CE 3372 WATER SYSTEMS DESIGN

LECTURE 19: SWMM HYDROLOGY

- SUB-CATCHMENTS
 - INFILTRATION MODEL (RUNOFF GENERATION)
- RAINGAGES
 - TIME-SERIES OF RAINFALL (HYETOGRAPH)

- •Size pipes so that velocity is 3-7 ft/sec
- •Slope no greater than 0.01

LOAD THE PICTURE INTO SWMM

3 NODES + OUTFALL

- INVERT ELEVATIONS
 - (EXAMPLE, THESE WOULD BE DESIGN VALUES, EXCEPT FOR OUTFALL, ADJUST TO GET VELOCITY)
 - OUTFALL = 0
 - NODE 3 = 700*(0.01)=7 FT
 - OFFSET OF 2 FT
 - NODE 2 = 7+2+0.01(30) = 9.3
 - NODE 1 = 7+2+0.01(500) = 14

• 3 PIPES, 24" DIAMETER, CONCRETE (N=0.013)

2 SUB-CATCHMENTS

- CHOOSE A RUNOFF GENERATION MECHANISM!
 - FOR THIS SCALE RATIONAL IS LOGICAL, BUT NOT PART OF SWMM NEED A HACK!

- RUNOFF GENERATION
 - NO EXPLICIT RATIONAL METHOD FOR RUNOFF GENERATION
 - HORTON, GREEN-AMPT, AND CN.

- SUPPOSE WE WANT TO SIMULATE A 10.9 ACRE DRAINAGE AREA,
 WITH TC =49 MINUTES, AND C=0.32 AND APPLIED RAIN DEPTH IS 0.87 INCHES.
 - I = 0.87INCHES/49MIN X 60 MIN/HR = 1.06 IN/HR
 - QP = (0.32)(1.06)(10.9) = 3.7 CFS

- EQUIVALENT SWMM MODEL:
 - RAINGAGE
 - CATCHMENT
 - OUTLET

- EQUIVALENT SWMM MODEL:
 - RAINGAGE → CONSTANT INTENSITY OF 1.06 IN.HR
 - CATCHMENT → AREA = 10.9 ACRES
 - OUTLET

RAINGAGE → CONSTANT INTENSITY OF 1.06 IN/HR

- CATCHMENT → SET SIZE, SET **TO 100% IMPERVIOUS**
 - **RUN TO ADJUST WIDTH & SLOPE**
 - ARRIVAL TIME OF QP AT 50 **MINUTES**
 - QP = 11.65 CFS (C=1)

- CATCHMENT → SET SIZE, SET TO 100% IMPERVIOUS
 - WIDTH = 1500
 - ARRIVAL TIME OF QP AT 50 MINUTES
 - QP = 11.65 CFS (C=1)

O O O Subcatchment 1		MM 5.1	MM 5.1		
Property	Value				
Vame	1				
K-Coordinate	-1092.336				
Y-Coordinate	8287.584				
Description					
		■ Table - St	Table - Subcatch Runoff		
Rain Gage	1	Days	Hours	Subcatch 1	
Outlet	2	0	00:05:00	3.53	
Area	10.9	0	00:10:00	7.60	
Jidth	1500	0	00:15:00	9.89	
≷ Slope	0.5	0	00:20:00	10.93	
% Imperv	100	0	00:25:00	11.36	
W-Imperv	0.01	0	00:30:00	11.54	
N-Perv	0.1	0	00:35:00	11.61	
)store-Imperv	0	0	00:40:00	11.63	
)store-Perv	0	0	00:45:00	11.64	
≷Zero-Imperv	0	0	00:50:00	11.65	
Subarea Routing	OUTLET	0	00:55:00	11.65	
Percent Routed	100	0	01:00:00	11.65	
Infiltration	HORTON	0	01:05:00	11.65	
Groundwater	NO	0	01:15:00	11.65	
Snow Pack		0	01:20:00	11.65	
LID Controls	0	0	01:25:00	11.65	
Land Uses	0	0	01:30:00	11.65	
Initial Buildup	NONE	0	01:35:00	11.65	
Curb Length	NONE 0	0	01:40:00	11.65	
ourn reuden	U	0	01:45:00	11.65	
Width of overland flow pa	0	01:50:00	11.65		

SUPPRESS BACKGROUND, CHECK LAYOUT

INSERT A RAINGAGE

APPLY THE RAINGAGE TO THE SUB-CATCMENTS

SET THE TIME WINDOW, AND RUN THE MODEL

- FOR LARGER SCALE (LOTS OF SMALL CATCHMENTS) THERE WILL BE A DESIRE TO USE SCS STORMS OR EVEN HISTORICAL EVENTS TO EVALUATE THE DESIGN.
- THE NEXT EXAMPLE ILLUSTRATES HOW TO USE HEC-HMS AS A TOOL TO GENERATE RAINFALL FOR USE IN SWMM.

- ASSIGN A STORM TO A RAINGAGE
 - SUPPOSE INSTRUCTED TO USE SCS-TYPE II STORM AND PARAMETERIZE FOR SAN ANTONIO, TEXAS
 - SCS STORMS ARE BUILT-IN TO HEC-HMS, SO TAKE ADVANTAGE OF THAT TO GENERATE A RAINFALL TIME SERIES FOR SWMM

- HOW TO GENERATE SCS TYPE STORMS
 - SELECT ANNUAL EXCEEDANCE PROBABILITY (AEP) OR ANNUAL RECURRENCE INTERVAL (ARI)
 - LOOK UP 24 HOUR DEPTH FOR THE ARI AND LOCATION
 - GENERATE 24 HOUR STORM USING SCS TABULATIONS OR HEC-HMS
 - PUT THE TIME SERIES INTO SWMM AND RUN THE HYDRAULICS

- HOW TO GENERATE SCS TYPE STORMS
 - SELECT ANNUAL EXCEEDANCE PROBABILITY (AEP) OR ANNUAL RECURRENCE INTERVAL (ARI)
 - GIVEN IN THE PROJECT STATEMENT, A 10% CHANCE AEP OR 10-YEAR ARI (SAME PROBABILITY) IS SPECIFIED.

- HOW TO GENERATE SCS TYPE STORMS
 - LOOK UP 24 HOUR STORM DEPTH FOR THE AEP/ARI AND LOCATION

42 Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas

Figure 35. Depth of precipitation for 10-year storm for 1-day duration in Texas.

- HOW TO GENERATE SCS TYPE STORMS
 - SELECT ANNUAL EXCEEDANCE PROBABILITY (AEP) OR ANNUAL RECURRENCE INTERVAL (ARI)
 - LOOK UP 24 HOUR DEPTH FOR THE ARI AND LOCATION
 - 6 INCHES FOR BEXAR COUNTY, TX

- HOW TO GENERATE SCS TYPE STORMS
 - GENERATE 24 HOUR STORM USING SCS TABULATIONS OR HEC-HMS
 - GET THE SWMM MODEL BUILT
 - OPEN HMS AND GENERATE A SCS STORM FROM THE METEROLOGICAL MODEL

BUILD A MINIMAL HEC MODEL

BUILD A MINIMAL HEC MODEL

BUILD A MINIMAL HEC MODEL

RUN THE HEC MODEL

NOW HAVE SCS TYPE II IN HEC-HMS, ONLY AFTER THE TWO COLUMNS IN THE TIME SERIES

 NOW GO TO THE SWMM MODEL AND BUILD A RAINGAGE TO ACCEPT THE TIME SERIES

SWMM RAINGAGE

- NOW COPY-PASTE FROM HMS TO SWMM THE TWO COLUMNS
 - EDIT TO FIX THE FIRST VALUE
 - EDIT TO FIX THE 24TH AND 25TH HOURS
 - SET THE TIME WINDOW
 - RUN SWMM

DONE! INTERPRET RESULTS

- SHOWED HOW TO USE HMS TO GENERATE SWMM INPUT.
- SWMM IS ALSO HANDY FOR GENERATING HMS INPUT
 - THE TIME ARITHMETIC IS MORE DEMANDING!

- CONDUITS IN SWMM
 - INVERT ELEVATIONS AND OFFSETS
 - DUAL DRAINAGE SYSTEMS