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forces is given by
dw,

:/pv-ndA (2.49)
dt A

where W), is the work done against external pressure forces. The work done by a fluid
in the control volume is typically separated into work done against external pressure
forces, W), plus work done against rotating surfaces, W, commonly referred to as the
shaft work. The rotating element is called a rotor in a gas or steam turbine, an impeller
in a pump, and a runner in a hydraulic turbine. The rate at which work is done by a
fluid system, dW/dr, can therefore be written as

W, .
aw _ Wy W, :/pv‘ndA LA (2.50)
dt dt dt A dt
Combining Equation 2.50 with the steady-state energy equation (Equation 2.47)
leads to
dQp _ AW, :fp<£’ + e)v-ndA (251)
dt dt A \p

Substituting the definition of the internal energy, e, given by Equation 2.48 into
Equation 2.51 yields

2
C_igﬁ — f{% :/p h + gz + v v-ndA (2.52)
dr dt A 2

where h is the enthalpy of the fluid defined by

h="E + 4 (2.53)
P

Denoting the rate at which heat is being added to the fluid system by Q and the rate
at which work is being done against moving impervious boundaries (shaft work) by
W,, the energy equation can be written in the form

. . 2
Q—WY:/p(h-ngﬂL Y lv-nda (2.54)
A\ 2
Considering the terms i + gz, where
h+gzz£+u+gz=g<g+z)+u (2.55)
p Y

and v is the specific weight of the fluid, Equation 2.55 indicates that & + gz can be
assumed to be constant across the inflow and outflow openings illustrated in Figure 2.4,
since a hydrostatic pressure distribution across the inflow/outflow boundaries guaran-
tees that p/y + z is constant across the inflow/outflow boundaries normal to the flow
direction, and the internal energy, u, depends only on the temperature, which can be
assumed constant across each boundary. Since v - nis equal to zero over the impervious
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boundaries in contact with the fluid system, Equation 2.54 can be integrated

. . 2
Q ~ Wy =(h + gzl)/ pv-ndA + / va-ndA + (hy + gzz)/
Ay A 2 Ay

1

V2
+ [ p—v-ndA
Ay 2

g

)3
—(hy + gz1) | pvidA — / p-LdA + (b + gZz)/ pv2
A A 2 Ay

3
+ / p}—)g dA
A, 2

where the subscripts 1 and 2 refer to the inflow and outflow boundaries, resp
and the negative signs result from the fact that the unit normal points ot
control volume, causing v-n to be negative on the inflow boundary and po
the outflow boundary.

Equation 2.56 can be simplified by noting that the assumption of ste:
requires that rate of mass inflow to the control volume is equal to the mass
rate and, denoting the mass flow rate by m, the continuity equation requires t

rﬁ:/ pvldAZ/ pva dA
Ay Az

Furthermore, the constants «; and a, can be defined by the equations

3 V3
f podA = ajp—LA,
Ay 2

2

V3 V§

— dA = app—= A,
/AJ’Q 2022

where Ay and Aj are the areas of the inflow and outflow boundaries, respe
and V; and V; are the corresponding mean velocities across these boundari
constants «; and a; are determined by the velocity profile across the flow bou
and these constants are called kineric energy correction factors. If the vel
constant across a flow boundary, then it is clear from Equation 2.58 that the
energy correction factor for that boundary is equal to unity; for any other -
distribution, the kinetic energy factor is greater than unity. Combining Equatic
to 2.59 leads to

) ) . V3 : V3
Q - Wy=—(h + gz;)m — alP—zl-Al + (h2 + gzo)m + azp“;‘*Az

Invoking the continuity equation requires that

pViAy = pVoAr = m
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and combining Equations 2.60 and 2.61 leads to
: . . V3 Vi
Q- Wy=m||hy + gzn + ag—zl — | hy + gz + alal (2.62)
which can be put in the form
. . ) 2
Q—ﬁ:(ﬁz+&+zz+a2§%)—(’ﬂ+ Moo +a1§i) (2.63)
g

mg mg Y g Y 8 g

and can be further rearranged into the useful form

1%, V2 g V.

Pl o2t g ) =22 4 a2 4oz + Ly =) = £+ [ W

Y 2g Y 2g 8 mg mg
(2.64)

Two key terms can be identified in Equation 2.64; the (shaft) work done by the
fluid per unit weight, k¢, defined by the relation

hy = =2 (2.65)
and the energy loss per unit weight, commonly called the head loss, ;. , defined by the

relation

ho= Yy - w) - £ (2.66)
g mg

Combining Equations 2.64 to 2.66 leads to the most common form of the steady-state
energy equation

VZ V3
PUp 2l 4 7= % ap-2 + 25| + hi + b (2.67)
Y 2 Y 2

where a positive head loss indicates an increase in internal energy (manifested by
an increase in temperature) and/or a loss of heat, and a positive value of A is
associated with work being done by the fluid, such as in moving a turbine runner.
Many practitioners incorrectly refer to Equation 2.67 as the Bernoulli equation, which
bears some resemblance to Equation 2.67 but is different in several important respects.
Fundamental differences between the energy equation and the Bernoulli equation
are that the Bernoulli equation is derived from the momentum equation, which is
independent of the energy equation, and the Bernoulli equation does not account for
fluid friction.

Energy and hydraulic grade lines. The total head, h, of a fluid at any cross section of
a pipe is defined by

2

v

a +z (2.68)
28

h="E2 +
Y
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/ éﬁ'lGURE 2.5: Head loss along
pipe

where p is the pressure in the fluid at the centroid of the cross section, y is th
weight of the fluid, « is the kinetic energy correction factor, V is the averag
across the pipe cross section, and z is the elevation of the centroid of the I
section. The total head measures the average energy per unit weight of
flowing across a pipe cross section. The energy equation, Equation 2.67, si
changes in the total head along the pipe are described by

h(x + Ax) = h(x) — (hy + hy)

where x is the coordinate measured along the pipe centerline, Ax is the
between two cross sections in the pipe, Ay, is the head loss, and #, is the st
done by the fluid over the distance Ax. The practical application of Equa
is illustrated in Figure 2.5, where the head loss, 4, between two sections a
Ax apart is indicated. At each cross section, the total energy, h, is plotted re
a defined datum, and the locus of these points is called the energy grade .
energy grade line at each pipe cross section is located a distance p/y +
vertically above the centroid of the cross section, and between any two cross
the elevation of the energy grade line falls by a vertical distance equal to the |
caused by pipe friction, Ay, plus the shaft work, k,, done by the fluid. The /
grade line measures the hydraulic head p/y + z ateach pipe cross section. It i
a distance p/y above the pipe centerline and indicates the elevation to which
would rise in an open tube connected to the wall of the pipe section. The |
grade line is therefore located a distance aV?/2g below the energy grade line
water-supply applications the velocity heads are negligible and the hydrau.
line closely approximates the energy grade line.

ay 5‘— v Energy grade line (EGL)
\’l g ap 5_@
= g

Hydrautic grade line (HGL)

Datum
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Both the hydraulic grade line and the energy grade line are useful in visualizing
the state of the fluid as it flows along the pipe and are frequently used in assessing
the performance of fluid-delivery systems. Most fluid-delivery systems, for example,
require that the fluid pressure remain positive, in which case the hydraulic grade line
must remain above the pipe. In circumstances where additional energy is required to
maintain acceptable pressures in pipelines, a pump is installed along the pipeline to
elevate the energy grade line by an amount 4, which also elevates the hydraulic grade
line by the same amount. This condition is illustrated in Figure 2.6. In cases where the
pipeline upstream and downstream of the pump are of the same diameter, the velocity
heads aV?/2g both upstream and downstream of the pump are the same, and the
head added by the pump, k,, goes entirely to increase the pressure head, p/vy, of the
fluid. It should also be clear from Figure 2.5 that the pressure head in a pipeline can
be increased by simply increasing the pipeline diameter, which reduces the velocity
head, aV?/2g, and thereby increases the pressure head, p/y, to maintain the same
approximately total energy at the pipe section. Expansion losses will cause a reduction
in total energy.

Velocity profile. The momentum and energy correction factors, a and 3, depend on
the cross-sectional velocity distribution. The velocity profile in both smooth and rough
pipes of circular cross section can be estimated by the semi-empirical equation

1 (2.70)

W(r) = {(1 + 1.326(f) — 2.04/Flog (;{i—)

Energy grade line (EGL)

Hydraulic grade line (HGL)

Datum
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where v(r) is the velocity at a radial distance r from the centerline of the pipe
radius of the pipe, f is the friction factor, and V is the average velocity across

The velocity distribution given by Equation 2.70 agrees well with veloc
surements in both smooth and rough pipes. This equation, however, is not ag
within the small region close to the centerline of the pipe and is also not af
in the small region close to the pipe boundary. This is apparent since at th
the pipe dv/dr must be equal to zero, but Equation 2.70 does not have a zero
r = 0. At the pipe boundary v must also be equal to zero, but Equation 2.7t
velocity of zero at a small distance from the wall, with a velocity of ~coatr =
energy and momentum correction factors, a and B, derived from the velocit
are (Moody, 1950)

a=1+27f
B=1+ 0.98f

Another commonly used equation to describe the velocity distribution i
lent pipe flow is the empirical power law equation given by

1
v(ry = Vy (l - é)n

where V) is the centerline velocity and # is a function of the Reynolds numl
Values of n typically range between 6 and 10 and can be approximated by (I
McDonald, 1992; Schlichting, 1979)

n=183logRe — 1.86

The power law is not applicable within 0.04R of the wall, since the power la
an infinite velocity gradient at the wall. Although the profile fits the data clos
centerline of the pipe, it does not give zero slope at the centerline. The kinetic
coefficient, &, derived from the power law equation is given by

_ (1 + A + 20
4n*(3 + n)(3 + 2n)

For n between 6 and 10, « varies from 1.08 to 1.03. In most engineering applic
a and B are taken as unity (see Problem 2.14).

Head losses in transitions and fittings. The head losses in straight pipes of c
diameter are caused by friction between the moving fluid and the pipe bound:
are estimated using the Darcy—Weisbach equation. Flow through pipe fittings,

bends, and through changes in pipeline geometry causes additional head los;
that are quantified by an equation of the form

2
m=2x%

where K is a loss coefficient that is specific to each fitting and transition, an
the average velocity at a defined location within the transition or fitting. Tl
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Description ‘ Sketch ‘ Additional Data
rd K
Pipe entrance
0.0 0.50
0.1 012
»0.2 0.03
D,/Dy K K
Contraction = 60° # = 180°
0.0 0.08 0.50
020 0.08 0.49
0.40 0.07 0.42
0.60 0.06 0.27
0.80 0.08 0.20
0.90 0.06 0.10
D, /D, K K
Expansion » 8= 20° = 180"
0.0 1.00
— D
Y o e = 0.20 030 087
v_ 0.40 0.25 0.70
0.60 0.15 041
0.80 0.10 0.15
- Vanes Without
—_— N K=1.
90° miter bend 3 vanes !
With
" vanes K=02
o rd K
90° smooth bend 4= 90°
. 1 036
2 0.18
4 0.18
| :
K
Threaded Giobe valve — wide open 100
pipe fittings Angle valve — wide open 50
Gate valve - wide open 0.2
Gate valve — half open 58
Return bend 2.2
Tee
straight-through flow 04
side-outlet flow 18
90° elbow 09
45° elbow 0.4

coefficients for several fittings and transitions are shown in Figure 2.7. Head losses
in transitions and fittings are also called local head losses or minor head losses. The
latter term should be avoided, however, since in some cases these head losses are a
significant portion of the total head loss in a pipe. Detailed descriptions of local head
losses in various valve geometries can be found in Mott (1994), and additional data on
local head losses in pipeline systems can be found in Brater and colleagues (1996).

EXAMPLE 2.6

A pump is to be selected that will pump water from a well into a storage reservoir.
In order to fill the reservoir in a timely manner, the pump is required to deliver 5 L/s
when the water level in the reservoir is 5 m above the water level in the well. Find
the head that must be added by the pump. The pipeline system is shown in Figure 2.8.
Assume that the local loss coefficient for each of the bends is equal to 0.25 and that
the temperature of the water is 20°C.
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7 » FIGURE 2.8: Pipeline system
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i 1100 mm PVC (pump to reservoiry )
1 50 mm PVC (well to pump)
Well

:

Solution Taking the elevation of the water surface in the well to be equal to
proceeding from the well to the storage reservoir (where the head is equal
the energy equation (Equation 2.67) can be written as

V2 V2 V2 5L, V3 v:i v
0 - 1 hbibi ~1<1-i+hp—f‘L2-i ~ (Ky + Ky)—2 — =
2 D, 2g 2g Dy 2g 26 2

where V; and V, are the velocities in the 50-mm (=Dy) and 100-mm (=D;
respectively; L} and L, are the corresponding pipe lengths; f) and f> are th
sponding friction factors; Ky, K>, and K3 are the loss coefficients for each of t]
bends; and £, is the head added by the pump. The cross-sectional areas of eac
pipes, A} and A, are given by

A, = ZL D? = }(0.05)2 = 0.001963 m?

A ng = 3(0.10)2 = 0.007854 m?

Il

When the flowrate, Q, is 5 L/s, the velocities Vi and V> are given by

vi=L o 0005 o
A 0001963

vy= Lo D005 g0
A 0.007854

PVC pipe is considered smooth (k; ~ 0) and therefore the friction factor, f,
estimated using the Jain equation

0.25

f=—
| 5.74
010 ‘R“gm
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where Re is the Reynolds number. At 20°C, the kinematic viscosity, v, is equal to
1.00 % 1075 m?/s and for the 50-mm pipe

Re, = V1D1 _ @5NO05) oy 05

v 1.00 X 10-9

which leads to

£ = 0.25 5 = 0.0170

o 5.74
810 127 % 105)09

and for the 100-mm pipe

Re, = VoD, _ (0.637)(0.10) _ 637 % 10°
v 1.00 x 10~
which leads to
= 025 = 0.0197
{logm S L
(6.37 X 104)09

Substituting the values of these parameters into the energy equation yields
2
0 [] L (0.0170)8) 0'25} 258
0.05 (2)(9.81)

B {(0.0197)(22) 0.637°

+ 025 + 025 + 1} AN
0.10 (2)(9.81)

which leads to
hp, = 6.43m

Therefore the head to be added by the pump is 6.43 m.

Local losses are frequently neglected in the analysis of pipeline systems. As a
general rule, neglecting local losses is justified when, on average, there is a length of
1000 diameters between each local loss (Streeter et al., 1998).

Head losses in noncircular conduits. Most pipelines are of circular cross section, but
flow of water in noncircular conduits is commonly encountered. The hydraulic radius,
R, of a conduit of any shape is defined by the relation

rR=4 2.77)

P

where A is the cross-sectional area of the conduit and P is the wetted perimeter. For
circular conduits of diameter D, the hydraulic radius is given by

2
mD/4_D (2.78)
7D 4

R:

or
D = 4R (2.79)
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Using the hydraulic radius, R, as the length scale of a closed conduit in
D, the frictional head losses, hf, in noncircular conduits can be estimated
Darcy-Weisbach equation for circular conduits by simply replacing D by 4,
yields

where the friction factor, f, is calculated using a Reynolds number, Re, define

o = PYUR)
N

R

and a relative roughness defined by k,/4R.

Characterizing a noncircular conduit by the hydraulic radius, R, is ne«
approximate, since conduits of arbitrary cross section cannot be describec
single parameter. Secondary currents that are generated across a noncircular
cross section to redistribute the shears are another reason why noncircular «
cannot be completely characterized by the hydraulic radius (Liggett, 1994). H
using the hydraulic radius as a basis for calculating frictional head losses in nor
conduits is usually accurate to within 15% for turbulent flow (Munson et al
White, 1994). This approximation is much less accurate for laminar flows
the accuracy is on the order of +40% (White, 1994). Characterization of non
conduits by the hydraulic radius can be used for rectangular conduits where t
of sides, called the aspect ratio, does not exceed about 8:1 (Olson and Wrigh
although some references state that aspect ratios must be less than 4:1 (Por
Wiggert, 2001).

EXAMPLE 2.7

Water flows through a rectangular concrete culvert of width 2 m and depth I r
length of the culvert is 10 m and the flowrate is 6 m*/s, estimate the head loss -
the culvert. Assume that the culvert flows full.

Solution The head loss can be calculated using Equation 2.80. The hydraulic
R, is given by
2
R:f‘,:l:)‘(._l')“:()‘ggm

P22+ 1D
and the mean velocity, V, is given by
=92 --6~— = 3 m/s
A @)

At20°C, v = 1.00 x 107° m?%/s, and therefore the Reynolds number, Re, is gi
_ V(4R) _ (3)(4 X 0.333)
v 1.00 x 10-¢

A median equivalent sand roughness for concrete can be taken as k, =
(Table 2.1), and therefore the relative roughness, k;/4R, is given by

Re = 4.00 X 10°

-3
ke L L6 X107 o190

4R 4(0.333)
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Substituting Re and k;/4R into the Jain equation (Equation 2.39) for the friction
factor gives

0.25

2
0.00120 5.74
lo + :
&\ 737 {4.00x 10609

which yields
f = 0.0206

The frictional head loss in the culvert, Ay, is therefore given by the Darcy—-Weisbach
equation as
_ fLV? _(0.0206)(10) 32
4R 2g (4 x 0.333) 2(9.81)

= 0.0709 m

The head loss in the culvert can therefore be estimated as 7.1 cm.

Empirical friction-loss formulae. Friction losses in pipelines should generally be
calculated using the Darcy—Weisbach equation. However, a minor inconvenience in
using this equation to relate the friction loss to the flow velocity results from the
dependence of the friction factor on the flow velocity; therefore, the Darcy-Weisbach
equation must be solved simultaneously with the Colebrook equation. In modern
engineering practice, computer hardware and software make this a very minor
inconvenience. In earlier years, however, this was considered a real problem, and
various empirical head-loss formulae were developed to relate the head loss directly
to the flow velocity. Those most commonly used are the Hazen— Williams formula and
the Manning formula.

The Hazen-Williams formula (Williams and Hazen, 1920} is applicable only to
the flow of water in pipes and is given by

V = 0.849C R 505 (2.82)

where V is the flow velocity (in m/s), Cy is the Hazen—Williams roughness coefficient,
R is the hydraulic radius (in m), and Sy is the slope of the energy grade line, defined by

hy
Sy =L 2.83
(s (2.83)

where hy is the head loss due to friction over a length L of pipe. Values of Cp for a
variety of commonly used pipe materials are given in Table 2.2. Solving Equations 2.82
and 2.83 yields the following expression for the frictional head loss:

I3 v 1.85
hy = 682 (EE) (2.84)
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TABLE 2.2: Pipe Roughness Coefficients

Cy n

Pipe material Range  Typical Range Ty
Ductile and cast iron:

New, unlined 120-140 130 — 0.

Old, unlined 40-100 80 — 0.

Cement lined and seal coated  100—140 120 0.011-0.015 0.
Steel:

Welded and seamless 80-150 120 — 0.

Riveted — 110 0.012-0.018 0.1

Mortar lining 120-145 130 — -
Asbestos cement 140 — 0.0
Concrete 100140 120 0.011-0.015 0.
Vitrified clay pipe (VCP) — 110 0.012-0.014 -
Polyvinyl chloride (PVC) 135-150 140 0.007-0.011 0.
Corrugated metal pipe (CMP) — — — 0.

Sources: Velon and Johnson (1993); Wurbs and James (2002).

where D is the diameter of the pipe. The Hazen-Williams equation is af
to the flow of water at 16°C in pipes with diameters between 50 mm and 1.
and flow velocities less than 3 m/s (Mott, 1994). Outside of these conditi:
of the Hazen—-Williams equation is strongly discouraged. To further suppc
quantitative limitations, Street and colleagues (1996) and Liou (1998) hav
that the Hazen-Williams coefficient has a strong Reynolds number depende;
is mostly applicable where the pipe is relatively smooth and in the early
its transition to rough flow. Furthermore, Jain and colleagues (1978) have
that an error of up to 39% can be expected in the evaluation of the vels
the Hazen-Williams formula over a wide range of diameters and slopes. In
these cautionary notes, the Hazen—Williams formula is frequently used in the
States for the design of large water-supply pipes without regard to its limited
applicability, a practice that can have very detrimental effects on pipe design ar
potentially lead to litigation (Bombardelli and Garcia, 2003). In some cases, er
have calculated correction factors for the Hazen-Williams roughness coeffi
account for these errors (Valiantzas, 2005).

A second empirical formula that is sometimes used to describe flow in
the Manning formula, which is given by

z
3

V=2=-R

S|
-

where V, R, and S have the same meaning and units as in the Hazen-¥
formula, and # is the Manning roughness coefficient. Values of n for a va
commonly used pipe materials are given in Table 2.2. Solving Equations 2.85 a
yields the following expression for the frictional head loss:

n2Ly?
4

D3

hf = 6.35
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The Manning formula applies only to rough turbulent flows, where the frictional head
losses are controlled by the relative roughness. Such conditions are delineated by
Equation 2.37.

EXAMPLE 2.8

Water flows at a velocity of 1 m/s in a 150-mm diameter new ductile iron pipe. Estimate
the head loss over 500 m using: (a) the Hazen—Williams formula, (b) the Manning
formula, and (c) the Darcy~Weisbach equation. Compare your results and assess the
validity of each head-loss equation.

Solution

(a) The Hazen—-Williams roughness coefficient, Cyy, can be taken as 130 (Table 2.2),
L =500m,D = 0.150m, V = 1 m/s, and therefore the head loss, hy,is given by
Equation 2.84 as

L (v\® 500 1\
hp=682— ) =682--2" (--) =385m
A (0.15)117 \ 130

(b) The Manning roughness coefficient, n, can be taken as 0.013 (approximation
from Table 2.2), and therefore the head loss, hy, is given by Equation 2.86 as

2 2 2 2
PLV? ¢ 35 (0013) (50?)(1,) i
D3 (0.15)3

hy = 6.35 73m

(c) The equivalent sand roughness, kg, can be taken as 0.26 mm (Table 2.1), and the
Reynolds number, Re, is given by

_ VD _ (1)(0.15)

where v = 1.00 X 107% m?%/s at 20°C. Substituting ks, D, and Re into the
Colebrook equation yields the friction factor, f, where

1 k 251 0.26 2.51
—2log | —- + = —2lo +
Jf & 37D Re(f & 3.7(150) 1.5 X 10°Jf

which yields
f=0.0238

The head loss, Ay, is therefore given by the Darcy-Weisbach equation as

500 17
0.152(9.81)

=4.04m

2
e =rEY2 00238
’ D 2g

It is reasonable to assume that the Darcy— Weisbach equation yields the most accurate
estimate of the head loss. In this case, the Hazen—Williams formula gives a head loss
5% less than the Darcy—Weisbach equation, and the Manning formula yields a head
loss 67% higher than the Darcy—Weisbach equation.
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FIGURE 2.9: Typical pipe
network

From the given data, Re = 1.5 X 10°, D/k; = 150/0.26 = 577, and Equat
gives the limit of rough turbulent flow as

1 Re LS x 1

J200(D/ky)  200(577)

f = 0591

Since the actual friction factor (=0.0238) is much less than the minimum frictio
for rough turbulent flow (=0.591), the flow is not in the rough turbulent reg;
the Manning equation is not valid. Since the pipe diameter (=150 mm) is t
50 mm and 1850 mm, and the velocity (=1 m/s) is less than 3 m/s, the Hazen-V
formula is valid. The Darcy—Weisbach equation is unconditionally valid. Giv¢
results, it is not surprising that the Darcy~Weisbach and Hazen - Williams form
in close agreement, with the Manning equation giving a significantly differen
These results indicate why application of the Manning equation to closed-
flows is strongly discouraged.

2.3 Pipe Networks

Pipe networks are commonly encountered in the context of water-distribution s
The performance criteria of these systems are typically specified in terms of m
flow rates and pressure heads that must be maintained at the specified point
network. Analyses of pipe networks are usually within the context of: (1) desi
new network, (2) designing a modification to an existing network, and/or (3) ev:
the reliability of an existing or proposed network. The procedure for anal
pipe network usually aims at finding the flow distribution within the networ
the pressure distribution being derived from the flow distribution using the
equation. A typical pipe network is illustrated in Figure 2.9, where the bc
conditions consist of inflows, outflows, and constant-head boundaries such as
reservoirs. Inflows are typically from water-treatment facilities, and outflov
consumer withdrawals or fires. All outflows are assumed to occur at network jui

The basic equations to be satisfied in pipe networks are the continuity and
equations. The continuity equation requires that, at each node in the netwc
sum of the outflows is equal to the sum of the inflows. This requirement is ex

ag Otrg

- 0
—

0 , A Qs B
Qg —> -
AL~ g
D c
I‘:{;:‘-L“] LO@ Qgy —> D C -
Node” Qs
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by the relation

NP(j)
S 0; - F=0, = 1.....NJ (2.87)
i=1

where NP(j) is the number of pipes meeting at junction j; Q;; is the flowrate in pipe
i at junction j (inflows positive): F; is the external flow rate (outflows positive) at
junction j; and NJ is the total number of junctions in the network. The energy equation
requires that the heads at each of the nodes in the pipe network be consistent with the
head losses in the pipelines connecting the nodes. There are two principal methods of
calculating the flows in pipe networks: the nodal method and the loop method. In the
nodal method, the energy equation is expressed in terms of the heads at the network
nodes, while in the loop method the energy equation is expressed in terms of the flows
in closed loops within the pipe network.

2.3.1 Nodal Method

In the nodal method., the energy equation is written for each pipeline in the network as

By = hy — (% + Ekm)%’% + ’%hp (2.88)

where h; and h are the heads at the upstream and downstream ends of a pipe; the
terms in parentheses measure the friction loss and local losses, respectively; and 4, is
the head added by pumps in the pipeline. The energy equation given by Equation 2.88
has been modified to account for the fact that the flow direction is in many cases
unknown, in which case a positive flow direction in each pipeline must be assumed,
and a consistent set of energy equations stated for the entire network. Equation 2.88
assumes that the positive flow direction is from node 1 to node 2. Application of the
nodal method in practice is usually limited to relatively simple networks.

EXAMPLE 2.9

The high-pressure ductile-iron pipeline shown in Figure 2.10 becomes divided at point
B and rejoins at point C. The pipeline characteristics are given in the following tables.

Diameter | Length
Pipe (mm) (m)
1 750 500
2 400 600
3 500 650
4 700 400
Elevation

Location (m)

A 5.0

B 4.5

C 4.0

D 35
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IGURE 2.10: Pipe network pa = 900 kPa

|
!
!
|
|
|

If the flowrate in Pipe 1 is 2 m?/s and the pressure at point A is 900 kPa, calc:
pressure at point D. Assume that the flows are fully turbulent in all pipes.

Solution The equivalent sand roughness, k;, of ductile-iron pipe is 0.26 mm.
pipe and flow characteristics are as follows:

Pipe | (m?) | (m/s)

Area | Velocity

ks/D !

1 0.442 453
2 0.126 —
3 0.196 —
4 0.385 5.20

0.000347 | 0.0154
0.000650 | 0.0177
0.000520 | 0.0168
0.000371 | 0.0156

where it has been assumed that the flows are fully turbulent. Taking y = 9.79

the head at location A, hy, is given by

hAZE-é—%-

v2
oy =200 45 s gg0m

4.532

y 2 979 (2)(9.81)

and the energy equations for each pipe are as follows

A Vi
Pipe I: hg =hy — ALLVE _ gg

Dy 2g
=873m
2
Pipe2: h¢e = hp ~ hLy sz —
D2 ngz
= 87.3 ~ 85.203
£7 . 2
Pipe 3: hc = hp — 5Ls Q3? =87
D3 2gA3
= 87.3 — 29.003
2
Piped: hp = he — faL4 Q47 = he
D4 ngs

= he — 3.0703

3 -

_ (0.0154)(500) 4.53?
075 (2)(9.81)

5 _ (0.0177)(600) Q3
040  (2)(9.81)(0.12¢

(0.0168)(650) 03
0.50  (2)(9.81)(0.19%

~ (0.0156)(400) 03
0.70  (2)(9.81)(0.385)
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and the continuity equations at the two pipe junctions are

Junction B: Q; + Q3 =2ms (2.93)
JunctionC: Qs + Q3 = Oy (2.94)

Equations 2.90 to 2.94 are five equations in five unknowns: A, hp, 02, O3, and Qg.
Equations 2.93 and 2.94 indicate that

Q4 =2m’/s
Combining Equations 2.90 and 2.91 leads to
87.3 — 85.20Q3 = 87.3 — 29.003

and therefore
= 0.5830;5 (2.95)

Substituting Equation 2.95 into Equation 2.93 yields
2 = (0.583 + 1)Os

or
03 = 1.26 m%/s

and from Equation 2.95
Q> = 0.74 m%/s

According to Equation 2.91
he = 873 — 29.003 = 87.3 — 29.0(1.26)> = 41.3m
and Equation 2.92 gives
hp = he — 3.070% =413 - 3.07(2)* = 29.0m

Therefore, since the total head at D, hp, is equal to 29.0 m, then

: 2
290=20 ¢ Ya _pp . 5202
v % 979 (2)(9.81)
which yields
pp = 236 kPa

Therefore, the pressure at location D is 236 kPa.

This problem has been solved by assuming that the flows in all pipes are fully
turbulent. This is generally not known a priori, and therefore a complete solution would
require repeating the calculations until the assumed friction factors are consistent with
the calculated flowrates.
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2.3.2 Loop Method

In the loop method, the energy equation is written for each loop of the net
which case the algebraic sum of the head losses within each loop is equal to z
requirement is expressed by the relation

NP
> (hry = hpy) =0, i=1,...,NL

j=1

where NP(i) is the number of pipes in loop i, Ay jj is the head loss in pipe j «
hp jj is the head added by any pumps that may exist in line ij, and NL is the
of loops in the network. Combining Equations 2.87 and 2.96 with an expre:
calculating the head losses in pipes, such as the Darcy-Weisbach equation,
pump characteristic curves, which relate the head added by the pump to the
through the pump, yields a complete mathematical description of the flow j
Solution of this system of flow equations is complicated by the fact that the e.
are nonlinear, and numerical methods must be used to solve for the flow dist
in the pipe network.

Hardy Cross method. The Hardy Cross method (Cross, 1936) is a simple te
for hand solution of the loop system of equations governing flow in pipe n
This iterative method was developed before the advent of computers, and mu
efficient algorithms are now used for numerical computations. In spite of

Hardy Cross method is presented here to illustrate the iterative solution of

equations in pipe networks. The Hardy Cross method assumes that the head
in each pipe is proportional to the discharge, Q, raised to some power n, in w}

hp = rQ"

where typical values of n range from 1 to 2, where n = 1 corresponds to visc
and n = 2 to fully turbulent flow. The proportionality constant, r, depends ¢
head-loss equation is used and the types of losses in the pipe. Clearly, if all he:
are due to friction and the Darcy—Weisbach equation is used to calculate t
losses, then r is given by
_ L
= g
2gA*D

and n = 2. If the flow in each pipe is approximated as é, and AQ is the errc
estimate, then the actual flowrate, Q, is related to Q and AQ by

Q=0+ a0
and the head loss in each pipe is given by
hp = rQ"
= rQ + AQ)"

- r!:én + néncIAQ + n(n 2‘“ ])Qn~2(AQ)2 4o 4 (AQ)HJ
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If the error in the flow estimate, AQ, is small, then the higher-order terms in AQ can
be neglected and the head loss in each pipe can be approximated by

he ~ rQ" + mQ"'AQ (2.101)

This relation approximates the head loss in the flow direction. However, in working
with pipe networks, it is required that the algebraic sum of the head losses in any loop
of the network (see Figure 2.9) must be equal to zero. We must therefore define a
positive flow direction (such as clockwise), and count head losses as positive in pipes
when the flow is in the positive direction and negative when the flow is opposite to
the selected positive direction. Under these circumstances, the sign of the head loss
must be the same as the sign of the flow direction. Further, when the flow is in the
positive direction, positive values of AQ require a positive correction to the head
loss; when the flow is in the negative direction, positive values in AQ also require
a positive correction to the calculated head loss. To preserve the algebraic relation
among head loss, flow direction, and flow error (AQ), Equation 2.101 for each pipe

can be written as . ~
hi = rQIOI"" + miQI""'AQ (2.102)

where the approximation has been replaced by an equal sign. On the basis of
Equation 2.102, the requirement that the algebraic sum of the head losses around each
loop be equal to zero can be written as

NP(i) NP()
S Qo + A Y Qi =0, i=1,...,NL (2.103)
j=1 j=1

where NP(i) is the number of pipes in loop i, r;; is the head-loss coefficient in pipe j
(in loop i), Q; is the estimated flow in pipe j, AQ; is the flow correction for the pipes
in loop i, and NL is the number of loops in the entire network. The approximation
given by Equation 2.103 assumes that there are no pumps in the loop, and that the
flow correction, AQ);, is the same for each pipe in each loop. Solving Equation 2.103
for AQ; leads to

NP(i) n—1
o _E,-;l rij Qi1 Q)
AQ; ZNP(i)nr"}Q}”“ (2.104)
j=1 /AR 4]

This equation forms the basis of the Hardy Cross method.
The steps to be followed in using the Hardy Cross method to calculate the flow
distribution in pipe networks are:

1. Assume a reasonable distribution of flows in the pipe network. This assumed
flow distribution must satisfy continuity.

2. For each loop, i, in the network, calculate the quantities riij}Qj}”" and
mf,:,-[QJ,-]"wl for each pipe in the loop. Calculate the flow correction, AQ;, using
Equation 2.104. Add the correction algebraically to the estimated flow in each
pipe. [Note: Values of r; occur in both the numerator and denominator of
Equation 2.104; therefore, values proportional to the actual r;; may be used to
calculate AQ;.]

3. Repeat step 2 until the corrections (AQ;) are acceptably small.
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FIGURE 2.11: Flows in pipe
network

The application of the Hardy Cross method is best demonstrated by an exam

EXAMPLE 2.10
Compute the distribution of flows in the pipe network shown in Figure 2.11(a
the head loss in each pipe is given by

hy = rQ?

and the relative values of r are shown in Figure 2.11(a). The flows are 1
dimensionless for the sake of illustration.

Solution The first step is to assume a distribution of flows in the pipe netw
satisfies continuity. The assumed distribution of flows is shown in Figure 2.11(1
with the positive-flow directions in each of the two loops. The flow correction
loop is calculated using Equation 2.104. Since n = 2 in this case, the flow cc

formula becomes NP()
i i
ptagelite
NP(i
2,‘:1(’) Zri;'inl

The calculation of the numerator and denominator of this flow correction for
loop 1 is tabulated as follows:

AQ; = -

Loop | Pipe | Q | rQIOl | 210
I 41 70 29,400 840
1-3 35 3675 210

3-4 -30 - 4500 300

28.575 1350

The flow correction for loop I, AQy, is therefore given by

AQ; = —

and the corrected flows are

Loop | Pipe Q

I 4-1 48.8
1-3 13.8
3-4 -51.2

Moving to loop 11, the calculation of the numerator and denominator of
correction formula for loop I1 is given by

r=3 35 @
70 35

100 r=>5 30 100 4 5 3 3
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Loop | Pipe o rQlQl | 20|
I 1-2 15 225 30
2-3 -35 —2450 140
3-1 -138 -574 83
~2799 253

The flow correction for loop 11, AQyy, is therefore given by

-2799
A 2 = 11.1
On >3

and the corrected flows are

Loop | Pipe Q

11 1-2 26.1
2-3 -23.9
3-1 -2.7

This procedure is repeated in the following table until the calculated flow
corrections do not affect the calculated flows, to the level of significant digits retained
in the calculations,

Iteration Loop Pipe Q rQ|Q} 2riQ) AQ Corrected Q
2 I 4-1 48.8 14,289 586 47.7
1-3 2.7 22 16 1.6
3-4 —-51.2 ~13,107 512 -52.3
1204 1114 ~1.1

11 1-2 26.1 681 52 29.1
2-3 -23.9 -1142 96 —20.9
3-1 -16 -8 10 1.4

—469 157 3.0
3 1 4-1 47.7 13,663 573 47.7
1-3 14 6 8 1.4
3-4 -52.3 —13,666 523 -52.3

3 1104 0.0
1I 1-2 29.1 847 58 29.2
2-3 ~20.9 —874 84 —-20.8
3-1 1.4 6 8 1.5

=21 150 0.1
4 1 4-1 47.7 13,662 573 47.7
1-3 1.5 7 9 1.5
3-4 —-52.3 —13,668 523 -523

1 1104 0.0
I1 1-2 29.2 853 58 29.2
2-3 —20.8 —865 83 -20.8
3-1 1.5 7 9 1.5

-5 150 0.0
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=

The final flow distribution, after four iterations, is given by

Pipe Q
29.2

-2

2-3 ~20.8
3-4 —~52.3
4-1
1-3

47.7
-1.5

It is clear that the final results are fairly close to the flow estimates after
iteration.

As the above example illustrates, complex pipe networks can gen:
treated as a combination of simple loops, with each balanced in turn until co
flow conditions exist in all loops. Typically, after the flows have been comy
all pipes in a network, the elevation of the hydraulic grade line and the
are computed for each junction node. These pressures are then assessed r¢
acceptable operating pressures.

2.3.3 Practical Considerations

In practice, analyses of complex pipe networks are usually done using ¢
programs that solve the system of continuity and energy equations that gc
flows in the network pipelines. These computer programs, such as EPANET (F
2000), generally use algorithms that are computationally more efficient than tl
Cross method, such as the linear theory method, the Newton~Raphson met
the gradient algorithm (Lansey and Mays, 1999),

The methods described in this text for computing steady-state flows and |
in water distribution systems are useful for assessing the performance of
under normal operating conditions. Sudden changes in flow conditions,
pump shutdown/startup and valve opening/closing, cause hydraulic transic
can produce significant increases in water pressure—a phenomenon call
hammer. The analysis of transient conditions requires a computer program to
a numerical solution of the one-dimensional continuity and momentum equ
flow in pipelines, and is an essential component of water-distribution syste:
(Wood, 2005d). Transient conditions will be most severe at pump stations an:
valves, high-elevation areas, locations with low static pressures, and locations
far from elevated storage reservoirs (Friedman, 2003). Appurtenances used to
the effects of water hammer include valves that prevent rapid closure, presst
valves, surge tanks, and air chambers. Detailed procedures for transient ar
pipeline systems can be found in Martin (2000).

2.4 Pumps

Pumps are hydraulic machines that convert mechanical energy to fluid ener
can be classified into two main categories: (1) positive displacement pun
(2) rotodynamic or kinetic pumps. Positive displacement pumps deliver a fixed
of fluid with each revolution of the pump rotor, such as with a piston or cylind
rotodynamic pumps add energy to the fluid by accelerating it through the ac




