combining eqns. 35, 36 and 8, the nodal equation of the
electrical network becomes

Y V — J' (37)
where Faa =

and Gpp =

}Cpa

0 l

and / ' ==-«•[*] (38)

The solution of eqn. 31 gives the voltages and currents of
the equivalent electrical network, and hence the corrections
to the flows in the original gas network can be obtained.
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The three steps of the analogy are illustrated in Fig. 4. It
is important to stress at this point that the steps of the solution
are those of the Newton-Raphson loop analysis (i.e. the
correction of the flows are those that would be obtained if
pure loop analysis has been used). It is worth noting that
eqns. 30 and 36 are only a restatement of Norton's theorem
for converting voltage sources to current sources.

QH 1—[2H l-f3]

j j I
WVVWWNVNWWWWX

c
Fig. 4
Equivalent electrical representation of gas network
a Original network

b Incremental network
JyybQy = Fy

c Electrical analogue
Y V = / '

5 Initial estimate
The Newton-Raphson method is well known to give

speedy convergence provided a good initial estimate is avail-
able. However, it is generally difficult to have a close initial
estimate to start the solution. One way of finding the initial
values is to define a tree for the system (a method for finding
trees is outlined in Appendix 11.2). Initial values are obtained
by equating to zero the flows in all the cotree branches, and
then flows in the tree branches are obtained from eqn. 14

QO = C~^La (39)
In actual programming, it is not necessary to invert C^,
but Qa can be obtained by tracing the tree from each load
node towards the reference. Nevertheless, the branches with
zero flow will result in zero resistance in the equivalent
electrical network, and hence its admittance is infinite
(eqn. 33). One way of overcoming this difficulty is to assign
arbitrarily large values to represent the branch admittances.
In practice, these arbitrarily large values may cause an ill-
conditioned admittance matrix which gives large rounding
errors during matrix inversion. An alternative approach is to
establish an initial equivalent electrical network whose branch
resistances are all equal to the coefficient of friction K of the
corresponding pipes and with nodal currents equal to the
loads. The branch currents thus calculated are taken as the
initial values. In order to eliminate the possible rounding
errors, the flows in the tree branches are then recalculated
from eqn. 14

Qa. =

The above approach gives a good initial estimate, and so far
no divergence of the algorithm has been encountered.

6 Solution algorithm
The various steps of the algorithm are:

(a) define a tree for the network (Appendix 11.2)
(b) obtain the initial estimates as discussed in Section 5
(c) by tracing the tree starting from the reference node, find
the pressures at the load nodes
(d) the errors in the loop equation can then be calculated by
considering the cotree branches. For a pipe k, corresponding
1610

to a cotree branch, connected to nodes / and/, the error around
the corresponding loop is

Fk = Pt -Pj- KkQl

The e.m.f.s Ey are then obtained from

Hence, the nodal injected currents are

7/ /-<

(e) eqn. 37, Faa Fa = /a', is then solved to obtain the nodal
voltages of the equivalent electrical network. The nodal-
admittance matrix is highly sparse, and hence a compact
storage scheme using ordered elimination is used. The method
of ordering adopted in the program is the one suggested by
Zollenkopf.4 A comparison of various methods of ordering
is given in Section 7.

7 Results
Several actual low-pressure gas networks have been

solved on the Atlas, 1905F and NWGB 4-70 computers. The
results obtained at the Atlas computer for five different net-
works are shown in Table 1.

Table 1
COMPARISON OF SOLUTION TIME AND STORAGE FOR DIFFERENT
NETWORKS USING THE ATLAS COMPUTER

System

Pipes
Nodes
Loops
Governors (supply nodes)

Reading data
Compacting and initial esti-

mates
Simulation and elimination
Total iteration time
Total computing time
Printing results

Storage: real words
integer words

l

135
113
22
4

s

2
8

1100
1800

2

S

597
482
115

5

Coir

s

12
35

5000
8000

3

ze numb

784
621
163

4

putation

s
2
1

7
11
19
40

6600
10800

4

1017
782
235

14

time

s
3
1

10
15
26
56

8400
13500

5

1260
915
345

8

s
3
2

14
16
32
70

10400
16800

The method gives speedy convergence, since none of the
systems solved required more than 7 iterations to give a loop
error of less than 0-001 % of the pressure at the main supply
node.

Fig. 5a shows the total computation time for the solution
of different sizes of gas-distribution networks using dynamic
ordering, and illustrates an almost linear relationship. The
total computing time for different system sizes obeys, for
the Atlas computer, the approximate relationship

/-0-003461'2 8

where t — time, s
b = total number of branches

This linearity is partly due to the dynamic ordering method4

used and partly due to the independence of the number of
iterations required for convergence for different system sizes.

Fig. 5 shows also the effect of different ordering approaches
on the total computation time for network analysis. Curve a
shows the use of dynamic ordering method, curve b the static
ordering and curve c the natural (the order of the elimination
depends on the original numbering of the nodes). It has been
shown5 that other algorithms of higher order do not give
significant extra reduction of nonzero elements when com-
pared with Zollenkopf's technique, and are expensive in the
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computation time needed for the ordering. From these results,
it is the opinion of the authors that the dynamic ordering used
is the most suitable for large gas networks.

The program developed is general and has been used also
for the solution of a nuclear reactor gas-cooling system. This
system is characterised by regular mesh structure consisting
of 122 branches and 72 nodes and has been solved in under
5 s on the Atlas computer.

400 800 1200
branches

Fig. 5
Total computation time for the solution of gas networks using different
ordering methods
a With dynamic ordering
b With static ordering
c With natural ordering

8 Conclusions
In recent years, the solution of gas networks has

increasingly made use of methods which are based on the
loop formulation. This is principally because this formulation
results in equations which are better conditioned, but also
because good initial estimates are most readily obtained
within the solution algorithm when using loop methods.

The nodal formulation does not lend itself readily to
obtaining good starting values, nor does it possess the con-
vergent properties of the mesh, equations. It does, however,
inherently ensure maximum sparsity, even though there are
more equations.

The hybrid method developed in this paper is intended to
combine
(a) the good convergent properties of the Newton-Raphson

method
(b) the better conditioning properties and starting values of

the loop formulation
(c) the inherent sparsity of the nodal formulation.
The success of the method depends directly on taking advan-
tage of the sparsity in an efficient manner. Tests on com-
paratively large, actual systems have shown stable and fast
convergence and no systems have been encountered which
have failed.

The method is general and suitable for other fluid networks
with nonlinear flow properties.
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11 Appendixes
11.1 Derivation of the loop equations

Starting from eqn. 4,

CT a P a =AP 3 (40)
C^a is partitioned in the same way as its transpose (Cap) in
eqn. 12, giving

i.e. Ca
T

aPa=APa (42)

CY
T

aPa=APY (43)

Substituting eqn. 42 into 43 and letting

a + APY = 0Ygives

or

or Z > Y P A P P = 0Y

= 0Y (44)

(45)

Eqn. 45 is identical to eqn. 10, obtained from Kirchhoff's
second law in Section 2.2, since

Z) Y P =

Hence

=[•;]»,,=

Furthermore, it is necessary to express APp in eqn. 45 in
terms of the flow in the cotree branches. Using the flow
equation, APp can be expressed in terms of Q$ as in eqn. 6.
It remains to express Q$ in terms of Qy. Consider eqn. 13, i.e.

This can be augmented to include QY, as

or

where Gg =
«Y

Thus, substituting for Qp in eqn. 11 gives

(47)

(48)

(49)
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11.2 Tree construction
Different techniques exist for the tree construction, and

the one used in the method described is as follows:
(a) A list is formed of the nonzero elements of the connection
matrix Cap with their row and column locations.
(b) The tree is started by connecting branches from the
reference node (atmosphere), and the corresponding nodes
are entered into the tree list.
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(c) The branches connected to the nodes just entered into
the tree are found (branches already entered in the tree are
bypassed).
(d) The nodes at the other end of the branches just con-
sidered are found. The branches for which the nodes have
already been connected to the tree go into the cotree. The
branches for which the nodes have not been entered go into
the tree.
(e) The new nodes are entered into the tree and step c is
performed until all the nodes are in the tree.
In the actual program, the tree is constructed as a series of
subtrees, with every subtree formed as shown above but with
one supply node.

11.3 Ordered elimination
The object of the ordered-elimination technique is the

solution of the sparse matrix equation

**nrt**ri **n . . . . " . • ( 5 0 )

For large systems the solution of this equation is not
practicable if the sparsity property is not exploited. The value
of Xa can be obtained by inversion of /4aot, i.e.

•*a — -^aa "OL • (51)

If the inverse of Aaa is computed explicitly, it gives a full
matrix. Fortunately, the sparsity can be retained if the inverse
is expressed as a series of elementary transformation matrices.
One method of doing this is the bifactorisation4 method. In
this method, the matrix Aa(X is reduced to a unit matrix as
follows

L j j j A n n n n rr {Z")\

nLn_t . . . LoLtA^KiKo . . . K xKn — Ua0L . {DZ)

—an
*kk

1

akk

1

It can be seen that the transformation matrices consist of
one nonzero column or row. These columns and rows are,
however, very sparse and thus, by using a compact storage
scheme, the overall storage requirement is immensely reduced.
However, during the reduction process, new elements are
generated. These elements will increase in number enormously
for large networks if the natural order of the elimination is
adopted.

Many different alogrithms have been suggested for ordering
the elimination. Two of these algorithms have been tested for
large gas networks, and their results compared with the
natural ordering.

The first is a preordering scheme where the order of elimina-
tion is established at the beginning from the degree of inter-
connection at every node. The nodes are numbered in ascend-
ing order, starting with the one which has the least number of
branches incident to it.

The second algorithm is that put forward by Zollenkopf.
In his scheme, at each reduction step the column with the
least number of nonzero elements is selected as a pivotal
column.
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