from: Viessman,W., Knapp, ].W., Lewis, G. L., and Harbaugh, T.E. 1977. "Introduction to
Hydrology" 2ed. IEP Publishers, New York, 704p.

Groundwater
Hydrology

8-1 Introduction

The amount of water stored below ground in the United States ex-
ceeds by a significant amount all above ground storage in streams,
rivers, reservoirs, and lakes including the Great Lakes.® This enor-
mous reservoir sustains streamflow during precipitation-free periods
and constitutes the major source of fresh water for many arid localities.
Figure 8-1 indicates the distribution and nature of primary ground-
water areas of the United States.

The quantification of the volume and rate of flow of groundwater
in various regions is an exceedingly difficult task because volumes
and flow rates are determined to a considerable extent by the geology
of the region. The character and arrangement of rocks and soils are
important factors, and these are often highly variable within a ground-
water reservoir. An additional difficulty is the inability to measure
directly many critical geologic and hydraulic reservoir characteristics.

In spite of these predicaments, hydrologists are continually
developing new techniques for measurement and analysis that are
contributing to an extensive body of knowledge in the field of ground-
water hydrology. Many practical problems can be adequately solved
by employing these techniques. This chapter presents the funda-
mentals of flow in a porous medium and shows how they are applied
to the solution of various hydrologic problems.
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8-2 Groundwater Flow—General Properties

Understanding the movement of groundwater requires a knowledge
of the time and space dependency of the flow, the nature of the porous
medium and fluid, and the boundaries of the flow system.

Groundwater flows are usually three-dimensional. Unfortu-
nately, the solution of such problems by analytic methods is intensely
complex unless the system is symmetric.?2 In other cases, space
dependency in one of the coordinate directions may be so slight that
assumption of two-dimensional flow is satisfactory. Many problems of
practical importance fall into this class. Sometimes one-dimensional
flow can be assumed, thus further simplifying the solution.

Fluid properties such as velocity, pressure, temperature, density,
and viscosity often vary in time and space. When time dependency
occurs, the issue is termed an unsteady flow problem and solutions
are usually difficult On the other hand, situations where space
dependency alone exists are steady flow problems. Only homo-
geneous (single-phase) fluids will be considered here. For a discus-
sion of multiple phase flow, Ref. 2 is recommended.

Boundaries to groundwater flow systems may be fixed geologic
structures or free water surfaces that are dependent for their position
on the state of the flow. A hydrologist must be able to define these
boundaries mathematically if he is to solve groundwater flow
problems.

Porous media through which groundwaters flow may be classi-
fied as isotropic, anisotropic, heterogeneous, homogeneous, or several
possible combinations of these. An isotropic medium has uniform
properties in all directions from a given point. Anisotropic media have
one or more properties that depend on a given direction. For example,
permeability of the medium might be greater along a horizontal
plane than along a vertical one. Heterogeneous media have nonuni-
form properties of anisotropy or isotropy, while homogeneous media
are uniform in their characteristics.

8-3 Subsurface Distribution of Water

Groundwater distribution may be generally categorized into zones of
aeration and saturation. The saturated zone is one in which all voids
are filled with water under hydrostatic pressure. In the zone of
aeration, the interstices are filled partly with air, partly with water.
The saturated zone is commonly called the groundwater zone. The
zone of aeration may ideally be subdivided into several subzones.
Todd classifies these as follows.*

1. Soil water zone. A soil water zone begins at the ground sur-
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face and extends downward through the major root band. Its total
depth is variable and dependent upon soil type and vegetation. The
zone is unsaturated except during periods of heavy infiltration. Three
categories of water classification may be encountered in this region:
hygroscopic water, which is adsorbed from the air; capillary water,
held by surface tension; and gravitational water, which is excess soil
water draining through the soil.

9. Intermediate zone. This belt extends from the bottom of the
soil-water zone to the top of the capillary fringe and may change from
nonexistence to several hundred feet in thickness. The zone is essen-
tially a connecting link between a near-ground surface region and the
near-water-table region through which infiltrating fluids must pass.

3. Capillary zone. A capillary zone extends from the water table
(Figure 8-2) to a height determined by the capillary rise that can be
generated in the soil. The capillary band thickness is a function of
soil texture and may fluctuate not only from region to region but also
within a local area.

4. Saturated zone. In the saturated zone, groundwater fills the
pore spaces completely and porosity is therefore a direct measure of
storage volume. Part of this water (specific retention) cannot be re-
moved by pumping or drainage because of molecular and surface
tension forces. Specific retention is the ratio of volume of water
retained against gravity drainage to gross volume of the soil.

Water that can be drained from a soil by gravity is known as the
specific yield. It is expressed as the ratio of the volume of water that
can be drained by gravity to the gross volume of the soil. Values of

Piezometric surface
for confined aquifer

/

Water table \/ Artesian
Ground surface , well / well

\Free water

\ surface

W_

Free water surface
or water table
Unconfined
aquifer
Impervious 0
stratum X e ek
Hre S e

T
Thal g.;..f:r;\. L

ot
Flow confmed quife?
-— artesi®® 2

Confining stratum

Fig. 8-2. Aquifer classifications.
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specific yield depend upon the soil particle size, shape and distribu-
tion of pores, and degree of compaction of the soil. Average values
for alluvial aquifers range from 10 to 20 %. Meinzer and others have
developed procedures for determining the specific yield.*

8-4 Geologic Considerations

The determination of groundwater volumes and flow rates requires a
thorough knowledge of the geology of a groundwater basin. In bed-
rock areas, hydrologic characteristics of the rocks, that is, their loca-
tion, size, orientation, and ability to store or transmit water, must be
known. In unconsolidated rock areas, basins often contain hundreds
to thousands of feet of semiconsolidated to unconsolidated fill de-
posits that originated from the erosion of headwater areas. Such fills
often contain extensive quantities of stored water. The characteristics
of these basin fills must be evaluated.

A knowledge of the distribution and nature of geohydrologic
units such as aquifers, aquifuges, and aguicludes is essential to proper
planning for development or management of groundwater supplies. In
addition, bedrock basin boundaries must be located and an evaluation
made of their leakage characteristics.

An aquifer is a water-bearing stratum or formation that is capable
of transmitting water in quantities sufficient to permit development.
Aquifers may be considered as falling into two categories, confined
and unconfined, depending upon whether or not a water table or free
surface exists under atmospheric pressure. Storage volume within an
aquifer is changed whenever water is recharged to, or discharged
from, an aquifer. In the case of an unconfined aquifer this may be
easily determined as

AS =S, AV (8-1)
where

AS = the change in storage volume
S, = the average specific yield of the aquifer
AV = the volume of the aquifer lying between the original water
table and the water table at some later specified time

For saturated, confined aquifers, pressure changes produce only
slight modifications in the storage volume. In this case, the weight of
the overburden is supported partly by hydrostatic pressure and some-
what by solid material in the aquifer. When hydrostatic pressure in a
confined aquifer is reduced by pumping or other means, the load on
the aquifer increases, causing its compression, with the result that
some water is forced out. Decreasing the hydrostatic pressure also
causes a small expansion which in turn produces an additional release

5. « . OBOCl — 00
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of water. For confined aquifers, water yield is expressed in terms of a
storage coefficient S, , defined as the volume of water an aquifer takes
in or releases per unit surface area of aquifer per unit change in head
normal to the surface. Figure 8-2 illustrates the classifications of aqui-
fers.

In addition to water-bearing strata exhibiting satisfactory rates of
yield, there are also nonwater-bearing and impermeable strata that
may contain large quantities of water but whose transmission rates are
not high enough to permit effective development. An aquifuge is a
formation impermeable and devoid of water; an aquiclude is an im-
pervious stratum.

8-5 Fluctuations in Groundwater Level

Any circumstance that alters the pressure imposed on underground
water will also cause a variation in the groundwater level. Seasonal
factors, changes in stream and river stages, evapotranspiration, atmos-
pheric pressure changes, winds, tides, external loads, various forms
of withdrawal and recharge, and earthquakes all may produce fluctua-
tions in the water table level or piezometric surface, depending upon
whether the aquifer is free or confined.* It is important that an engi-
neer concerned with the development and utilization of groundwater
supplies be aware of these factors. He should also be able to evaluate
their importance relative to operation of a specific groundwater basin.

8-6 Groundwater-Surfacewater Relationships

Notwithstanding that water resource development has often been
based on the predominant use of either surface or groundwaters, it
must be emphasized that these two components of the total water re-
source are interdependent. Changes in one component can have far-
reaching effects on the other. Coordinated development and manage-
ment of the combined resource is critical. Linkage between surface
and groundwaters should be investigated in all regional studies so
that adverse effects can be noted if they exist and opportunities for
joint management understood.

In Chapter 4 it was shown how surface stream flows are sustained
by the groundwater resource, and it was also pointed out that ground-
waters are replenished by infiltration derived from precipitation on
the earth’s surface.

Underground reservoirs often are extensive and can serve to
store water for a multitude of uses. If withdrawals from these reser-
voirs consistently exceed recharge, mining occurs and ultimate deple-
tion of the resource results. By properly coordinating the use of
surface and groundwater supplies, optimum regional water resource
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development seems most likely to be assured. Several studies di-
rected toward this coordinated use have been initiated."1®

8-7 Hydrostatics

Water located in pore spaces of a saturated medium is under pressure
(called pore pressure) which can be determined by inserting a pie-
zometer in the medium at a point of interest. If location A (Fig. 8-3) is
considered, it can be seen that pore pressure is given by

p =hay (8-2)
where
p = the pore pressure (gauge pressure)

h, = the head measured from the point to the water table
y = the specific weight of water

Pore pressure is considered positive or negative, depending upon
whether the pressure head is measured above (positive) or below
(negative) the point under consideration. If an arbitrary datum is es-
tablished, the total head or piezometric head above the datum is

P,=z+h (8-3)

where P, is known as the piezometric potential. In Fig. 8-3 this is
equal toh, + 2, for point A in the saturated zone and z;, — h, for point
B in the unsaturated zone. The term h; is the pore pressure of A while
—h,denotes tension or vacuum (negative pore pressure) at B.

8-8 Groundwater Flow

Analogies can be drawn between flow in pipes under pressure and in
fully saturated confined aquifers. The flow of groundwater with a free

Ground surface:

Unsaturated B
zone x——}i_
,-h”  Water table
) H t . .:- ' h'a- . - . .
el O s e
U O o i ol | z, RUENRL = ' Datum t:or.elévat.i(;n
PO W DAY TPRIRE B ANV T I

Fig. 8-3. Definition sketch showing hydrostatic pressures in a porous
medium.
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surface is also similar to that in an open channel. A major difference is
the geometery of a groundwater system flow channel as compared
with common hydraulic pipe flow or channel systems. The problem
can easily be recognized by envisioning a discharging cross section
composed of a number of small openings, each with its own geometry,
orientation, and size so that the flow velocity issuing from each pore
varies in both magnitude and direction. Difficulties in analyzing such
systems are apparent. Computations are usually based on macroscopic
averages of fluid and medium properties over a given cross-sectional
area.

Unknown quantities to be determined in groundwater flow prob-
lems are density, pressure, and velocity if constant temperature con-
ditions are assumed to exist. In general, water is considered incom-
pressible, so the number of working variables is reduced. An excep-
tion to this is discussed later relative to the storage coefficient for a
confined aquifer. Primary emphasis here will be placed on the flow of
water in a saturated porous medium.

8-9 Darcy’s Law

Darcy’s law for fluid flow through a permeable bed is stated as'®

0=-kadt (84

where

A = the total cross-sectional area including the space occupied
by the porous material

K = the hydraulic conductivity of the material

Q = the flow across the control area A

In Eq. 84,
h=z +% +C (8-5)
where

h =the piezometric head

z = the elevation above a datum
p = the hydrostatic pressure

C = an arbitrary constant

If the specific discharge g = (Q/A) is substituted in Eq. 84,

g=-K d;‘i (z + %) (8-6)

Note that g also equals the porosity n multiplied by the pore velocity
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V, . Darcy’s law is widely used in groundwater flow problems. Several
applications will be illustrated in later sections.

Darcy’s law is limited in applicability to cases where the Rey-
nolds number is on the order of 1. For Reynolds numbers less than 1,
Darcy’s law may be considered valid. Deviations from Darcy’s law
have been shown to occur at Reynolds numbers as low as 2, depend-
ing upon such factors as grain size and shape. The Reynolds number
Np is defined herein as

Ny = ”Z" (8-7)

where

q = the specific discharge

d = the mean grain diameter
p = fluid density

@ = dynamic viscosity

For many conditions of practical importance (zones lying adjacent to
collecting devices are an exception), Darcy’s law has been found to
apply.

Of special interest is the fact that the Darcy equation is analo-
gous to Ohm’s law

g (7{1-) E (8-8)

where

i = the current
R = the resistance
E = the voltage

Current and velocity are analogous as are K and VR, and E, and dh/dx.
The similarity of the two equations is the basis for electric analog
models of groundwater flow systems.*38

Example 8-1 Water temperature in an aquifer is 60°F and the rate of water
movement = 1.2 ft/day. The average particle diameter in the porous medium
is 0.08 in. Find the Reynolds number and indicate whether Darcy’s law is
applicable.

Equation 8-7 gives the Reynolds number as

d
NR:pZ.

This may also be written as

NR-_-ﬂ
14
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From Table 1 in Appendix B, v is found to be 1.21 x 1075 ft¥sec. Converting
the velocity g into units of ft/sec gives g = 1.2/86,400 = 1.39 x 1073, The
mean grain diameter in ft = 0.08/12 = 0.0067. Substituting these values in the
equation, we obtain

N, = 1.39 x 195 x 0.0067
. 1.21 x 10~

=0.0077
Since N; < 1.0, Darcy’s law does apply.

8-10 Permeability

The hydraulic conductivity K is an important parameter that is often
separated into two components, one related to the medium, the other
to the fluid. The product

k =Cd? (8-9)

called the specific or intrinsic permeability, is a function of the me-
dium only. In Eq. 8-9, d represents the mean grain diameter of the
particles; and C is a constant shape factor associated with packing,
size distribution, and other factors.?* Using this definition, hydraulic
conductivity, also known as the coefficient of permeability, can be
written

ky
IS e 8'10
P (8-10)
Dimensions of intrinsic permeability are L2. Since values of k
given as ft® or cm? are extremely small, a unit of measure known as the
darcy has been widely adopted.

1 darcy = 0.987 x 108 cm? or 1.062 x 10~ fi2

Several ways of expressing hydraulic conductivity are reported
in the literature. The U.S. Geological Survey has defined the standard
coefficient of permeability K, as the number of gallons per day of
water passing through 1 ft* of medium under a unit hydraulic gradient
at a temperature of 60°F. Another measure, called the field coefficient
of permeability K;, is defined as

K =K, (L) (8-11)

where

Mo = the dynamic viscosity of water at 60°F
ur = the dynamic viscosity at the prevailing field temperature

K See ® 65\«. Yoo Sﬁ( gh\:%?*
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The temperature effect on density is neglected, since it is usually
quite small over the range of groundwater temperatures encountered

in practice.

It is often convenient to use the coefficient of transmissivity

T =K;b (8-12)
where

K; = the field hydraulic conductivity
b = the saturated depth of the aquifer

Table 8-1 gives the values of the intrinsic permeability and the
standard coefficient of permeability for several classes of materials.
Considerable variation within divisions can occur; hence a careful
geologic survey should accompany all groundwater studies.

Example 8-2 Labonatory tests of an aquifer material give a standard coeffi-
cient of permeability K, = 3.78 x 10? gpd/ft®. If the prevailing field temper-
ature is 50°F, find the field coefficient of the permeability K;.

Using Eq. 8-11, we obtain

K. = (i"_ﬂ_O)
=K, s
From Table 1, Appendix B, the kinematic viscosity at 60°F = 1.21 x 107® ft*/
sec and at 50°F it is 1.41 x 107 ft¢/sec. For constant density,

K, = 3.78 x 102 x 1.21 x 10~®
d 1.41 x 107®

and
K; = 3.24 x 10? gpd/ft®

Table 8-1 Some Values of the Standard Coefficient of Permeability and
Intrinsic Permeability for Several Classes of Materials

. Approximate Range Approximate Range
k

Material (gal/déy/ft’) {darcys)
Clean gravel : 10%-10* 10°-10°
Clean sands; mixtures of clean
gravels and sands 10+-10 10%-1

Very fine sands; silts; mixtures

of sands, silts, clays;

stratified clays 10-10"3 1-10
Unweathered clays 1073104 10-%+-1073
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8-11 Velocity Potential

Potential theory is directly applicable to groundwater low computa-
tions. The velocity potential ¢ is a scalar function of time and space.
The potential is defined by

= r -
d(x, y, z) = K(z + 7) +C (8-13)

where C is an arbitrary constant. By definition, its derivative with re-
spect to any given direction is the velocity of low in that direction.
Thus it may be written that

_9 . _3¢ 8¢ :
u==- v 3y > (8-14)

where

u, v, and w = velocities in the x, y, and z directions, respectively
and K is assumed constant. In vector notation this becomes

V =grad ¢ = V¢ (8-15)

with V the combined velocity vector and

grad¢=gfi+g$j+g:k=v¢ (8-16)

8-12 Hydrodynamic Equations

The determination of values for the variables u, v, w, and h is the tar-
get of most groundwater flow problems. The first three variables are
the specific discharge components in the x, y, and z directions, respec-
tively, while h is the total head at a specified point in the flow domain.
To effect a solution, four equations involving these variables are
needed. These are the equations of motion in each direction plus the
continuity equation.
The equations of motion are based on Newton’s second law,

F=ma (8-17)
where
F = the force

m = the mass
a = the acceleration

Considering forces acting on a fluid element, accelerations in the
three coordinate directions may be determined according to Eq. 8-17.
If frictionless flow is assumed (reasonable for many cases of flow in
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porous media), the body forces plus the surface force (pressure) must
be equivalent to the total force in each direction. In the manner of
Harr,® the following equations (Euler’s equations) in the three coordi-
nate directions are obtained:

ou ou ou ou 0

<

—x-129p _
or ¢ 6x+06y+w_5z—_x p Ox el
8v ov dv 6v _, 1 98p i
ot P TO9 T¥o = > By (8-19)
ow, 0w,  ow,  dw_, 1 8p (8-20)

ot ox oy 0z p 0z g

where X, Y, and Z are body forces per unit mass in each coordinate
direction. For steady flow [u, v, w, and h,# f(t)] the first terms in the
left-hand side of each equation vanish. With laminar groundwater
flow in the range of validity of Darcy’s law, velocities are small (often
on the order of 5 ft/yr to 5 ft/day).# Thus for steady laminar flow, Egs.
8-18 through 8-20 reduce to

1op o _1 0p

X==

p Ox T p Oy p 0z te (8-21)

In most groundwater flow problems the velocity head is negligible;
thus p may be given as pg(h — z). Then Eq. 8-21 becomes
_ %h o, __oh ,_ oh
X=g P Y—gay Z—gaz (8-22)
Remembering that Darcy’s law defines 0h/dx = —u /K, and so on, it
follows that

__&8u __&v __&w
XS Sge M em BN ZRay (8-23)

For steady laminar flow, the body forces are linear functions of veloc-
ity and Eqs. 8-18 to 8-20 may be written as

oh _  u

B3, = €% (8-24)
dh _ v

ga_y =-g% (8-25)
oh _  w

85, = 8% (8-26)

where
Koh
u=-

ox
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_ Kéh
= _—Fy_ (8-27)
Koh
0z

This demonstrates that the equations of motion fit Darcy’s law for
steady laminar flow.
The continuity equation may be stated as?®

dp (pu) (pv) (pw) _ :

at+a P +d 3y + 0 5z =0 (8-28)
This equation is valid for a compressible fluid with time-dependent
properties. In steady compressible flow the first term becomes zero,
and for steady incompressible flow the equation becomes

du v A dw _ 0 (8-29)

6x+6y+6z—

Now since 4 = d¢/dx, and so on, Eq. 8-29 becomes

_ O o 0% _

V2 = 3.2 T 3y +t557 = 0 (8-30)
which is known as the Laplace equation. With steady state laminar
flow, groundwater motion is completely described by the continuity
equation subject to appropriate boundary conditions.

If the hydraulic conductivity K is constant, Eq. 8-30 can be writ-
ten as

VPh =0 (8-31)

the expression of steady incompressible flow in a homogeneous iso-
tropic porous medium.

For unsteady flow, the compressibility of both aquifer and water
are pertinent. Consider a small element of porous medium that has a
volume Ax Ay Az. Then the term in a continuity equation represent-
ing a change in storage is defined by

d(pn A;tAy Az) (8-32)
Presupposing that compressive forces are predominant in the vertical
(z) direction, lateral changes can be neglected. Thus in terms of the
element described, only Az is considered variable. A storage expres-
sion written as the sum of three terms involving partial derivatives of
the variables Az, p, and porosity n is?

d(pn Ax Ay Az)
ot

=(np-2%i—z) A % +RAZ %) Ax Ay  (8-33)
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The three elements on the right can be expressed in terms of pore
pressure p, the aquifer compressibility o, and the fluid compressibility
B'2,4

Fluid compressibility is defined as the reciprocal of its bulk mod-
ulus of elasticity. It is given by*

= ——g— (8-34)

where

V = the volume
p = the pore pressure

If the piezometric surface of a confined aquifer is lowered a distance
of one unit, the amount of water released from a column of aquifer of
unit horizontal cross-sectional area is defined as the storage coeffi-
cient S. This is analogous to the specific yield S, of an unconfined
aquifer. Obviously, in Eq. 8-34 S is equivalent to V. Further, if the
aquifer column is of height b, V =b. The change in pressure dp is
equivalent to the negative product of the change in head (one unit)
and specific weight of water. Making these substitutions in Eq. 8-34,
we find that

8 =—fg (8-35)

Now if the aquifer material is considered elastic, that is, if Az and
n can be modified, the volume change can be expressed in terms of
alteration in the density of the material due to the difference in pack-
ing. Thus

(39 --(%

Introducing Egs. 8-35 and 8-36 into Eq. 8-34 gives
pS

dp=4—29 8-37
S e (8-37)

Next, substituting this expression for 9p in Eq. 8-28, we obtain

d(pu) . O(pv) L d(pw) _ _pS 8p ]
3x T 8y ' 6z ~ by Bt (B:38)

The left-hand side of this equation can be expanded to

du  Ov | dw bp 00 Q) -
”(ax+ay+az)+<“ax+”ay+waz (829

The second term is normally very small compared with the first and
can be neglected. The validity of this assumption improves as the flow
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angle decreases. Using Eq. 8-39 and the foregoing assumption, Eq.
8-38 becomes

du dv  dw _ S dp

ax T dy A i by ot (G40}
or if isotropic conditions prevail,
S adp
2, 2 9P L
KV*h by Bt (8-41)

since from Eq. 8-27 u = —K 6h/0x, and so on. Inserting yh for p and
the transmissivity T for Kb produces
S ah
gp = D SO .

V?h T 3% (8-42)
which is the general equation for unsteady flow in a confined aquifer
of constant thickness b.

The storage coefficient S and the transmissivity are commonly
called the formation constants of a confined aquifer. For an uncon-
fined aquifer Eq. 8-42 reverts to

S dh
2h — e —

Vh =%5 ‘o
since b is a function of the change in head. The unsteady flow equa-
tion for an unconfined aquifer is nonlinear in form. The solution of
such an equation is discussed by Jacob.?*> Where variations in satu-
rated thickness of unconfined aquifers are minor, Eq. 8-42 may be
used as an approximation.*

For unconfined aquifers, the right-hand side of Eq. 8-43 is often
negligible so that the equation

Vih =0 (8-31)
is frequently valid for both steady and unsteady flow.

(8-43)

8-13 Flowlines and Equipotentiai Lines

Many problems of practical interest in groundwater hydrology can be
considered two-dimensional flow problems. The equation of continu-
ity for steady incompressible flow in an isotropic medium then be-
comes

ou  Odv

% +'a—y' =0 (8-44)
and
2 2
vh=3% .2 y’; =0 (8-45)
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¢ 0%

2 = — DD -

V3¢ 3.z T 3y 0 (8-46)
The Laplace equation is satisfied by two conjugate harmonic

functions ¢ and ¢.>* Curves ¢(x, y) = constant are orthogonal to the

curves yY(x, y) = constant. The function ¢(x, y) is the velocity potential,

the function Y(x, y) is known as the stream function and is defined by

_8 oy _
u 3y v 3 (8-47)
Substituting Eq. 847 into Eq. 8-44 yields
o % _
0x 0y Oy odx L (8-45)
It has already been shown that
_9¢ _99¢
““oax  "Toy

SO we can write

0 _0y 99 _  ay
ox  dy oy  oOx (8-49)

These are known as the Cauchy-Riemann equations. The stream func-
tion satisfies both the equation of continuity and the equations of
Cauchy-Riemann. It can also be shown that the Laplace equation is
satisfied and therefore?®

0 O
vz‘p__ 3t + 6y2 =( (8—50)

Refer now to Fig. 8-4. If V is a velocity vector tangent to a particle

ya

X
Fig. 8-4. Definition sketch for a stream function.
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flow path 3—4, then it can be decomposed into two components u and
v.2° By geometry of the figure

o _dy _ -

= —dx-—tana (8-51)
and thus

vdx~-udy=0 (8-52)

If Eqs. 8-47 are substituted into Eq. 8-51, then
9y 9y 4 _ !
Ta dx+ay dy=0 (8-53)

The total differential dy is equal to zero, and ¥ must be a con-
stant. A series of curves y(x, y) equal to a succession of constants can
be drawn and will be tangent at all points to the velocity vectors.
These curves trace the flow path of a fluid particle and are known as
streamlines or flowlines. An important property of the stream function
is demonstrated with the aid of Fig. 8-4. Consider the flow crossing a
vertical section AB between streamlines defined as i and ¢;. If the
discharge across the section is designated as Q, it is apparent that

bl
Q= f% udy (8-54)
or
0=/ ay (8-55)
and
O=9Y,— (8-56)

Equation 8-56 illustrates the important property that low between
two streamlines is constant. Streamline spacing reveals the relative
magnitudes of flow velocities between them. Higher values are associ-
ated with narrower spacings, and vice versa.

The curves in Fig. 8-4 designated as ¢, and ¢, called equipo-
tential lines, are determined by velocity potentials (x, y) = constant.
These curves interesect the flowlines at right angles, illustrated in the
following way. The total differential d ¢ is given by

dp = -‘;—f dx +%;é dy (8-57)

Substituting for terms d¢/dx and 8 ¢/dy their equivalents u and v
makes

udx+vdy=0 (8-58)




8-13 Flowlines and Equipotential Lines 309

(8-59)

Thus equipotential lines are normal to flowlines. The system of flow-
lines and equipotential lines forms a flow net.

One significant point of difference between ¢ and ¢ functions is
that equipotential lines exist only when the flow is irrotational. For
two-dimensional flow the condition of irrotationality is said to exist
when the z component of vorticity ¢, is zero, or

L = (g—;’ —g—;‘) =0 (8-60)

Proof of this is given by Eskinazi.?® Substituting foru and v in Eq. 8-60
in terms of ¢, we obtain

SO R R (8-61)

9x 0y Oy dx

This indicates that when the velocity potential exists, the criterion
for irrotationality is satisfied.

Once either streamlines or equipotential lines in a flow domain
are determined, the other is automatically known because of the rela-
tionships in Eq. 849. Thus

v=[ (52 ay-2¢ a) (8-62)
and

o (3 a2t 0

It is enough then to determine only one of the functions, since the
other can be obtained using relations Eq. 8-62. The complex potential
given by

w=¢+iy (8-63)

where i is the square root of —1 is widely used in analytic flow net
analyses.>?® Of special importance is the fact that

Viw =Vip +iViy=0 (8-64)

satisfies the conditions of continuity and irrotationality simulta-
neously.

Equations presented in this section have been limited to the case
of two-dimensional flow. Extension to three dimensions would be
obtained in a similar fashion. '
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8-14 Boundary Conditions

To solve groundwater flow problems it is necessary that appropriate
boundary conditions be specified. Some of the more commonly
encountered ones are described in this section; more comprehensive
discussions will be found elsewhere.1%28

Boundary conditions discussed can be categorized as follows:
impervious boundaries, surfaces of seepage, constant head bound-
aries, and lines of seepage (free surfaces).

Impervious boundaries may be man-made objects such as con-
crete dams, rock strata, or soil strata that are highly impervious. In
Fig. 8-5 the impervious boundary AB represents such a limit. Since
flow cannot cross an impervious boundary, velocity components
normal to it vanish and the impervious boundary is a streamline. In
other words, at the boundary, = constant.

Next look at the upstream face of the earth dam BC. At any point
of elevation y along BC the pressure can be assumed hydrostatic, or

p=vyh-y) (8-65)
The definition of a velocity potential states that

¢ = -K(% +y) +C (8-66)
Substituting for pressure in Eq. 8-66 yields

e —K( v(hy— y) y) +C (8-67)
and

¢=-Kh+C (8-68)
Thus for a constant reservoir level & and an isotropic medium,

¢ = constant

Earth-fill dam

v ,Reservoir
= Line of seepage

D~ Surface of
seepage

SYI/SSAST.
Impervious layer
Fig. 8-5. Some common boundary conditions.
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Equipotential lines
(¢ = constant)

(4
Fig. 8-6. Segment of an orthogonal flow net.

and surface BC, often termed a reservoir boundary, is an equipotential
line.

The free surface or line of seepage CD in Fig. 8-5 is seen to be a
boundary between the saturated and unsaturated zones. Since flow
does not occur across this boundary, it is obviously also a streamline.
Pressure along this free surface must be constant, and therefore along
CD

¢ + Ky = constant (8-69)

This is a linear relationship in ¢, and therefore equal vertical falls
along CD must be associated with successive equipotential drops.
One important groundwater flow problem is to determine the location
of the line of seepage.

The surface of seepage DE of Fig. 8-5 represents the location at
which water seeps through the downstream face of the dam and
trickles toward point E. The pressure along DE is atmospheric. The
surface of seepage is neither a flowline nor an equipotential line.

8-15 Flow Nets

Flow nets, or graphical representations of families of streamlines and
equipotential lines, are widely used in groundwater studies to deter-
mine quantities, rates, and directions of flow. The use of flow nets is
limited to steady incompressible flow at constant viscosity and density
for homogeneous media or for regions that can be compartmentalized
into homogeneous segments. Darcy’s law must be applicable to the
flow conditions.

The manner in which a flow net can be used in problem solving
is best explained with the aid of Fig. 8-6. This diagram shows a por-
tion of a flow net constructed so that each unit bounded by a pair of
streamlines and equipotential lines is approximately square. The
reason for this will be clear later.

A flow net can be determined exactly if functions ¢ and ¢ are



312 8 Groundwater Hydrology

known beforehand. This is often not the case, and as a result, graphi-
cally constructed flow nets have been much used. The preparation of a
flow net requires application of the concept of square elements and
adherence to boundary conditions. Graphical flow nets are usually
difficult for a beginner to create, but with reasonable practice an
acceptable net can be drawn. Various mechanical methods for
graphical flow net construction are presented in the literature and
will not be discussed here.328

After a flow net has been constructed, it can be analyzed using
geometry of the net and by applying Darcy’s law.

Remembering thath = (p/y + z), we find that Fig. 8-6 shows that
the hydraulic gradient G, between two equipotential lines is given by

Ah
v (8-70)
Then applying Darcy’s law, in the manner of Todd,* the flow incre-
ment between adjacent streamlines is
Ah

Ag=KAm (—A-;) (8-71)
where Am represents the cross-sectional area for a net of unit width
normal to the plane of the diagram. If the flow net is constructed in
an orthogonal manner and composed of approximately square
elements,

Am = As
and
Ag =K Ah (8-72)

Now if there are n equipotential drops between the equipotential
lines, it is evident that

Ah =T
n

where h is the total head loss over the n spaces. If the flow is divided
into m sections by the flowlines, then the discharge per unit width
of the medium will be

Kmh
n

m
0=24q= (8-73)
When the medium’s hydraulic conductivity is known, the discharge
can be computed using Eq. 8-73 and a knowledge of flow net
geometry.

Where the flow net has a free surface or line of seepage, the
entrance and exit conditions given in Fig. 8-5 will be useful. A more
comprehensive discussion of these conditions is given in Ref. 24.
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Line of seepage

Tangent
7

Surface of
seepage

-----------------

6 =180°

a <90°,9 <90°

(a) (b)
Fig. 8-7. Some entrance and exit conditions for the line of seepage. (After
A. Casagrande, “Seepage Through Dams,” in Contributions to Soil
Mechanics, 1925-1940, Boston: Boston Society of Civil Engineers, 1940.)

Drain

Some trouble arises in flow net construction at locations where
the velocity becomes infinite or vanishes. Such points are known as
singular points and according to DeWiest may be placed in three
separate categories.? In the first classification flowlines and equipoten-
tial lines do not intersect at right angles. Such a situation often occurs
when a boundary coincides with a flowline; point A in Fig. 8-7 is an
example.

The second classification has a discontinuity along the boundary
that abruptly changes the slope of the streamline. In Fig. 8-8, points
A, B, and C represent such discontinuities. At points A and C the
velocity is infinite, while at point B it is zero. If the angle of discon-
tinuity measured in a counterclockwise direction inside the flow field
is less than 180°, the velocity is zero; if larger than 180°, it is infinite.
The angle at A is 270°, for example.

The third category includes the case where a source or sink exists
in the flow net. Under these circumstances the velocity is infinite,
since squares of the flow net approach zero size as the source or sink

1K

Fig. 8-8. Flowline slope discontinuities.



314 8 Groundwater Hydrology

is approached. Wells and recharge wells represent sinks and sources
in a practical sense and will be discussed later.

8-16 Variable Hydraulic Conductivity

It is common for flow within a porous medium of one hydraulic con-
ductivity to enter another region with a different hydraulic conduc-
tivity, When such a boundary is crossed, flowlines are refracted. The
change in direction that occurs can be determined as a function of the
two permeabilities involved in the manner of Todd and DeWiest.24
Figure 8-9 illustrates this.

Consider two soils of permeabilities K, and K, which are sepa-
rated by the boundary LR shown in Fig. 8-9. The direction of the
flowlines before and after crossing the boundary is defined by angles
01 and 02.

For continuity to be preserved, the velocity components in
media K; and K;, which are normal to the boundary, must be equal,
since the cross-sectional area at the boundary is AB for a unit depth.
Using Darcy’s law and noting the equipotential drops h, and h,,

K,i—ig cos 6 =K, %lg cos 6, (8-74)

From the geometry of the figure it is apparent that
AC =AB sin 6
BD =AB sin 6,

Fig. 8-9. Flowline refraction.
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The head loss between A and B is shown on the figure to be equal to
both Ah, and Ah,, and since there can be only a single value,
Aha = Ahb
Introducing these expressions in Eq. 8-74 produces

KB __K
tan 6, tan 6,

(8-75)

For refracted flow in a saturated porous medium, the ratio of the
tangents of angles formed by the intersection of flowlines with nor-
mals to the boundary is given by the ratio of hydraulic conductivities.
As a result of refraction, the flow net on the K, side of the boundary
will no longer be squares if the equipotential line spacing DB is
maintained. To adjust the net on the K; side, the relation

Ah, K,
Ah, K,
can be used where Ah, # Ah,.

Equipotential lines are also refracted in crossing permeability
boundaries. The relationship for this is

(8-76)

£<_1= tana2

K, tana, St

where a is the angle between the equipotential line and a normal to
the boundary of permeability.? :

'8-17 Anisotropy

In many cases hydraulic conductivity is dependent upon the direction
of flow within a given layer of soil. This condition is said to be aniso-
tropic. Sedimentary deposits often fit this aspect, with low occurring
more readily along the plane of deposition than across it. Where the
permeability within a plane is uniform but very small across it as com-
pared to that along the plane, a flow net can still be used after proper
adjustments are made. A discussion of this is given elsewhere.?33
Nonhomogeneous aquifers require special consideration but may
sometimes be analyzed by using representative or average param-
eters. A detailed study is outside the scope of this book.?3:38

8-18 Dupuit’s Theory

Groundwater flow problems in which one boundary is a free surface
can be analyzed on the basis of Dupuit’s theory of unconfined flow.
This theory is founded on two assumptions made by Dupuit in 1863.
First, if the line of seepage is only slightly inclined, streamlines may
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be considered horizontal and, correspondingly, equipotential lines
will be essentially vertical. Second, slopes of the line of seepage and
the hydraulic gradient are equal. When field conditions are known to
be satisfactorily represented by these assumptions, the results ob-
tained according to Dupuit's theory compare very favorably with
those arrived at by more rigorous techniques.

Figure 8-10 is useful in translating the foregoing assumptions
into a mathematical statement. Consider an element given in the
figure which has a base area dx dy and a vertical height . Writing
the continuity equation in the x direction and considering.steady flow
to be the case,

inflow,, = velocity,, X area, (8-78)

The velocity at x = 0 is given by Darcy’s law as

oh
Uy = —K—a? (8-79)
Thus the discharge across the element at x = 0 is
oh
Qo= ~K—o—~hdy (8-80)
The outflow atx = dx is obtained by a Taylor’s series expansion as
— _goh 9 ( _g3h ) oy
Qiz = —-K e hdy +dx o K e hdy) + (8-81)

Subtracting the outflow from the inflow if K is considered constant,
we obtain

I -0, =Kdz dy-2>- (h %’;-) (8-82)

y

s

=’ Oax

Fig. 8-10. Definition sketch for development of Dupuit's equation.



8-18 Dupuit's Theory 317

or

_Kdxdy o ( 6h?
I -0, = 2 ox ( dx ) (Bal!

where dx and dy are considered fixed lengths. A similar consideration
in the y direction yields

_Kdxdy @ (th)
o oy \ oy

Assuming that there is no movement in the vertical direction,
these are the only components of the inflow and outflow. Further, still
dealing with steady flow, the change in storage must be zero. As a
result,

1, -0, (8-84)

Kdxdy 0 <6h2) Kdxdy o (ahz) B
SRRk v e Sk N $emiid
and since (K dx dy)/2 is constant, this reduces to
9h®  98*h® _
—5x—2 +Ty7 =0 (8-86)
or
V2h2 =0 (8-87)

Consequently, according to Dupuit's assumptions, Laplace’s
equation for the function h? must be satisfied.?

In the particular case where recharge is occurring as a result of
infiltrated water reaching the water table, a simple adjustment may be
made to Eq. 8-86. If the recharge intensity (dimensionally LT™?) is
specified as R, then the total recharge to the element of Fig. 8-10 will
be R dx dy and the continuity equation for steady flow becomes

dx dy (a=h2 Bzhz) _
K= 3.2 T 3y +Rdxdy=0 (8-88)
or more simply,
V*ht+2 R =0 (8-89)

Now, applying Dupuit’s theory to the flow problem illustrated on
Fig. 8-11b, and assuming one-dimensional flow in the x direction
only, the discharge per unit width of the aquifer given by Darcy’s
law is
dh

Q= -Kh-7 (8-90)

In this instance h is the height of the line of seepage at any position x
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Fig. 8-11. Steady flow in a porous medium between two water bodies:
(a) free surface with infiltration; and (b) free surface without infiltration.

along the impervious boundary. For the one-dimensional example
considered here, Eq. 8-86 becomes

d?h? _
b 0 (8-91)
Upon integration,
h*=ax+b (8-92)

where @ and b are constants.
Then for boundary conditions atx = 0, h = hy,

b =h} (8-93)
Differentiation of Eq. 8-92 yields

dh _
2h—d—x- =q (8-94)
Also from Darcy’s equation, h dh/dx = —Q/K. Making this substitution,
a=22 (8-95)
and inserting the values of the constants in Eq. 8-92, we obtain

h? = —z-% ern (8-96)
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This is the equation of a free surface. It is a parabola (often called
Dupuit’s parabola). If the existence of a surface of seepage at B is
ignored, and noting that at x =L, h = h;, we find that Eq. 8-96 be-
comes

my =29 1 h3 (8-97)
or
AL (8-98)
which is known as the Dupuit equation.
Example 8-3 Refer to Fig. 8-11a. Given the dimensions shown and a re-

charge intensity R of 0.01 ft/day, find the discharge at x = 1000 ft using
Dupuit’s equation. Assume that K = 8.

Solution
Note that
a0 _
dx
or
Q=Rx+C
Atx =0,
Q=0
therefore,
O=R.+0Q
Also,
dh
Q = -Kh =
Integrating yields
= Kh’i hy l

=i +
5 ln, 21, 79X

and inserting the limits,
—K(h —hi) _ RL?

2 o 2
0, = K(hi—hi) _RL

*h 2L 2

+ QoL
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Then since Q = Rx + Q,,
_of. L) . K3 -h)
© ’R(" 2) T oL

R =0.01 x 7.5 = 0.075 gpd/ft?

I 8(507 — 40%)
Q = 0.075(1000 — 500) + 5000
8 x 900
= (0.075 x 500 +W
=375+ 3.6
=41.1 gpd/fe

8-19 Methods for Developing Groundwater Supplies

Development of groundwater supplies is accomplished mainly
through wells or infiltration galleries. Many factors are involved in
the performance of these collection works, and a thorough knowledge
of groundwater flow mechanics and regional geology is essential.
Some groundwater flow problems can be solved by applying relatively
simple mathematical tools. Other problems require more rigorous
analyses. Graphical studies and model analyses are also widely
employed.

Flow to Wells

A well system can be considered as composed of three elements
—the well structure, pump, and discharge piping.’® The well itself
contains an open section through which water enters and a casing to
transport the flow to the ground surface. The open section is usually
a perforated casing or slotted metal screen permitting water to enter
and at the same time preventing collapse of the hole. Occasionally,
gravel is placed at the bottom of the well casing around the screen.

When a well is pumped, water is removed from the aquifer
immediately adjacent to the screen. Flow then becomes established
at locations some distance from the well in order to replenish this
withdrawal. Because of flow resistance offered by the soil, a head loss
results and the piezometric surface adjacent to the well is depressed,
producing a cone of depression (Fig. 8-12), which spreads until equi-
librium is reached and steady state conditions are established.

The hydraulic characteristics of an aquifer (which are described
by the storage coefficient and aquifer permeability) can be deter-
mined by laboratory or field tests. The three most commonly used
field methods are the application of tracers, the use of field permeam-
eters, and aquifer performance tests.* A discussion of aquifer perform-
ance tests will be given here along with the development of flow
equations for wells.11:15.16
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Pumped well

Impervious stratum
Fig. 8-12. Well in an unconfined aquifer.

Aquifer performance tests may be either (1) equilibrium or (2)
nonequilibrium tests. In (1) the cone of depression must be stabilized
for a flow equation to be derived. For (2) the derivation includes a
condition that steady state conditions have not been reached. Adolph
Thiem published the first performance tests based on equilibrium
conditions in 1906.8

8-20 Steady Unconfined Radial Flow Toward a Well

The basic equilibrium equation for an unconfined aquifer can be
derived using the notation of Fig. 8-12. Here flow is assumed to be
radial; the original water table is considered to be horizontal; the
well is presumed to fully penetrate the aquifer of infinite aereal
extent; and steady state conditions must prevail. Then flow toward the
well at any distance x away must equal the product of the cylindrical
element of area at that section and the flow velocity. With Darcy’s
law this becomes

Q = 2mayK, 2L (899

where

2mrxy = the area through any cylindrical shell, in ft* with the
well as its axis
K; = the hydraulic conductivity (ft/sec)
dy/dx = the water table gradient at any distance x
Q =the well discharge (ft}/sec)

Integrating over the limits specified, we find that

f ? 092 _onk, f i (8-100)
1‘1 x hl
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1y _ 2aK,(h} — )

- B (8-101)

Q log.

and

_ 7K;(hi — hY)
2 log, (ra/ry) Jeiiny
Converting K; to the field units of gpd/ft?, Q to gpm, and log, to log;,,
we can rewrite Eq. 7-102 as

_ 10550 log,, (ry/ry)
3 h3 — h3

If the drawdown in the well does not exceed one-half of the original
aquifer thickness h,, reasonable estimates of Q or K; can be obtained

by using Eq. 8-102 or 8-103, even if the height kh, is measured at
the well periphery where r; =r,, the radius of the well boring.

K,

(8-103)

Example 8-4 An 18-in. well fully penetrates an unconfined aquifer of
100-ft depth. Two observation wells located 100 and 235 ft from the pumped
well are known to have drawdowns of 22.2 and 21 ft, respectively. If the
flow is steady and K, = 1320 gpd/ft?, what would be the discharge?

Solution
Equation 8-102 is applicable, and for the given units this is
0 Kb =h)
1055 log;q (rafry)

logye (n/ry) = logy, (235/100) = 0.37107
hy, =100-21 =79 ft
h,=100-222="77.8 ft

0= 1320(792 — 77.82)
~ 1055 x 0.37107

=634.44 gpm

8-21 Steady Confined Radial Flow Toward a Well

The basic equilibrium equation for a confined aquifer can be obtained
in a similar manner, using the notation of Fig. 8-13. The same assump-
tions apply. Mathematically, the flow in ft*/sec is found from

Q= wame% (8-104)

Integrating, we obtain

hz —hl

2R T e ey

(8-105)
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Fig. 8-13. Rad/al flow to a well in a confmed aquifer.

The coefficient of permeability may be determined by rearranging Eq.
8-105 to the form

5280 log,, (rz/ry)

K= — k) e
where
Q =gpm
K; = the permeability (gpd/ft?)
r and h = ft

Example 8-5 Determine the permeability of an artesian aquifer being
pumped by a fully penetrating well. The aquifer is 90 ft thick and composed
of medium sand. The steady state pumping rate is 850 gpm. The drawdown
of an observation well 50 ft away is 10 ft; in a second observation well 500 ft
away it is 1 ft.

Solution
K, = 5280 log, (ra/ry)
m(hy — h,)
_ 528 x 850 x log, (10)
90 x (10-1)
=554 gpd/ft*

8-22 Well in a Uniform Flow Field

For a steady state well in a uniform flow field where the original
piezometric surface is not horizontal, a somewhat different situation
from that previously assumed prevails. Consider the artesian aquifer
shown in Fig. 8-14. The heretofore assumed circular area of influence
becomes distorted in this case. A solution is possible by applying
potential theory; by using graphical means; or, if the slope of the
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Fig. 8-14. Well in a uniform flow field and flow net definition.

piezometric surface is very slight, Eq. 8-105 may be employed with-
out serious error.

Figure 8-14 provides a graphical solution to a uniform flow field
problem. First, an orthogonal flow net consisting of flowlines and
equipotential lines must be constructed. This should be done so that
the completed flow net will be composed of a number of elements
that approach little squares in shape. Once the net is complete, it can
be analyzed by considering the net geometry and using Darcy’s law in
the manner of Todd.*

Example 8-6 Find the discharge to the well of Fig. 8-14 by using an appli-
cable flow net. Consider the aquifer to be 35 ft thick, K, = 3.65 x 10~ fps,
and other dimensions as shown.

Solution
Using Eq. 8-73, we find that
Kmh
9=
where
h =(35 + 25) = 60 ft
m=2x5=10
n =14
. _3.65 X107 x 60 x 10

14
=0.0156 cfs per unit thickness of the aquifer




8-23 Waell Fields 325

The total discharge Q is thus
Q = 0.0156 x 35 = 0.55 cfs or 245 gpm

8-23 Well Fields

When more than one unit in a well field is pumped, there is a com-
posite effect on the free water surface. This consequence is illustrated
by Fig. 8-15 in which the cones of depression are seen to overlap. The
drawdown at a given location is equal to the sum of the individual
drawdowns.

If within a particular well field, pumping rates of the pumped
wells are known, the composite drawdown at a point can be deter-
mined. In like manner, if the drawdown at one point is known, the
well flows can be calculated.

If the drawndown at a given point is designated as m, and sub-
scripts 1, 2, . .., n are used to relate this drawdown to a particular well
(for example, m,; refers to the drawdown for W,) for the total draw-
down m, at some location,*

mp = ‘2_1 my (8-107)

The number of wells, their rate of pumping, and well-field geom-
etry and characteristics determine the total drawdown at a specified
location.

Again considering Eq. 8-102, we obtain

B3 — b2 =?%< log, (%) (8-108)

Original

:free surface

—-"-.---_—

——
———

— —-—
—

—
7 Wells 1 and 3
/7
| /- Drawdown with
y wells 1,2, and 3
pumping

A A

MA444444444

Fig. 8-15. Combined effect of pumping several wells at equal rates.
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It can be seen that the drawdown for a well pumped at rate Q can be
computed if ko, 7o, and r are known. It follows then from Eq. 8-107
that for n pumped wells in an unconfined aquifer,

h2 — h? = ;—:_1 _';TQT‘( log, (Z‘L‘) (8-109)

Ty
where

h, = the original height of the water table

h = the combined effect height of the water table after pumping
n wells

Q; = the flow rate of the ith well

rq = distance of the ith well to a location at which the drawdown
is considered negligible

r; = the distance from well i to the point at which the drawdown
is being investigated

Todd indicates that values of r, used in practice often range from
500 to 1000 ft.* The impact of this assumption is softened because
Q in Eq. 8-108 is not very sensitive to r,. Equation 8-109 should be
used only where drawdowns are relatively small.

For flow in a confined aquifer the expression for combined
drawdown becomes

n
N O (m)
ho—h = 121 o K log, n (8-110)

Equations for well flow covering a variety of particular well-field
patterns are reported in the literature.* Those given here are appli-
cable for steady flow in a homogeneous isotropic medium.

8-24 The Method of Images

Some groundwater flow problems subjected to boundary conditions
negating the direct use of radial low equations can be transformed
into infinite systems fitting these equations by applying the method
of images.15-22:4

When a stream is located near a pumped well and the stream
and aquifer are interconnected, the drawdown curve ofa pumped well
may be affected as shown in Fig. 8-16. Another boundary condition
often affecting the drawdown of a well is an impervious formation
that limits the extent of the aquifer. The cone of depression of a
pumped well is not affected until the boundary is intersected. After
that, the shape of the drawdown curve will be changed by the
boundary. Boundary effects can frequently be evaluated by means
of so-called “image wells.” The boundary condition is replaced by
either a recharging or a discharging well which is pumped or re-




8-24 The Method of Images 327
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Fig. 8-16. Drawdown in a pumping-well whose aquifer is connected to a
stream.

charged at a rate equivalent to that of the pumped well. That is, in
an infinite aquifer, drawdowns of the real and image wells would be
identical. The image well is located at a distance from the boundary
equal to that of the real well but on the opposite side (Fig. 8-16).
Streams are replaced by recharge wells while impermeable bound-
aries are supplanted by pumped image wells. Computations for the
case of a well and impervious boundary directly follow the procedures
outlined under the section on well fields. For the well and stream
system, the recharge image well is considered to have a negative
discharge. The heads are then added according to this sign con-
vention.

The procedure for combining drawdown curves of real and
image wells to obtain an actual drawdown curve is illustrated graphi-
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cally for the example shown in Fig. 8-16. More detailed information
on other cases can be found elsewhere.>*®

8-25 Unsteady Flow

When a new well is first pumped, a large portion of the discharge
comes directly from the storage volume released as the cone of de-
pression develops. Under these circumstances the equilibrium equa-
tions overestimate permeability and therefore the yield of the well.
When steady state conditions are not encountered—as is usually the
situation in practice—a nonequilibrium equation must be used. Two
approaches can be taken, the rather rigorous method of C. V. Theis
or a simplified procedure such as that proposed by Jacob.%°

In 1935 Theis published a nonequilibrium approach that takes
into consideration time and storage characteristics of the aquifer.?
His method utilizes an analogy between heat transfer described by
the Biot-Fourier law, and groundwater flow to a well. Theis states
that the drawdown (s) in an observation well located at a distance r
from the pumped well is given by

114,60 [ e~
g =2 f - du | (8-111)

where

T = transmissibility (gpd/ft)
Q = discharge (gpm)

and

1.87r%S,
)=t

Ts (8-112)

where

S. = the storage coeflicient
t = time in days since the start of pumping

The integral in Eq. 8-111 is usually known as the well function of u
and commonly written as W(u). It may be evaluated from the infinite
series

2 u3
ox2l Taxart

(8-113)

The basic assumptions employed in the Theis equation are essentially

the same as those in equation 8-102 except for the nonsteady state

condition. Some values of this function are given in Table 8-2.
Equations 8-111 and 8-112 can be solved by comparing a log-log

W(u)=—-0.577216 — log, u +u —
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plot of u versus W(u) known as a type curve, with a log-log plot of the
observed data 72/t versus s. In plotting type curves, W(u) and s are
ordinates, u and r2/t are abscissas. The two curves are superimposed
and moved about until segments coincide. In this operation the axes
must remain parallel. A coincident point is then selected on the
matched curves and both plots marked. The type curve then yields
values of u and W(u) for the desired point. Corresponding values of
s and 72/t are determined from a plot of the observed data. Inserting
these values in Egs. 8-111 and 8-112 and rearranging, values for
transmissibility T and storage coefficient S, can be found.

Often this procedure can be shortened and simplified. When r is
small and ¢ large, Jacob found that values of u are generally small.*®

lto =2.6 min

roud,

49,800 gpd/ft

5.30 ft

=)

Ah

Drawdown (ft of water)
~J

9 One log cycle

10

11

12 N

13

14

5 10 50 100 500 1000
Time since pumping began (min)

Fig. 8-17. Pumping test data, Jacob method.
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Thus terms in the series of Eq. 8-113 beyond the second one become
negligible and the expression for T becomes

T £ 2640(10&) t2 by loglo tl) (8-114)
ho - h
which can be further reduced to
92640
T =A% (8-115)
where

Ah =the drawdown per log cycle of time [(h,—h)/
(logyo t2 — loge th)]
Q = well discharge (gpm)
ho and h = as defined in Fig. 8-13
T = the transmissibility (gpd/ft)

Field data on drawdown (h, —h) versus t are drafted on semi-
logarithmic paper. The drawdown is plotted on an arithmetic scale,
Fig. 8-17. This plot forms a straight line whose slope permits com-
puting formation constants using Eq. 8-115 and

0.3Tt,
rt

S, = (8-116)

with ¢, the time corresponding to zero drawdown.
Example 8-7 Using the following data, find the formation constants for an

aquifer using a graphical solution to the Theis equation. Discharge equals
540 gpm.

Distance from Average
Pumped Well, r Drawdown, s

(ft) rat {ft)

50 1,250 3.04
100 5,000 2.16
150 11,250 1.63
200 20,000 1.28
300 45,000 0.80
400 80,000 0.51
500 125,000 0.33
600 180,000 0.22
700 245,000 0.15
800 320,000 0.10

Solution

Plot s versus 72/t and W(u) versus u as shown in Fig. 8-18. Determine the
match point as noted and compute S, and T using Egs. 8-111 and 8-112,
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Fig. 8-18. Graphical solution to Theis’ equation.

T =

Se

114

_ 114.6 x 540

_0.09 x 99,500
~ 1.87 x 20,000

s

1.28

__uT
T 187t

r2
- (ft2/day)

60 W(u)

x 1.9 = 99,500 gpd/ft

= 0.240

5 6 789100X10%

Example 8-8 Using the data given in Fig. 8-17, find the coeflicient of trans-
missibility T and storage coefficient S, for an aquifer. Given Q = 1000 gpm
and r = 300 ft.

Solution
Find the value of Ak from the graph, 5.3 ft. Then by Eq. 8-115
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2640 _ 264 x 1000

= 5.3
=49,800 gpd/ft
Using Eq. 8-116, we find that
0.3Tt,
Se ==

Note from Fig. 8-16 that t, = 2.6 min. Converting to days, we find that this
becomes

t, = 1.81 X 1073 days
and

< - 0.3 x 49,800 x 1.81 x 10~2
CF (300)?

=0.0003

8-26 Leaky Aquifers

The foregoing analyses have dealt with free aquifers or those con-
fined between impervious strata. In reality, many cases exist wherein
the confining strata are not completely impervious and water is
actually transferred from them to the productive aquifer. The flow
regime is altered and computations must include leakage. Since about
1930, leaky aquifers have been the subject of research by investigators
such as De Glee, Jacob, Hantush, DeWiest, Walton, and others.27-36:38
A thorough treatment of their work is beyond the scope of this book;
interested readers should consult the indicated references.

8-27 Partially Penetrating Wells

In many actual situations there is only partial penetration of the well.
The question then arises as to the applicability of procedures devel-
oped previously for full penetration.

Numerous studies of this problem have been conducted.?®37:3
In 1957 Hantush reported that steady flow to a well just penetrating
an infinite leaky aquifer becomes very nearly radial at a distance from
the well of about 1.5 times the aquifer thickness.?® As depth of penetra-
tion increases, the approach to radial low becomes increasingly ap-
parent. Therefore, computation of drawdowns for partially penetrating
wells are made using equations for total penetration with relative
safety, provided that the distance from the pumped well is greater
than 1.5 times the aquifer thickness. At points closer to the well, it is
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frequently possible to use a flow net or other relationships developed
for this region.?*3

8-28 Salit-Water Intrusion

The contamination of fresh groundwater by the intrusion of salt water
often presents a serious quality problem. Islands and coastal regions
are particularly vulnerable. Aquifers located inland sometimes con-
tain highly saline waters as well. Fresh water is lighter than salt water
(specific gravity of the latter is about 1.025) and forms a fresh water
layer above the underlying salt water. This equilibrium is disturbed
when an aquifer is pumped, since salt water replaces the fresh water
removed. Under equilibrium conditions, a drawdown of 1 ft in a fresh
water table corresponds to a rise of about 40 ft by salt water. Wells
subjected to salt water intrusion obviously have limited pumping
rates.

Recharge wells have been drilled in coastal areas to maintain a
head sufficient to preclude sea water intrusion, a practice employed
effectively in Southern California.

8-29 Computers and Numerical Methods in Groundwater
Hydrology

Many advances in the application of computers and numerical meth-
ods have taken place since the late 1940s.41~4

Electric analogs solve a wide variety of groundwater flow prob-
lems, >3 and consist essentially of a resistance-capacitance network.
Table 8-3 indicates the manner in which components of the electric
analog and the actual flowfield are related.

Digital computers have also proved to be versatile tools for use
in groundwater studies.>** The applicable mathematical model is
usually written in finite difference or finite element form. Ground-
water simulation models will be discussed further in Chapter 10.

Table 8-3 Elements of a Groundwater Reservoir and
an Electric Analog Compared

Groundwater Reservoir Corresponding Electric
Component Analog Component
Hydraulic conductivity Resistivity
Aquifer storage Capacitance
Head Voltage

Volumetric flow rate Amperage
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Table 8-4 Some Important Forms of Recharge and Discharge

Recharge Discharge
Seepage from streams, ponds, Seepage to lakes, streams,
lakes springs
Subsurface inflows Subsurface outflows
Infiltrated precipitation Evapotranspiration
Water recharged artificially Pumping or other artificial means
of collection

8-30 Groundwater Basin Development

To utilize groundwakt"er resources efficiently while simultaneously
permitting the maximum development of the resource, equilibrium
must be established between withdrawals and replenishments. Eco-
nomic, legal, political, social, and water quality aspects require full
consideration.

Lasting supplies of groundwater will be assured only when
long-term withdrawals are balanced by recharge during the corre-
sponding period. The potential of a groundwater basin can be as-
sessed by employing the water budget equation,

YI-Y 0=AS

where the inflow D, I includes all forms of recharge, the total outflow
Y O includes every kind of discharge, and AS represents the change
in storage during the accounting period. The most significant forms of
recharge and discharge are those listed in Table 8-4.

A groundwater hydrologist must be able to estimate the quantity
of water that can be economically and safely produced from a ground-
water basin in a specified time period. He should also be competent
to evaluate the consequences of imposing various rates of withdrawal
on an underground supply.

Development of groundwater basins should be based on careful
study, since groundwater resources are finite and exhaustible. If the
various types of recharge balance the withdrawals from a basin over
a period of time, no difficulty will be encountered. Excessive drafts,
however, can deplete underground water supplies to a point where
economic development is not feasible. The mining of water will
ultimately deplete the entire supply.

Problems

,78-1) What is the Reynolds number for flow in a soil when the water
temperature is 50°F, the velocity 0.6 ft/day, and the mean grain diameter
0.08 in.?
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8-2. A 12-in. well fully penetrates a confined aquifer 100 ft thick. The
coefficient of permeability is 600 gpd/ftt. Two test wells located 40 and
120 ft away show a difference in drawdown between them of 9 ft. Find the
rate of flow delivered by the well.

8-3. Determine the permeability of an artesian aquifer being pumped
by a fully penetrating well. The aquifer composed of medium sand is 130 ft
thick. The steady state pumping rate is 1300 gpm. The drawdown in an obser-
vation well 65 ft away is 12 ft, and in a second observation well 500 ft away
1.2 &. Find K; in gpd/ft®.

8-4. Consider a confined aquifer with a coefficient of transmissibility
T = 700 f3/(day)(ft). At¢ = 5 min the drawdown = 5.1 ft; at 50 min, s = 20.0 ft;
at 100 min, s = 26.2 f. The observation well is 60 ft from the pumping well.
Find the discharge of the well.

8-5. Assume that an aquifer being pumped at a rate of 300 gpm is con-
fined and pumping test data are given as follows. Find the coefficient of
transmissibility T and the storage coefficient S. Assume r = 55 ft.

Time since pumping started (min) 1.3 2.5 42 8.0 11.0 100.0
Drawdown s (ft) 46 81 93 120 151 29.0

8-6. Given the following data:

Q = 60,000 ft?/day t =30 days,r=1#f
T =650 f*/(day)(ft) S, =6.4x10™

Assume this to be a nonequilibrium problem. Find the drawdown s. Note for

u=80x10"° W(u)=18.06
u=82x10"° W(u)=18.04
u=86x10"° W(u)=17.99

8-7. The water temperature in an aquifer is 58°F and the rate of water
movement 1.2 ft/day. The average particle diameter in a porous medium is
0.06 in. Find the Reynolds number and indicate whether Darcy’s law applies.

8-8. A laboratory test of a soil gives a standard coefficient of permea-
bility K, = 3.78 x 10* gpd/ft>. If the prevailing field temperature is 60°F,
find the field coefficient of permeability K.

8-9. An 18-in. well fully penetrates an unconfined aquifer 100 ft deep.
Two observation wells located 90 and 235 ft from the pumped well are known
to have drawdowns of 22.5 and 20.6 ft, respectively. If the flow is steady and
K; = 1300 gpd/ft?2, what would be the discharge?

8-10. A confined aquifer 80 ft deep is being pumped under equilibrium
conditions at a rate of 700 gpm. The well fully penetrates the aquifer. Water
levels in observation wells 150 and 230 ft are 95 and 97 ft, respectively.
Find the field coeflicient of permeability.

8-11. Given the well and flow net data in the following figure, find
the discharge using a flow net solution. The well is fully penetrating and
the confined aquifer 50 ft thick; K; = 2.87 x 10~ ft/sec.
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8-12. A well is pumped at the rate of 500 gpm under nonequilibrium
conditions. For the data listed, find the formation constants S and T. Use

the Theis method.

Average Drawdown, h

rét (ft)
1,250 3.24
5,000 2.18
11,250 1.93
20,000 1.28
45,000 0.80
80,000 0.56
125,000 0.38
180,000 0.22
245,000 0.15
320,000 0.10
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8-13. Given a well pumping at a rate of 590 gpm. An observation well
is located at r =180 ft. Find S and T using the Jacob method for the fol-
lowing test data.

Drawdown Time
() (min)
043 26
0.94 78
1.08 99
1.20 131
1.34 173
1.46 218
1.56 266
1.63 303
1.68 331
1.71 364
1.85 481
1.93 573
2.00 661
2.06 732
2.12 843
2.15 926
2.20 1034
2.23 1134
2.28 1272
2.30 1351
2.32 1419
2.36 1520
2.38 1611

8-14. By employing a finite difference method, find and plot the flow-
line in the following figure for ¢ = 0.5.

v

AN

Porous medium

8-15. A 24-in. diameter well penetrates the full depth of an unconfined
aquifer. The original water table and a bedrock aquifuge were located 50 ft
and 150 ft, respectively, below the land surface. After pumping at a rate of
1700 gpm continuously for 1920 days, equilibrium drawdown conditions were
established, and the original water levels in observation wells located 1000
and 100 ft from the center of the pumped well were lowered 10 and 20 ft,
respectively. (a) Determine the field permeability (gpd/ft?) of the aquifer.
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(b) For the same well, zero drawdown occurred outside a circle with a
10,000-ft radius measured from the center of the pumped well. Inside the
circle, the average drawdown in the water table was observed to be 10 ft.
Determine the coefficient of storage of the aquifer.

8-16. A well fully penetrates the 100-ft depth of a saturated unconfined
aquifer. The drawdown at the well casing is 40 ft when equilibrium condi-
tions are established using a constant discharge of 50 gpm. What is the draw-
down when equilibrium is established using a constant discharge of 66 gpm?

8-17. After a long rainless period, the flow in Wahoo Creek decreases
by 8 cfs from Memphis downstream 8 mi to Ashland. The stream penetrates
an unconfined aquifer, where the water table contours near the creek parallel
the west bank and slope to the stream by 0.00020, while on the east side the
contours slope away from the stream toward the Lincoln wellfield at 0.00095.
Compute the transmissivity of the aquifer knowing Q = TIL where I is the
slope and L is the length.

8-18. The time-drawdown data for an observation well located 296 ft
from a pumped artesian well (500 gpm) are given in the following table. Find
the coefficient of storage (ft* of water/ft® of aquifer) and the transmissivity
(gpd/ft) of the aquifer by the Theis Method. Use 3 x 3 cycle log paper.

Time Drawdown Time Drawdown

(hr) (ft) (hr) (ft)

1.9 0.28 9.8 1.09
2.1 0.30 12.2 1.25
2.4 0.37 14.7 1.40
2.9 0.42 16.3 1.50
3.7 0.50 18.4 1.60
49 0.61 21.0 1.70
7.3 0.82 24.4 1.80

8-19. Over a 100-mi? surface area, the average level of the water table
for an unconfined aquifer has dropped 10 ft because of the removal of 128,000
area-ft of water from the aquifer. Determine the storage coefficient for the
aquifer. The specific yield is 0.2 and the porosity is 0.22.

8-20. Over a 100-mi? surface area, the average level of the piezometric
surface for a confined aquifer in the Denver area has declined 400 ft as a
result of long-term pumping. Determine the amount of water (acre-ft) pumped
from the aquifer. The porosity is 0.3 and the coefficient of storage is 0.0002.
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