CE 3372 WATER SYSTEMS DESIGN

LESSON 18: INTRODUCTION TO SWMM FALL 2020

O

Storm Water Management Model

- Originally by University of Florida in the 1970's
- V1-4 are FORTRAN
- V5 re-factored into C++

• The computation engine is mature

- MIKE URBAN
- SOBEK

SWMM

- XP-SWMM
- Civil Storm

SWMM

- Started as a simplified hydraulic model, evolved into an integrated hydrology-hydraulics model
 - Pretty useful in urban settings
 - Used for BMP performance estimation
 - Used for LID performance estimation

DOWNLOAD AND INSTALL • Google "EPA-SWMM" to find the software • Download the self-extracting archive • Download the user manual

TOUR OF THE INTERFACE

- Nodes and Links
- Outfall
- Sub-catchments and Rain gages

0

- Date/Time
- Hydraulics
- Hydrology

NODES

- Junction Nodes
- Storage Nodes
 - Invert Elevations

٢

• Flooding

- Ordinary junction connects hydraulic elements (links)
- Junction attributes are:
 - Invert elevation (elevation of the bottom of the node)
 - Max elevation (elevation of top of node)
 - Set to land surface to plot profile grade line in SWMM
 - Set to land surface + added depth for dual (surface+subsurface drainage)
- When program runs, depth at the node is computed, but there is no storage (node has zero area)

• Ordinary junction just connects pipes N-1, N, and N+1

٢

• If flooding occurs, it is only considered when HGL is

Above node Max. Depth STREET SURFACE GROUND ELEV. JUNCTION J JUNCTION J CROWN OF JUNCTION J Ibeginning of surcharge PIRE N-1 PIRE N-1

INVERT JUNCTION J

Node <u>not</u> flooded; pipes are surcharged

Node flooded; pipes are surcharged

۵ آ

- Flooded node attributes:
 - How deep is the flooding allowed (surcharge depth) above the top of the node
 - What is the ponded area during surcharge treats the node as a vertical wall storage tank

EXAMPLE 1 : RECTANGULAR CHANNEL

• Steady flow over a weir; depth at the weir is 2.0 meters.

Determine the water surface profile for a distance 2000 meters upstream using SWMM.

EXAMPLE 2 : FLOW IN A SEWER

- Discharge in a 3 mile long, 60-inch RCP sewer is 50 MGD. What is the flow depth if the entire sewer is on a 0.1% slope and the downstream boundary (outfall) is a normal depth condition?
 - Hydraulic Data:
 - Circular: 60-inches (5 feet)
 - Steady flow Q = 50 million gallons per day (MGD)
 - $S_o = 0.001$
 - *n* = 0.015
 - $\Delta x = 2640$ feet (use 6 links)
 - Outfall boundary == normal

DESIGN STORM SEWER FOR GOODWIN STREET

- "Rational Method Storm Sewer Design" in Mays, L.
 W. (2008) Water Resources Engineering. Pearson-Prentice Hall (pp. 613-635)
- Method: Rational Equation Design Method to make initial design for subsequent hydraulics analysis

PREPARATION STEPS

- Identify the individual drainage areas.
- Determine the area of each contributing area, in acres. (ENGAUGE, PLANIMETER, etc)
- Determine the rational runoff coefficient for each area (TABLE LOOKUP)

GATHER THE INFORMATION INTO A SPREADSHEET

- Build a sheet with the information
- Note the naming convention (a bit awkward, but faithful to the original example)

● ● ● 📘 🕞 🗸 🥑 🔻 🕅 GoodwinStormSewer 🔍 Search Sheet 🛛 🙂 🗸													
	Home Inser	rt Page	Layout	Formulas	Data	Review	View	>>	🛂 Share 🔺				
F	Paste	A. • Font	Alignment	<mark>%</mark> ∙ Number	Format	ional Format t as Table = yles =	ting •	ng • Cells Editing					
G15 \ddagger X \checkmark $f_{\rm X}$ 5.1 \checkmark													
	Α	В	С	D	E	F	G	н	I				
2	Drainage Area ID	Drainage Area (acres)	Runoff Coefficient	Inlet ID	Inlet Time (min)		PipelD	NodelD-NodelD	Pipe Length (ft)	Pip			
4	1.1	2.26	0.65	1.1			1.1	1.1-2.1	415	;			
5	1.2	1.26	0.80	1.2			1.2	1.2-2.1	195	i			
6	2.1	3.89	0.70	2.1			2.2	2.2-3.1	213	\$			
7	2.2	0.53	0.80	2.2			2.1	2.1-3.1	188				
8	3.1	0.68	0.70	3.1			3.2	3.2-4.1	223				
10	3.2	1.58	0.65	3.2			3.3	3.1-4.1	156	-			
11	4.1	2.01	0.75	4.1			4.2	4.2-5.1	213				
12	4.2	0.66	0.85	4.2			4.1	4.1-5.1	193				
13	5.1	1.17	0.70	5.1			5.2	5.2-6.1	74	1			
14	5.2	0.66	0.65	5.2			5.3	5.3-6.1	138	6			
15	5.3	1.75	0.55	5.3			5.1	5.1-6.1	245	i -			
16	6.1	0.54	0.75	6.1			6.1	6.1-7.1	149)			
17	7.1	2.17	0.70	7.1			7.1	7.1-8.1	266	i			
18	Total	19.61											
Ready 🔠 🗉 — — + 100%													

ESTIMATE PIPE SLOPES

Use the node

 elevations and
 topographic map
 to estimate pipe
 slopes

 Populate the spreadsheet

<u>ج</u> ک	••	•				🔊 Good	winStormSewei			Q~ :	Search Sheet
yout For	lome Inser	Но	rmulas	Data	Review	View	Developer				
12 1	. X	1	- A-	A- =	= =		General		📔 Conditional F	ormatting 🔻	🖶 Insert 🔹
					= =	🖶 🔻 🚽			📝 Format as Tal	ble =	🗮 Delete 🔻
	ste 💞	Past	S - 1		*3 82	•	\$ * %)	00. 0. • 0. • 00.	📝 Cell Styles 🔻		Format *
1	‡ ×	4									
С	Α		D	E	F	G	н	I	J	к	L
										0 200	400 215
tunoff Inle efficient	Drainage Area ID	Dra	ilet ID	Inlet Time (min)		PipelD	NodelD-NodelD	Pipe Length (ft)	Pine Slope		Ťias
0.65	11	-	11	11		11	11-21	/15	0 0200		Green
0.80	1.1		1.1	9.2		1.1	1.2-2.1	195	0.0200		720
0.70	2.1		2.1	13.7		2.2	2.2-3.1	213	0.0180	- 11	
0.80	2.2		2.2	5.2		2.1	2.1-3.1	188	0.0245	8	
0.70	3.1		3.1	8.7		3.2	3.2-4.1	223	0.0175	9	3.2 0 4.1
0.85	3.2		3.2	5.9		3.3	3.3-4.1	138	0.0300		725. 2.2
0.65	3.3		3.3	11.8		3.1	3.1-4.1	166	0.0104		
0.75	4.1		4.1	9.5		4.2	4.2-5.1	213	0.0026	Cell	1.2 2.1
0.85	4.2		4.2	6.2		4.1	4.1-5.1	193	0.0041		730
0.70	5.1		5.1	10.3		5.2	5.2-6.1	74	0.0250		
0.65	5.2		5.2	11.8		5.3	5.3-6.1	138	0.0060	L	0.000
0.55	5.3	-	5.3	17.6		5.1	5.1-6.1	245	0.0028	— If	736
0.75	6.1	_	6.1	7.3		6.1	6.1-7.1	149	0.0030		
0.70	7.1 Total	To	7.1	14.5		7.1	7.1-8.1	266	0.0030		0005
	otal Sheet	To									

Ready

Average: 10.19285714 Count: 14 Sum: 142.7 📰 🗉