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CHAPTER 2

Flow in Closed Conduits

2.1 Introduction

Flow in closed conduits includes all cases where the flowing fluid comple
the conduit. The cross sections of closed conduits can be of any shape or
the conduits can be made of a variety of materials. Engineering applicatior
principles of flow in closed conduits include the design of municipal wate
systems and transmission lines. The basic equations governing the flow of
closed conduits are the continuity, momentum, and energy equations, and t
useful forms of these equations for application to pipe flow problems are
in this chapter. The governing equations are presented in forms that are ap
to any fluid flowing in a closed conduit, but particular attention is given to
of water.

The computation of flows in pipe networks is a natural extension of t]
in single pipelines, and methods of calculating flows and pressure distribu
pipeline systems are also described here. These methods are particularly appli
the analysis and design of municipal water-distribution systems, where the ¢
1s frequently interested in assessing the effects of various modifications to the
Because transmission of water in closed conduits is typically accomplishe
pumps, the fundamentals of pump operation and performance are also prese
this chapter. A sound understanding of pumps is important in selecting the app
pump to achieve the desired operational characteristics in water-transmission
The design protocol for municipal water-distribution systems is presente:
example of the application of the principles of flow in closed conduits. Met}
estimating water demand, design of the functional components of distribution s
network analysis, and the operational criteria for municipal water-distribution
are all covered.

2.2 Singie Pipelines

The governing equations for flows in pipelines are derived from the conservati
of mass, momentum, and energy, and the forms of these equations that are mos
for application to closed-conduit flow are derived in the following sections.

2.2.1 Steady-State Continuity Equation

Consider the application of the continuity equation to the control volume illust
Figure 2.1. Fluid enters and leaves the control volume normal to the control si
with the inflow velocity denoted by v(r) and the outflow velocity by vo(r), wi
the radial position vector originating at the centerline of the conduit. Both the
and outflow velocities vary across the control surface. The steady-state coi
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2.1: Flow through

snduit /

Velocity
distribution

Boundary of
control volume

Flow
equation for an incompressible fluid can be written as
f vidA = va dA (2.1
Ay Az

Defining V; and V; as the average velocities across Ay and A, respectively, where

1
V] T Vi dA (22)
Ay Ja,
and
Vo= [ voda 2.3)
2 JA;

the steady-state continuity equation becomes

ViA| = V1A (= Q)! (2.4)

The terms on each side of Equation 2.4 are equal to the volumetric flowrate, Q. The
steady-state continuity equation simply states that the volumetric flowrate across any
surface normal to the flow is a constant.

EXAMPLE 2.1

Water enters a pump through a 150-mm diameter intake pipe and leaves through a
200-mm diameter discharge pipe. If the average velocity in the intake pipeline is 1 m/s,
calculate the average velocity in the discharge pipeline. What is the flowrate through
the pump?

Solution 1In the intake pipeline, V, = 1 m/s, Dy = 0.15m and

Ay = %D% = g(o,ls)z = 0.0177 m?

In the discharge pipeline, D; = 0.20 m and
Ay = %D% = %(0.20)2 = 0.0314 m?
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According to the continuity equation,

ViA; = VoA,
Therefore,
vy = v (A1) = (1)(9-'91—71) = 0.56 m/s
A, 0.0314 :

The flowrate, (, is given by
Q= A;Vy = (0.0177)(1) = 0.0177 m*/s

The average velocity in the discharge pipeline is 0.56 m/s, and the flowrate
the pump is 0.0177 m¥/s.

2.2.2 Steady-State Momentum Equation

Consider the application of the momentum equation to the control volume ill
in Figure 2.1. Under steady-state conditions, the component of the mo
equation in the direction of flow (x-direction) can be written as

S o= / pVxv-mdA
A

where 3 Fy is the sum of the x-components of the forces acting on the flui
control volume, p is the density of the fluid, v, is the flow velocity in the x-d
and v - n is the component of the flow velocity normal to the control surface. S
unit normal vector, n, in Equation 2.5 is directed outward from the control
the momentum equation for an incompressible fluid (p = constant) can be w

S F =p/ v3dA — pf vidA

Ay Ay

where the integral terms depend on the velocity distributions across the inf
outflow control surfaces. The velocity distribution across each control st
generally accounted for by the momentum correction coefficient, 8, definec

relation
1 [ 5
= vodA
} A AV2 S,

where A4 is the area of the control surface and V is the average velocity over the
surface. The momentum coefficients for the inflow and outflow control surf;
and A, are given by B, and 3, where
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Substituting Equations 2.8 and 2.9 into Equation 2.6 leads to the following form of the
momentum equation

S F = pBaV3Ar — pBiViA; (2.10)

Recalling that the continuity equation states that the volumetric flowrate, Q, is the
same across both the inflow and outflow control surfaces, where

0 = VA, = VA, (2.11)

then combining Equations 2.10 and 2.11 leads to the following form of the steady-state
momentum equation

> Fe = pfaQVa — pB1QVy (2.12)

or

> Fe=pQB2V2 — BiVy) (2.13)

In many cases of practical interest, the velocity distribution across the cross section of
the closed conduit is approximately uniform, in which case the momentum coefficients,
B1 and By, are approximately equal to unity and the steady-state momentum equation
becomes

2 Fe=p0(V2 — V) (2.14)

Consider the common case of flow in a straight pipe with a uniform circular cross
section illustrated in Figure 2.2, where the average velocity remains constant at each
cross section,

Vi=Vy=V (2.15)

then the steady-state momentum equation becomes
EFX = () ; (2.16)

The forces that act on the fluid in a control volume of uniform cross section are
illustrated in Figure 2.2. At Section 1, the average pressure over the control surface
is equal to p; and the elevation of the midpoint of the section relative to a defined
datum is equal to z;, at Section 2, located a distance L downstream from Section 1,
the pressure is p;, and the elevation of the midpoint of the section is z;. The average
shear stress exerted on the fluid by the pipe surface is equal to 79, and the total shear
force opposing flow is 7oL, where P is the perimeter of the pipe. The fluid weight
acts vertically downward and is equal to yAL, where v is the specific weight of the
fluid and A is the cross-sectional area of the pipe. The forces acting on the fluid system
that have components in the direction of flow are the shear force, 7oPL; the weight
of the fluid in the control volume, yAL; and the pressure forces on the upstream and
downstream faces, pyA and pyA, respectively. Substituting the expressions for the
forces into the momentum equation, Equation 2.16, yields

A ~ ppA — 19PL —~ yALsing =0 (217
where 6 is the angle that the pipe makes with the horizontal and is given by the relation

sing = {2 — %L (2.18)
L
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FIGURE 2.2: Forces on flow in
closed conduit

7 yAL

Flow

Combining Equations 2.17 and 2.18 yields
pr P2
Y Y Y

Defining the foral head, or energy per unit weight, at Sections 1 and 2 as h,
where

2

Y 2g

and 5
Y 28

then the head loss between Sections 1 and 2, Ah, is given by

A=hy —h =2 + 7] - (22 + 5
Y y

Combining Equations 2.19 and 2.22 leads to the following expression for heas

ToPL
vA

Ah =
In this case, the head loss, Ah, is entirely due to pipe friction and is commonly
by hy. In the case of pipes with circular cross sections, Equation 2.23 can be w

_ 1o(mD)L _ 4ryL
y(mD?/4)  yD

where D is the diameter of the pipe. The ratio of the cross-sectional area, #
perimeter, P, is defined as the hydraulic radius, R, where

R —" é
P
and the head loss can be written in terms of the hydraulic radius as
hy = ToL

YR
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The form of the momentum equation given by Equation 2.26 is of limited utility
in that the head loss, &y, is expressed in terms of the boundary shear stress, o, which
is not an easily measurable quantity. However, the boundary shear stress, 79, can be
expressed in terms of measurable flow variables using dimensional analysis, where
1o can be taken as a function of the mean flow velocity, V; density of the fluid,
p; dynamic viscosity of the fluid, u; diameter of the pipe, D; characteristic size of
roughness projections, &; characteristic spacing of the roughness projections, £'; and a
(dimensionless) form factor, m, that depends on the shape of the roughness elements
on the surface of the conduit. This functional relationship can be expressed as

0 = fi(V,p,u,D,&,6',m) (2.27)

According to the Buckingham pi theorem, this relationship between eight variables
in three fundamental dimensions can also be expressed as a relationship between five
nondimensional groups. The following relation is proposed:

T e ¢
G p— Re, =, > m 2.28
2 = fo(Re 5 o) (228)
where Re is the Reynolds number defined by

Re = 2VP (2.29)
7

The relationship given by Equation 2.28 is as far as dimensional analysis goes,
and experiments are necessary to determine an empirical relationship between the
nondimensional groups. Nikuradse (1932; 1933) conducted a series of experiments
in pipes in which the inner surfaces were roughened with sand grains of uniform
diameter, £. In these experiments, the spacing, £, and shape, m, of the roughness
elements (sand grains) were constant and Nikuradse’s experimental data fitted to the
following functional relation:

T0 = f(Re & 2.30
pV? 3( e’D) (2:30)

It is convenient for subsequent analysis to introduce a factor of 8 into this relationship,
which can then be written as

0 1 &
— = —f | Re, — 2.31
pV? 8 ( D) ( )
or simply
7 _f 232
Vg (2.32)

where the dependence of the friction factor, f, on the Reynolds number, Re, and
relative roughness, ¢/ D, is understood. Combining Equations 2.32 and 2.24 ieads to
the following form of the momentum equation for flows in circular pipes:

2
= % -‘2-’; (2.33)
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This equation, called the Darcy—Weisbach equation,* expresses the frictior
loss, Ay, of the fluid over a length L of pipe in terms of measurable par
including the pipe diameter (D), average flow velocity (V), and the frictic
(f) that characterizes the shear stress of the fluid on the pipe. Some re
name Equation 2.33 simply as the Darcy equation; however, this is ina
ate, since it was Julius Weisbach who first proposed the exact form of I
2.33 in 1845, with Darcy’s contribution on the functional dependence of
and D in 1857 (Brown, 2002; Rouse and Ince, 1957). The differences
laminar and turbulent flow were later quantified by Osbourne Reynolds®
(Reynolds, 1883).

Based on Nikuradse’s (1932, 1933) experiments on sand-roughene
Prandtl and von Kdrmdn established the following empirical formulae for es
the friction factor in turbulent pipe flows:

S U VR S 2.51
Smooth plpe(B 2 ()). 7 210g(Re\/?)

Rough pipe(—g P> ()): # = —Zlog(%lz)

where & is the roughness height of the sand grains on the surface of the p
variables k and ¢ are used equivalently to represent the roughness height, althc
more used in the context of an equivalent roughness height and ¢ as an actual r¢
height. Turbulent flow in pipes is generally present when Re > 4000; tran
turbulent flow begins at about Re = 2300. The pipe behaves like a smooth pi
the friction factor does not depend on the height of the roughness projec
the wall of the pipe and therefore depends only on the Reynolds number. ]
pipes, the friction factor is determined by the relative roughness, k/D, and |
independent of the Reynolds number. The smooth-pipe case generally o
lower Reynolds numbers, when the roughness projections are submerged wi
viscous boundary layer. At higher values of the Reynolds number, the thickne
viscous boundary layer decreases and eventually the roughness projections |
sufficiently far outside the viscous boundary layer that the shear stress of :
boundary is dominated by the hydrodynamic drag associated with the ro
projections into the main body of the flow. Under these circumstances, the
the pipe becomes fully turbulent, the friction factor is independent of the R
number, and the pipe is considered to be (hydraulically) rough. The flow is
turbulent under both smooth-pipe and rough-pipe conditions, but the flow is
fully turbulent when the friction factor is independent of the Reynolds )
Between the smooth- and rough-pipe conditions, there is a transition region i
the friction factor depends on both the Reynolds number and the relative ro
Colebrook (1939) developed the following relationship that asymptotes to the

*Henry Darcy (1803-1858) was a nineteenth-century French engineer; Julius Weisbach (1806
a German engineer of the same era. Weisbach proposed the use of a dimensionless resistance ¢
and Darcy carried out the tests on water pipes.

TOsbourne Reynolds (1842-1912).
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and von Karmaén relations;

L ‘zmg('fﬁ?_ 4 231 ) (2.35)

1
J 37 Reff

This equation is commonly referred to as the Colebrook equation or Colebrook—White
equation. Equation 2.35 can be applied in the transition region between smooth-pipe
and rough-pipe conditions, and values of friction factor, f, predicted by the Colebrook
equation are generally accurate to within 10-15% of experimental data (Finnemore
and Franzini, 2002; Alexandrou, 2001). The accuracy of the Colebrook equation
deteriorates significantly for small pipe diameters, and it is recommended that this
equation not be used for pipes with diameters smaller than 2.5 mm (Yoo and
Singh, 2005).

Commercial pipes differ from Nikuradse’s experimental pipes in that the heights
of the roughness projections are not uniform and are not uniformly distributed. In
commercial pipes, an equivalent sand roughness, kg, is defined as the diameter of
Nikuradse's sand grains that would cause the same head loss as in the commercial
pipe. The equivalent sand roughness, k;, of several commercial pipe materials is given
in Table 2.1. These values of k; apply to clean new pipe only; pipe that has been in
service for a long time usually experiences corrosion or scale buildup that results in
values of kg orders of magnitude larger than the values given in Table 2.1 (Echévez,
1997; Gerhart et al.. 1992). The rate of increase of k; with time depends primarily
on the quality of the water being transported, and the roughness coefficients for
older water mains are usually determined through field testing (AWWA, 1992). The
expression for the friction factor derived by Colebrook (Equation 2.35) was plotted by
Moody (1944) in what is commonly referred to as the Moody diagram.* reproduced
in Figure 2.3. The Moody diagram indicates that for Re = 2000, the flow is laminar
and the friction factor is given by

:é_4_.

2.36
Re ( )

f

which can be derived theoretically based on the assumption of laminar flow of a
Newtonian fluid (Daily and Harleman, 1966). For 2000 < Re = 4000 there is no
fixed relationship between the friction factor and the Reynolds number or relative
roughness, and flow conditions are generally uncertain (Wilkes, 1999). Beyond a
Reynolds number of 4000, the flow is turbulent and the friction factor is controlled
by the thickness of the laminar boundary layer relative to the height of the roughness
projections on the surface of the pipe. The dashed line in Figure 2.3 indicates the
boundary between the fully turbulent flow regime, where f is independent of Re, and
the transition regime, where f depends on both Re and the relative roughness, k;/D.
The equation of this dashed line is given by (Mott, 1994)

1T Re
J 200D/ k) (237)

*This type of diagram was originally suggested by Blasius in 1913 and Stanton in 1914 (Stanton and
Pannell. 1914). The Moody diagram is sometimes called the Stanton diagram (Finnemore and Franzini,
2002).
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TABLE 2.1: Typical Equivalent Sand Roughness for Various

New Materials

Equivalent sand
roughness, kg
Material (mm)
Asbestos cement:
Coated 0.038
Uncoated 0.076
Brass 0.0015-0.003
Brick 0.6
Concrete:
General 0.3-3.0
Steel forms 0.18
Wooden forms 0.6
Centrifugally spun 0.13-0.36
Copper 0.0015-0.003
Corrugated metal 45
Glass 0.0015--0.003
Iron:
Cast iron 0.19-0.26
Ductile iron 0.26
Lined with bitumen 0.12
Lined with spun concrete | 0.030-0,038
Galvanized iron 0.15
Wrought iron 0.046 -0.06
Lead 0.0015
Plastic (PVC) 0.0015-0.03
Steel
Coal-tar enamel 0.0048
New unlined 0.045-0.076
Riveted 0.9-9.0
Wood stave 0.18
Sources: Haestad Methods, Inc. (2002), Moody (1944), Sanks
(1998).

The line in the Moody diagram corresponding to a relative roughness of zero d
the friction factor for pipes that are hydraulically smooth.

Although the Colebrook equation (Equation 2.35) can be used to calct
friction factor in lieu of the Moody diagram, this equation has the drawback
an implicit equation for the friction factor and must be solved iteratively. Th
inconvenience was circumvented by Jain (1976), who suggested the following
equation for the friction factor:

Lo tog(BLD 4 574N 106 = ks 2 192 5000 = Re = 10°
0.9
7 37 R D

where, according to Jain (1976), Equation 2.38 deviates by less than 1% f
Colebrook equation within the entire turbulent-flow regime, provided that the
tions on ky/D and Re are honored. The Jain equation (Equation 2.38) can |
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According to Franzini and Finnemore (1997) and Granger (1985), values of the friction
factor calculated using the Colebrook equation are generally accurate to within 10%
to 15% of experimental data. Uncertainties in relative roughness and in the data used
to produce the Colebrook equation make the use of several-place accuracy in pipe
flow problems unjustified. As a rule of thumb, an accuracy of 10% in calculating
friction losses in pipes is to be expected (Munson et al., 1994; Gerhart et al., 1992).

EXAMPLE 2.2

Water from a treatment plant is pumped into a distribution system at a rate of
4.38 m¥/s, a pressure of 480 kPa, and a temperature of 20°C. The pipe has a diameter
of 750 mm and is made of ductile iron. Estimate the pressure 200 m downstream of
the treatment plant if the pipeline remains horizontal. Compare the friction factor
estimated using the Colebrook equation to the friction factor estimated using the Jain
equation. After 20 years in operation, scale buildup is expected to cause the equivalent
sand roughness of the pipe to increase by a factor of 10. Determine the effect on the
water pressure 200 m downstream of the treatment plant.

Solution According to the Darcy-Weisbach equation, the difference in total head,
Ah, between the upstream section (at exit from treatment plant) and the downstream
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section (200 m downstream from the upstream section) is given by

JLV?
D 2g

Ah =

where f is the friction factor, L is the pipe length between the upstre
downstream sections (= 200 m), D is the pipe diameter (= 750 mm), and
velocity in the pipe. The velocity, V, is given by

y_0

A

where Q is the flowrate in the pipe (= 4.38 m?/s) and A is the area of the pi
section given by
A= 3’11)2 = g (0.75)2 = 0.442 m?

The pipeline velocity is therefore

The friction factor, f, in the Darcy—Weisbach equation is calculated using tl
brook equation:

Ky " 2.51

Zo= _2log |5

J 8137D Re|f
Here Re is the Reynolds number and k; is the equivalent sand roughness o
iron (= 0.26 mm). The Reynolds number is given by

=YD
14

Re
where v is the kinematic viscosity of water at 20°C, which is equal to 1.00
m?/s. Therefore
Substituting into the Colebrook equation leads to

L _ o 0.26 2.51
= = —2log peins ,
J (B.7)(750)  7.43 x 108f

or

1 2log (937 x 1075 +

v

This is an implicit equation for f, and the solution is

3.38 x 1077

Vi

f = 0016
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The head loss, Ak, between the upstream and downstream sections can now be

calculated using the Darcy—Weisbach equation as

_ fLV? _ (0.016)(200) (9.91)?
D 2g 0.75 (2)(9.81)

Ah =214m

Using the definition of head loss, Ah,

Ah:B—l-“le——&‘f‘Zz
Y Y

where p; and p; are the upstream and downstream pressures, vy is the specific weight
of water, and z; and z, are the upstream and downstream pipe elevations. Since the
pipe is horizontal, z; = z; and Ah can be written in terms of the pressures at the
upstream and downstream sections as

AR =P1 _ P2
Y Y

In this case, p; = 480 kPa, y = 9.79 kN/m?, and therefore

214 = 480 p2
9.79 9.79
which yields
p2 = 270 kPa

Therefore, the pressure 200 m downstream of the treatment plant is 270 kPa. The
Colebrook equation required that f be determined from an implicit equation, but the
explicit Jain approximation for f is given by

1 k 5.74
— = -2lo Lot
J ® [3.70 Re”}

Substituting for kg, D, and Re gives

~ 2log| 026 5.74 1
(3.7)(750)  (7.43 X 106)09 |

1
Jf

which leads to
f =0.016

This is the same friction factor obtained using the Colebrook equation within an
accuracy of two significant digits.

After 20 years, the equivalent sand roughness, k;, of the pipe is 2.6 mm, the
(previously calculated) Reynolds number is 7.43 X 106, and the Colebrook equation
gives

i — "210g 2.6 T 2.51
Vi B7)(750) 743 x 105F
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or
-7
1 o 2log 937 x 104 4 338X 1077
Jf Vi
which yields

£ =0027

The head loss, Ak, between the upstream and downstream sections is give)

Darcy—-Weisbach equation as

ho L V2 _ (0.027)(200) (9.91)%
D 2g 0.75 (2)(9.81)

Hence the pressure, py, 200 m downstream of the treatment plant is giver
relation

A =36.0m

Ah=PL _ P2
Y 2
where p; = 480 kPa, y = 9.79 kN/m?, and therefore
360= 380 _ P2
9.79  9.79
which vields
pr = 128 kPa

Therefore, pipe aging over 20 years will cause the pressure 200 m downstreai
treatment plant to decrease from 270 kPa to 128 kPa. This is quite a significe
and shows why velocities of 9.91 m/s are not used in these pipelines, even f
lengths of pipe.

The problem in Example 2.2 illustrates the case where the flowrate

a pipe is known and the objective is to calculate the head loss and pressu
over a given length of pipe. The approach is summarized as follows: (1) ¢
the Reynolds number, Re, and the relative roughness, k;/D, from the give
(2) use the Colebrook equation (Equation 2.35) or Jain equation (Equation
calculate f; and (3) use the calculated value of f to calculate the head lo
the Darcy—-Weisbach equation (Equation 2.33), and the corresponding presst
from Equation 2.22.

Flowrate for a given head loss. In many cases, the flowrate through a pip
controlled but attains a level that matches the pressure drop available. For e
the flowrate through faucets in home plumbing is determined by the gage pre
the water main, which is relatively insensitive to the flow through the faucet.
approach to this problem that uses the Colebrook equation has been suggestec
(1994), where the first step is to calculate Re\/? using the rearranged Darcy-W

equation
i
2gh D3 \?
Refz(gf )

v2L
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Using this value of Re\/f, solve for Re using the rearranged Colebrook equation

Re = —2.0(Reyf) log (-’%’3 + é:jf) 2.41)

Using this value of Re, the flowrate, Q, can then be calculated by
0=1apv=1apire (2.42)
4 4
This approach must necessarily be validated by verifying that Re > 2300, which is

required for application of the Colebrook equation. Swamee and Jain (1976) combine
Equations 2.40 to 2.42 to yield

Dhs [
0 = —0965p%, | 820 1o [ Ks/D | 1784 (2.43)
N L 37 DJgDhy/L

EXAMPLE 2.3

A 50-mm diameter galvanized iron service pipe is connected to a water main in which
the pressure is 450 kPa gage. If the length of the service pipe to a faucet is 40 m and
the faucet is 1.2 m above the main, estimate the flowrate when the faucet is fully open.

Solution The head loss, ky. in the pipe is estimated by

hy = (Pn;ain + Zmain) - (Poiﬂet + Zoutlet)

where pmain = 450 kPa, Zpain = 0m, poutier = 0 kPa, and zouer = 1.2 m. Therefore,
taking y = 9.79 kN/m? (at 20°C) gives

hy = (fiS_Q N (}) ~ (0 + 12) =448m
9.79

Also, since D = 50 mm, L = 40 m, k; = 0.15 mm (from Table 2.1), and
v = 1.00 X 1079 m?/s (at 20°C), the Swamee~Jain equation (Equation 2.43) yields

0 = —0.965p2, |8PM 1 [ Ks/D | LT84
L 37 DJsDhy/L

(9.81)(0.05)(44.8), 10.15/50 1.784(1.00 X 10~9)
40 37 (0.05),/(9.81)(0.05)(44.8)/40

Il

—0.965(0.05)?

= 0.0126 m%/s = 12.6 L/s

The faucet can therefore be expected to deliver 12.6 L/s when fully open.
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Diameter for a given flowrate and head loss. In many cases, an engineer mi
a size of pipe to provide a given level of service. For example, the maximum
and maximum allowable pressure drop may be specified for a water deliv.
and the engineer is required to calculate the minimum diameter pipe that w
these design constraints. Solution of this problem necessarily requires an
procedure. The following steps are suggested (Streeter and Wylie, 1985)

1. Assume a value of f.
2. Calculate D from the rearranged Darcy~Weisbach equation,

_ al 8LQ>
b (hfgvrzf)

where the term in parentheses can be calculated from given data.

3. Calculate Re from
Re = YD _ (f‘...Q) 1
v wv/) D

where the term in parentheses can be calculated from given data.
4. Calculate &,/ D.
Use Re and &,/ D to calculate f from the Colebrook equation.

6. Using the new f, repeat the procedure until the new f agrees with the
the first two significant digits.

o

EXAMPLE 2.4

A galvanized iron service pipe from a water main is required to deliver 200 L
a fire. If the length of the service pipe is 35 m and the head loss in the pipe
exceed 50 m, calculate the minimum pipe diameter that can be used.

Solution

Step 1. Assume f = 0.03
Step 2. Since Q = 0.2 m’/s, L = 35 m, and &y = 50 m, then

_ 5| [8L02 | _ | [ 835)(0.2)2 _
D \J [hmfngJf j [W(SO)(QM)#ZJ(O‘O@ 0.147 1

Step 3. Since v = 1.00 X 107 m?%/s (at 20°C), then

Re = P—Q—} 1 402 11 g3y
v D | 2(1.00 X 10-6) | 0.147

Step 4. Since ks = 0.15 mm (from Table 2.1, for new pipe), then

ke _ 15 x 104
D 0.147

= 0.00102
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Step 5. Using the Colebrook equation (Equation 2.35) gives

Vf

Lo g [ e 251
37 Reff

2.51

~ leg ( 000102 ,

37

which leads to

£ =0.020

1.73 X 108,
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Step 6. f = 0.020 differs from the assumed f (= 0.03), so repeat the procedure

with f = 0.020.
Step 2. Forf = 0.020,D = 0.136 m
Step 3. For D = 0.136 m, Re = 1.87 x 10°
Step 4. For D = 0.136 m, k;/D = 0.00110
Step 5. f = 0.020

Step 6. The calculated f (= 0.020) is equal to the assumed f. The required
pipe diameter is therefore equal to 0.136 m or 136 mm. A commercially
available pipe with the closest diameter larger than 136 mm should

be used.

The iterative procedure demonstrated in the previous example converges fairly
quickly, and does not pose any computational difficulty. Swamee and Jain (1976) have

suggested the following explicit formula for calculating the pipe diameter, D:

ghr

3000 =< Re =3 x 105, 107° <

4.75
D = 0.66 kl‘ZS(LQz) + VQ9'4(_£J_)

»

§

o

527004
ghyr

<2 x107?

(2.46)

Equation 2.46 will yield a D within 5% of the value obtained by the method
using the Colebrook equation. This method is illustrated by repeating the previous

example.

EXAMPLE 2.5

A galvanized iron service pipe from a water main is required to deliver 200 L/s during
a fire. If the length of the service pipe is 35 m, and the head loss in the pipe is not to
exceed 50 m, use the Swamee-Jain equation to calculate the minimum pipe diameter

that can be used.
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FIGURE 2.4: Energy balance in
closed conduit

Solution Since ky = 0.15mm, L = 35m, Q = 02m’s, hy = 50m, v =
107% m?/s, the Swamee~Jain equation gives

S\ 475
D =066 k;-25<--_LQ ) + VQ9-4(«£‘->

557004

ghy ghr

e AT
= 0.66 4 (0.00015)"25 [M@’)“"Z) } + (100 X 1070)(0.2)°4 | 33
(9.81)(50) (9.81)(50)

= 0.140 m

The calculated pipe diameter (140 mm) is about 3% higher than calculatec
Colebrook equation (136 mm).

2.2.3 Steady-State Energy Equation

The steady-state energy equation for the control volume illustrated in Figu

given by
dQn ﬂ:/pev.ndA
dr dt A

where (y, is the heat added to the fluid in the control volume, W is the work .
the fluid in the control volume, A is the surface area of the control volume,
density of the fluid in the control volume, and e is the internal energy per unit
fluid in the control volume given by
, v?
e =gz + ? + u

where z is the elevation of the fluid mass having a velocity v and internal ener;
convention, the heat added to a system and the work done by a system are

quantities. The normal stresses on the inflow and outflow boundaries of the
volume are equal to the pressure, p, with shear stresses tangential to the bou
of the control volume. As the fluid moves across the control surface with vel
the power (= rate of doing work) expended by the fluid against the external

Heat flux. Q, Shaft work, W,

Inflow, Q = = QOutflow, Q



