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interior angle of the enlargement walls. Note as 8 = 180 (the sudden
enlargement) Ky i5 approximately unity.

When water discharges into a reservoir from a pipe, the entire kinetic
energy per pound of fluid is dissipated within the resetvoir. Consequently
Ky for an exit equals 1.0. Exit head losses are therefore given by,

* ,\M\\mmsw Lw. /99
| Anatysis o Fip 1n Flpe Mofusds
n Artur Scione .

2

i e e,

Chapter IV
Incompressible Flow in Pipe Networks

Introduction

Analyses and design of pipe networks create a relatively complex
problems, particularly if the network consists of a large number of pipes
as frequently occurs in the water distribution systems of large
metropolitan areas, or natural gas pipe networks. Professional judgment
is involved in deciding which pipes should be included in a single analysis.
Obviously it is not practical to include all pipe which delivers to all
customers of a large city, even though they are connected to the total
delivery system. Often only those main trunk lines which carry the fluid
between separate sections of the area are included, and if necessary
analyses of the networks within these sections may be included. This
manual deals only with steady-state solutions. In a water distribution
system, the steady-state analysis is a small but vital component of
assessing the adequacy of a network. Such an analysis is needed each time
changing patterns of consumption or delivery are significant or add-on
features, such as supplying new subdivisions, addition of booster pumps,
or storage tanks change the system. In addition to steady analyses, studies
dealing with unsteady flows or transient problems, operation and control,
acquisition of supply, optimization of network performance against cost,
and social implications should be given consideration but are beyond the
scope of this text.

The steady-state problem is considered solved when the flow rate in
each pipe is determined under some specified patterns of supply and
consumption. The supply may be from reservoirs, storage tanks and/or
pumps or specified as inflow or outflow at some point in the network.
From the known flow rates the pressures or head losses threughout the
system can be computed. Alternatively, the solution may be initially for
the heads at each junction or node of the network and these can be used to
compute the flow rates in each pipe of the network.
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The oldest method for systematically solving the problem of steady
w in pipe networks is the Hardy Cross method. Not only is this method
ited for hand solutions, but it has been programmed widely for
mputer solutions, but particularly as computers allowed much larger
tworks to be analyzed it become apparent that convergence of the Hardy
'oss method might be very slow or even fail to provide a solution in some
ses. In the past few years the Newton-Raphson method has been utilized

solve large networks, and with improvements in algorithms based on
e Newton-Raphson method, computer storage requirements are not
eatly larger than those needed by the Hardy Cross method. An
|ditional method called the “linear theory method” has also been
oposed, and does not require an initialization as do the other two
ethods but more storage. The solution of a system of algebraic equations
ves the flow rates in each pipe or the head or pressures throughout the
stem described in this chapter. In the subsequent three chapters the
1plementation of the linear theory method, the Newton-Raphson method
1d the Hardy Cross method is discussed, in the reverse order of their
istorical development. _

Reducing Complexity of Pipe Networks

In general, pipe networks may include series pipes, parallel pipes,
id branching pipes (i.e. pipes that form the topology of a tree). In
Idition, elbows, valves, meters, and other devices which cause local
sturbances and minor losses may exist in pipes. All of the above should
» combined with or converted to an “equivalent pipe” in defining the
stwork to be analyzed. The concept of equivalence is useful in
mplifying networks. Methods for defining an equivalent pipe for each of
i¢ above mentioned occurrences follows.

sries pipes

The method for reducing two or more pipes of different size in series
ill be explained by reference to the diagram below. The same flow must
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pass through each pipe in umna. An equivalent pipe is a pipe which will
carry this flow rate and produce the same head loss as two or more pipes,
or

__no = M_s ........................ 4-1)
Expressing the individual head losses by the exponential formula gives,
K Q™ =KQ"+K,Q"? +..= 2K Q" .......... 42

For network analysis K¢ and ng are needed to define the equivalent pipe's
hydraulic properties. If the Hazen-Williams equation is used, all
exponents n = 1.852, and consequently

K, = N_ tKy+. = ZK ..ol 4-3)

or the coefficient K¢, for the equivalent pipe equals the sum of K’s of the
individual pipes in series. If the Darcy-Weisbach equation is used, the
exponents n in Eq. 4-2 will not necessarily be equal, but generally these
exponents are near enough equal that the ng for the equivalent pipe can be
taken as the average of these exponents and Eq. 4-3 used to compute K.

Parallel pipes

An equivalent pipe can also be used to replace two or more pipes in
parallel. The head loss in each pipe between junctions where parallel pipes
part and join again must be equal, or

b e I i I o . e 4-4)
EL .
he

= R

The total flow rate will equal the sum of the individual flow rates or

Q=0Q+Qte = ZQ crvrrrearrrnnnn @-5)

Solving the exponential formula hy = KQT for Q and substituting into
Eq. 4-5 gives ]
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1 1 i 1

Amlva g Awm..v___ R A_M_Wvu__m b= Am__mhvs ...... 4-6)

If the exponents are equal as will be the case in using the :»u.on.im_:wam
equation, the head loss hgmay be eliminated from Eq. 4-6 giving

1 1 1

Anl_vm. = ANF_V._M + Awwvﬂ =z Aw__wm ............ @7

When the Darcy-Weisbach equation is used for the analysis, it is common
practice to assume n is equal for all pipes and use Eq. 4-7 to compute the
K for the equivalent pipe.

Branching system

In a branching system a number of pipes are connected to the main ta
form the topology of a tree. Assuming that the flow is from the main into
the smaller laterals it is possible to calculate the flow rate in any pipe as
the sum of the downstream consumptions or demands. If the laterals
supply water to the main, as in & manifold, the same might be done. In
either case by proceeding from the outermost branches toward the main or
“root of the tree’ the flow rate can be calculated, and from the flow rate in
each pipe the head loss can be determined using the Darcy-Weisbach or
Hazen-Williams equation.” In analyzing a pipe network containing a
branching system, only the main is included with the total flow rate
specified by summing from the smaller pipes. Upon completing the
analysis the pressure head in the main will be known. By substracting
individual head losses from this known head, the heads (or pressures) at
any point throughout the branching system can be determined.

Minor losses

When a valve, meter, elbow, or other device exists in a pipe causing a
minor loss which is not insignificant in comparison to the frictional loss in
that pipe, an equivalent pipe should be formed for use in the network
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analyses. This equivalent pipe should have the same head loss for any flow
rate as the sum of the pipe frictional loss and the minor head loss. The
equivalent pipe is formed by adding a length AL to the actual pipe length
such that the frictional head loss in the added length of pipe equals the
minor losses. Computation of AL will be slightly different depending upon
whether the Darcy-Weisbach or Hazen-Williams equations are to be used.

Most minor losses are computed from the formula Eq. 3-1 hj = K,
(V2/2g) or a loss coefficient multiplied by the velocity head as described in
Chapter III. The Darcy-Weisbach equation hg = [f(L/D)](V3/2g) may
also be thought of as the product of a coefficient times the velocity head.
Consequently, if the Darcy-Weisbach equation is to be used in the
network analyses, the length AL can be found by equating these two

" coefficients with AL replacing L in the Darcy-Weisbach coefficient. After

solving for AL, the length to be added to the actual pipe length is,

Since f is generally a function of the flow rate, AL also depends upon
the flow rate. In practice it is generally adequate to compute AL, by using
the f values for wholly rough flow, or if knowledge of the approximate flow
rate is available the friction factor f corresponding to it may be used in Eq.
4-8. If several devices causing minor losses exist in a single pipe, then the
sum of the individual AL’s is added to the length of the actual pipe.

The coefficient K in the exponential formula for the equivalent pipe is
obtained by substituting L + ZAL for the length of the pipe in Eq. 2-28 or

_alL+3AL) @9
ﬂ ey Nmu>N ..................... )

when using the Ug.ﬂom.uesa_. equation for computing frictional losses.
When using the Hazen-Williams formula for this purpose the added pipe
length AL, due to the device causing the minor loss, can be computed from

ES AL = 0.00532 K, Q*!48 cL852 08703

SL AL = 0.00773 K, Q™48 owsau p0-8703

and the K in the exponential formula is

L+AL

B K =47 852 pawr (DandLinfeet
e

§I K =JdOTLAAD) ceeeeeeneennnn @11
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Example Problem in Finding Equivalent Pipes

1. A 12-inch (30.48 cm) cast iron pipe which is 100 ft (30.48 m) long is
attached in series to a 10-inch (25.4 cm) dia. iron pipe which is 300 ft
(91.44 m) long to carry a flow rate of 5.0 cfs (0.142 cm) of water at
68°F (20°C). Find the length of 10-inch (25.4 cm) pipe which is
equivalent to the series system. :

Solution: B

V,, = 5/0.785 = 6.37 fps
Vo = 5/0.545 = 9.17 fps
Re,, = 6.37(1)/1.084 x 10° = 590x 10°

Reyy = 9.17(0.833)/1.084 x 10° = 7.05x 10°
(¢/D);, = 0.0102/12 = 0.00085
(e/D),, = 0.0102/10 = 0.00102
from the Moody diagram
f,, = 00195, = 00192

he = he, *heyy

100 " (6.37)% 300 .17
he = 00195 5= “Zo— +0.0192 Gone 44

he = 1.234+9.02 = 1025 ft.
L = h.D(2g) /fV? = 340.7 ft.

st
V), = 0.142/0.0729 = 1.95 m/s
Vig = 0.142/0.0507 = 2.80 m/s
Re;, = 1.95(0.3048)/1.007 x 10° = 5.90x 10°
Re;o = 2.80(0.254)/1.007 x 10 = 7.05 x 10°
(¢/D); = 0.0259/30.48 = 0.00085

(e/D);p = 0.0259/25.4 = 0.00102

from the Moody diagram
_ 3048 (1.95)% . 91.44 (2.80)
hy = 00195 53048 1962 T2 0254 &2
he = 0.378 +2.762 = 3.14m

L = 3.14(0.254) (19.62)/(0.0192 x 2.80%) = 1039 m

INCOMPRESSIBLE FLOW IN PIPE NETWORKS 59

2. Using the Hazen-Willlams formula find the coefficient K, in the
- exponential formula and the diameter of an equivalent pipe to replace
two S00 ft parallel pipes of 8-inch and 6-inch diameters. Cyyw = 120

for both pipes, and make the equivalent pipe SO0 ft long.

Solution:
K = 473L 473 (500) _ 2.403
' nzem. 852 D987 = 7090(0.667)487 = &
7 e 4.73 (500) _ s
6 7090(0 .3&.3 9.754
From Egq. 4-7
1 o.ual 1 _\0-54 L_\o0.54
Nﬂv 5 .swv + A@.QMA = Q.Q—M
K, = L178 ft |
1.852 5
< n:i K, 7090 (1.178)
= 0.772 ft
= 9,26 inches

3. An 800 ft long 8-inch cast iron pipe contains an open globe valve.
Determine the length of the equivalent pipe if the flow rate is approxi-
mately 700 gpm.

Solution:

Using the procedure for determining f described in Chapter II, f =
0.0218. From Eq. 4-8

K,D _ 10(3/12)
AL === Soas - oeft

L, = L+AL = 1106 ft

Systems of Equations Descrilbing Steady
Flow In Pipe Networks

Flow rates as unknowns

The analysis of flow in networks of pipes is based on the continuity
and energy laws as described in Chapter I. To satisfy continuity, the mass,
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60 PIPE NETWORK ANALYSES

weight, or volumetric flow rate into a junction must equal the mass,
weight, or volumetric flow rate out of a junction. If the volumetric flow
rate is used this principle, as discussed in Chapter I, ¢an be expressed
mathematically as,

CQ)p - Q) =C rreerenn.. @-12)

in which C is the external flow at the junction (commonly called
consumption or demand). C is positive if flow is into the junction and
negative if it is out from the junction. For example if four pipes meet at a
junction as shown in the sketch, Eq. 4-12 at this junction is

()
_ o_ =15 cfs
2y = 6) Q. =18cfs
@ /wu =5 cofs
}
Q;=3chs | (5)

DG.O—-ON.OMH.M
18-15-5 .3 =25

If a pipe network contains J junctions (also called nodes) and all
external flows are known then J-1 independent continuity equations in the
form of Eq. 4-12 can be written. The last, or.the Jth continuity equation, is
not independent; that is, it can be obtained from some combination of the
first J-1 equations. Note in passing that each of these continuity equations
is linear, i.e., Q appears only to the first power.

In addition to the continuity equations which must be satisfied, the
energy principle provides equations which must be satisfied. These
additional equations are obtained by noting that if one adds the head
losses around a closed loop, taking into account whether the head loss is
positive or negative, that upon arriving at the beginning point the net head
losses equals zero. Mathematically, the energy principle gives L equations
of the form
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L
P T

in which L represents the number of non-overlapping loops (also referred
to as natural loops) in the network, and the summation on small ¢ is over
the pipes in the loops I, I, ..., L. By use of the exponential formula h¢ =
KQ™R, Egs. 4-13 can be written in terms of the flow rate, or

I ng
O

' "
;" -0

A pipe network consisting of J junctions and L non-overlapping loops
and N pipes will satisfy the equation

N=@-D+L ............... 4-15)

(If all of the external flows are not known, then all J junction equations are
independent and available for use as will be discussed in the next chapter.)
Since the flow rate in each pipe can be considered unknown, there will be
N unknowns. The number of independent equations which can be
obtained for a network as described above are (J-1) + L. Consequently the
number of independent equations is equal in number to the unknown flow
rates in the N pipes. The (J-1) continuity equations are linear and the L
energy (or head losses) equations are nonlinear. Since large networks may
consist of hundreds of pipes, systematic methods which utilize computers
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62 PIPENETWORK ANALYSES

are needed for solving this system of simultaneous equations. Such

methods are described in subsequent chapters.

As an example in defining the system of N equations which must be
satisfied in solving for the N unknown volumetric flow rates in the N pipes
of a network, consider the simple two loop network given below. In this

Y. .nl 4 ;. N &
i~ 2p 300 .._||'._.: cfs

)
(4] 12" 1500° 31

= 3,34 cfs

example there are five pipes and therefore five unknown flow rates. There
are four junctions and therefore three independent continuity equations
and two energy equations for the head losses around the two basic loops
can be written. On the sketch of this network the pipe numbers are
enclosed by parentheses, the junction or node numbers are within [}
brackets and the loops are denoted by Roman Numerals I and II. Arrow
heads denote assumed directions of flows in the pipes. Flow rates, etc.,
will be denoted by a subscript corresponding to the pipe number in which
that flow rate occurs. This same notation will be followed throughout the
remainder of the manual. Also considerations of space prevent
duplicating solutions in ES and SI units. '

The J-1 = 3 continuity equations at the three consecutive junctions 1,
2, and 3 are

O— + Ou = 445
-O— + ON + OA = .1.11
-OA - OM = -w.w&.

The continuity equation at junction 4 is -Q; - Q; + Qs = 0. However, this
equation is not independent of the above three equations since it can be
obtained as minus the sum of these three equations. The Hazen-Williams
equation will be used to define the head losses in each pipe. In expressing
these head-losses the exponential equation will be used. From Eq. 2-22 the
K coefficients for the exponential formula are: [K = 4.73L/ An_:..««_u...i"

N_ = 2.018,K, =5.722,K, = 19.674, K, = 4.847, K = 1.009

The energy loss equations around the two loops are:
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2018 Q% +5.722 Q12 . 19.674 Q}%2 =9

4847 Q1 %52 . 1.009 ow.an.. 57122Q1852 = g

These two energy equations are obtained by starting at junctions 1 and 2,
respectively, and moving around the respective foops I and II in a
clockwise direction. If the assumed direction of flow is opposite to this
clockwise movement a minus precedes the head loss for that pipe.
Simultaneous equations such as those above will be called Q-equations.

A solution to the five unknown flow rates from the five simultaneous
equations above, by the procedure described subsequently in- Chapter V
is: Q= 3.350 cfs, Q2 = 0.897 cfs, Q; = 1.104 cfs, Q; = 1.340 cfs, Q; =
2.001 cfs. This solution can be verified by substituting into each of the
above equations. It is relatively easy to determine flows in individual pipes
which also satisfy the J-1 continuity equations. However, the correct flow
rates which simultaneously satisfy the L energy equations are virtually
impossible to obtain by trial and error if the system is large.

After solving the system of equations for the flow rate in each pipe,
the head losses in each pipe can be determined. From a known head or
pressure at one junction it is then a routine computation to determine the
heads and pressures at each junction throughout the network, or at any
point along a pipe, by substracting the head loss from the head at the
upstream junction, plus accounting for differences in elevations if this be
the case. In some problems the external flows may not be known as was
assumed in the above example. Rather, the supply of water may be from
reservoirs and/or pumps. The amount of flow from these individual
sources will not only depend upon the demands, but also will depend upon
the head losses throughout the system. Methods for incorporating pumps
and reservoirs into a network analysis in which the flow rates in the
individual pipes of the network are initially considered the unknowns will
be dealt with in Chaper V in conjunction with the linear theory method of

solution.
Example Problem in Writing Flow Rate Equations
1. Write the system of equations whose solution provides the flow rates
in the six pipes of the network shown below. The energy equations are
to be based on the Darcy-Weisbach equation.

100 [i1] 4" - 150 121 4"- 100 50 gpm
gpm (1) (sl
.1 1@
8 _ 8
. = All cast iron pipe with
- 5 ¢=.0102 in.
(3)
- *= 25 gpm \u\ﬁ
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Solution:

Before the energy equations can be defined it is necessary that K and
n for each pipe be determined for the range of flow rates expected in that
pipe by the procedures described in Chapter II. This might be
accomplished by a computer program which determines f for the specified
flow rate plus an incremental flow rate and f for the specified flow rate
minus an incremental flow rate, and from these f’s and Q’s compute a and
b in Eq. 2-26 and thereafter K and n for the exponential formula. In
solving a pipe network problem a computer algorithm for doing this might
be called upon whenever the flow rates being used in the solution are
outside the range for which K and n are applicable. A listing of a
FORTRAN program for accomplishing these computations follows along
with the input data required for this problem. Values for K and n for each
pipe is given below the listing.

100 FORMAT(8F10.5)

ELOG=9.35*AL0G10(2.71828183)

20 READ(S,100,END=99) Q,D,FL.E,DQP.VIS
DEQ=Q*DQP
ED=E/D
D=D/12.
A=.78539392*D**2
Q1=Q-DEQ
Q2=Q+DEQ
Vi=Q1/A
V2=Q2/A
RE1=V1*D/VIS
RE2=V2*D/VIS
ARL=FL/(64.4*D*A**2)
F=1./(1.14-2,*ALOG10(ED))**2
RE=REl
MM=0

57 MCT=0

52 FS=SQRT(F)
F2=5/(F*FS)
ARG=ED+9.35/(RE*FS)
FF=1./FS§-1.14+2.*ALOG10(ARG)
DF=FZ+ELOG*FZ/(ARG*RE)
DIF=FF/DF
F=F+DIF
MCT=MCT+1
IF(ABS(DIF) .GT. .00001 .AND. MCT .LT. 15) GO TO 52
IF(MM .EQ. 1) GO TO 55
MM=1
RE=RE2
F1=F
GO TO 57

55 F2=F :
BE=(ALOG(F1)-ALOG(F2))/(ALOG(Q2)-ALOG(Q1))
AE=F1*(Q-DEQ)**BE
EP=2.-BE
CK=AE*ARL
WRITE(6,101) Q,D,BE,AE EP,CK
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101 FORMAT(IH ,5F12.5,E16.6)
GO TO 20
99 STOP
END

Input data for above problem.

AQ
Q D L e ratio v

0.12 4, 150. 0.0102 0.1 0.00001217
0.10 3. 100. 00102 0.1 0.00001217
0.05 3. 150. 00102 0.1 0.00001217
0.05 3. 100. 00102 0.1 0.00001217
0.1 4. 100. 00102 0.1 0.00001217
0.05 3. 141, 0.0102 0.1 0.00001217
Pipe

No. 1 2 3 4 5 6

Q(cfs) | 0.12 0.10 0.05 0.05 0.10 0.05
K 21.0 63.9 85.2 56.8 13.6 80.1
n 1.90 1.92 1.88 1.88 1.89 1.88

The equations which will provide a solution are:

Q, +Q, = 0.223
"Q +QutQ; =0
.Ou.. O& +Oa =.0.056
-Q,+Q,  =-0.056
1. 1.8 g B
21.0Q; 2 +56.8Q,4 o 85.2 O“ 88 63.9 Om o 0

1360, . 80.105% -5680)% = 0

Heads at Junctions as Unknowns

If the head (either the total head or the piezometric head, since the
velocity head is generally ignored in determining heads or pressure in pipe
networks) at each junction is initially considered unknown instead of the
flow rate in each pipe, the number of simultaneous equations which must
be solved can be reduced in number. The reduction in number of
equations, however, is at the expense of not having some linear equations

in the system. )5
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To obtain the system of equations which contain the heads at the
junctions of the network as unknowns, the J-1 independent continuity
equations are written as before. Thereafter the relationship between the
flow rate and head loss is substituted into the continuity equations. In
writing these equations it is convenient to use a double subscript for the

- flow rates. These subscripts correspond to the junctions at the ends of the
pipe. The first subscript is the junction number from which the flow comes
and the second is the junction number to which the flow is going. Thus Q,;
represents the flow in the pipe connecting junctions 1 and 2 assuming the
flow is from junction 1 to junction 2. If the flow is actually in this direction
Qqz is positive and Qi equals minus Q. Solving for Q from the
exponential formula (using the double subscript notation) gives

H, - B\
Q = (hy, Ko = Alrﬁls.v ......... @4-16)

If Eq. 4-16 is substituted into the junction continuity equations (Eq. 4-12),
‘the following equation results:

] o] - e

Upon writing an equation of the form of Eq. 4-17 at J-1 junctions, a
system of J-1 nonlinear equations is produced.

As an illustration of this system of equations with the heads at the
junctions as the unknowns, consider the simple one loop network below
which consists of three junctions and three pipes. In this network two
independent continuity equations are available and consequently the head
at one of the junctions must he known. In this case at [1}. The two
continuity equations are: ‘

-

Q2 +Q3=C; =C, + G4 = C
Q, +Qy3'%-C;, -(01,-Qqy +Qy3 =-C,y)
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Note that even though in the second equation the flow in pipe 1-2 is toward
the junction, the flow rate Q; is not preceded by a minus sign since the
notation 2-1 takes care of this. Alternatively the equations could have been
written at junctions 2 and 3 instead of 1 and 2. Substituting Eq. 4-16 into
these continuity equations gives the following two equations to solve for
the heads, Hy and Hy (H, is known and the subscripts of the H's denote the
junction numbers):

. _\...—N —\-_—u
P (e
12 M3

1/n 1/
-An_.muv _~+A=~. =uv _.:n.
K12 K @

Since a negative number cannot be raised to a power a minus sign must
precede any term in which the subscript notation is opposite to the
direction of flow, i.e. the second form of equation as given in parentheses
is used. Systems of these equations will be referred to as H-equations.

Upon solving this nonlinear system of equations, the pressure at any
junction j can be computed by substracting the junction elevation from the
head hjand then multiplying this difference by y the specific weight of the
fluid. To determine the flow rates in the pipes of the network, the now
known heads are substituted into Eq. 4-16.

=G tG

Corrective flow rates around loops of
network considered unknowns

Since the number of junctions minus 1 (i.e. J-1) will be less in number
than the number of pipes in a network by the number of loops L in the
network, the last set of H-equations will generally be less in number than
the system of Q-equations. This reduction in number of equations is not
necessarily an advantage since all of the equations are nonlinear, whereas
in the system of Q-equations only the L energy equations were nonlinear.
A system which generally consists of even fewer equations can be written
for solving a pipe network, however. These equations consider a corrective
flow rate in each loop as the unknowns. This latter system will be referred
to as the AQ-equations. Since there are L basic loops in a network the
AQ-equations consist of L equations, all of which are nonlinear.

It is not difficult to establish an initial flow in each pipe which
satisfies the J-1 junction continuity equation (which must also satisfy the
yth junction continuity equation). These initial flow estimates generally
will not simultaneously satisfy the L head loss equations. Therefore they
must be corrected before they equal the true flow rates in the pipes. A flow
rate adjustment can be added (accounting for sign) to the initially
assumed flow in each pipe forming a loop of the network without violating

- continuity at the junctions. This fact suggests establishing L energy (or
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head loss) equations around the L loops of the network in which the initial
flow plus the corrective loop flow rate AQ is used as the true flow rate in
the head loss equations. Upon satisfying these head loss equations by
finding the appropriate corrective loop flow rates, the J-1 continuity
equations would remain satisfied as they initially were. The corrective loop
flow rates AQ; may be taken positive in the clockwise or counterclockwise
direction around the basic loops, but the sign convention must be
consistent around any particular loop, and preferably in the same
direction of all loops of the network. Clockwise directions will be
considered positive in this book.

In order to develop the mathematics of this possible system of
AQ-equations, the initially assumed flows, which satisfy the junction
continuity equations, will contain an o subscript as well as an i to denote
the pipe number. Thus Q;, i = 1,2 ... N represents the initially assumed
flow rates in the N pipes. The corrective loop flow rates will be denoted by
AQ¢. Thus AQg, £ = 1,2.... L are corrective flow rates around the L loops
of the system which must be added to Q,, for a given pipe to get the actual
flow rate in that pipe. Using this notatin the L energy equations around
the basic loops can be written as,

I i _
z K Aoo_ +AQ _ve =0 (head loss around loop I)
i

I -
wu Nm Aoo, +>o~v=_ =0 (head loss around loop II)

L -
m K (Q, +>o_.v5 =0 (head loss around loop L)
i

in which each summation includes only those pipes in the loop designated
by the Roman numeral I, II, ... L, and AQy always includes AQ ¢ and also
any other AQ’s flowing through the pipe for which the term applies.

35¢s n=1929 (@ n=1917 33cfs

K=1.793 (k=055 Wu

AQy @ AQ
fed ) o~
AN j &5
nin wnin wlu
E e M 1

® n=tom n=1818 (1)

K=4.108 K=1.628
© Vsefs

E® .

=1.1cfs

BV AIVAR BMWDJALLL CLAJYY UV CIFC NG I VWWURRND oYy

The system of equations, Eq. 4-18, will be set up for the two-loop
network shown below. Values for K and n in the exponential formula for
the expected flow rates are given by each pipe in the network. The two
corrective loop flow rates AQ, and AQ, are taken as positive in the
clockwise direction. The first step is to provide initial estimates of the flow
rate in each pipe which satisfy the junction continuity equations. The
estimates are: Qg = 1.75 cfs, Qg2 = 3.55 cfs, Qg3 = 1.05 cfs, Qgq = 1.75
cfs, Qos = 1.8 cfs, Qo = 1.5 cfs, Qg7 = 0.4 cfs in the directions shown by
the arrows on the sketch. The head loss equations around the two loops
are:

—u— = 1.793 (1.75 +B—v_.o~w +0.497 (3.55 ...DO_ ) DO%—.oua

- 4108 (1.05 - AQ )1921 - 2.717(1.75-AQ )1945 = o

F, =.-0.755 (1.8- AQ,)1 917 +2.722 (1.5 + >o~V_.§
+1.628 (0.4 + DONv_.Sa.. 0.497 (3.55 - AQ, + 4Q,)!9% = 0

Upon obtaining the solution to these two equations for the two
unknowns AQ, and AQ,, the flow rates in each pipe can easily be
determined by adding these corrective loop flow rates to the initially
assumed flow rates.From these flow rates the head losses in each pipe are
determined. .

The nonlinearities in this system of equations, as well as the previous
two systems discussed, make solution difficult. In the next three chapters
methods for obtaining solutions are discussed. The Newton method and
the Hardy Cross method (which is the Newton method applied to one
equation at a time) are well adapted for the corrective loop flow rate
equations, and also the junction head equations. These methods are
described respectively in Chapters VI and VII. The Q-equations or the
equations which consider the flow in each pipe unknown, can be solved by
the linear theory method as discussed in the next chapter, Chapter V. This
flow rate system of equations can be solved by the Newton method also. In
fact the linear theory method is a variation of the Newton method.
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