# CE 3372 WATER SYSTEMS DESIGN LESSON 16: STORM SEWERS, INLETS, AND CONDUITS

# REVIEW

\* Supercritical, Critical, or Subcritical

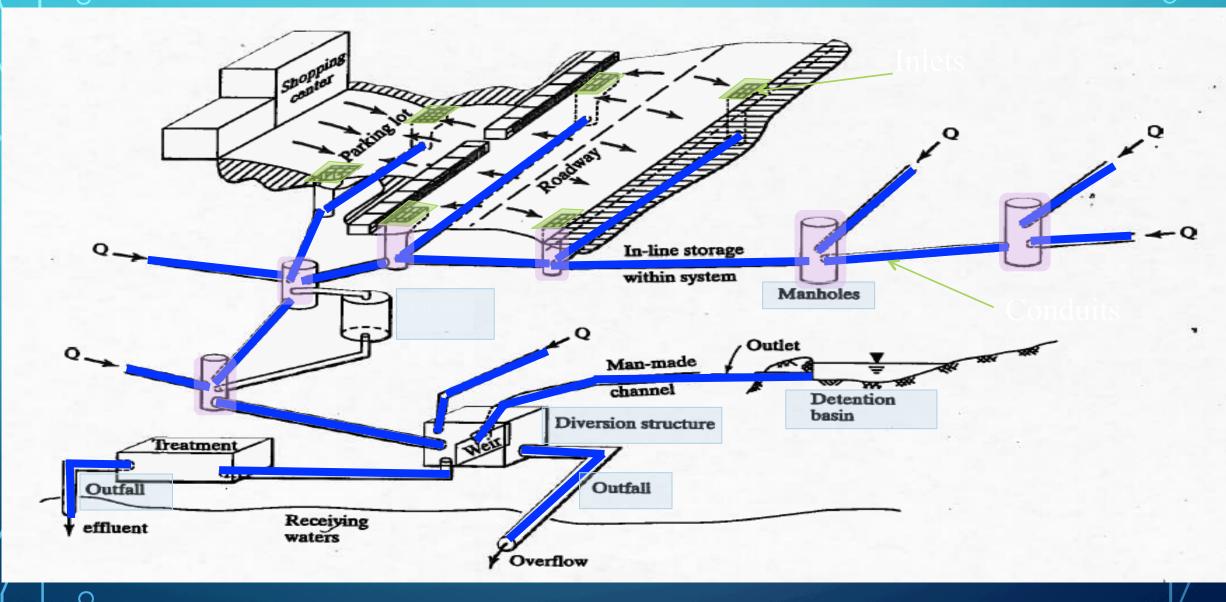
\* Location A?

\* Location B ?

\* Location C ?



# OUTLINE


- Storm sewer overview
  - Inlets
    - Design using FHWA methods
       (as specified in TxDOT Hydraulic Design Manual)
    - Representative of typical design computations involved, change to fit your jurisdiction

#### STORM SEWERS

- Inlets to capture runoff
- Conduits to convey to outfall
  - Lift Stations if cannot gravity flow to outfall
  - Detention and diversions
- Outfall release back into environment



# STORM SEWER SYSTEMS



#### STORM SEWER INLETS

- Spread width
- Combination Inlet
  - Curb+Grate
- Carryover
  - Flow that passes beyond the inlet (none in this picture complete capture)



#### STORM DRAINS

• A storm drain is a system of curbs and gutters, inlets, and pipe networks that receives runoff and conveys it to some point where it is discharged into a pond, channel, stream, or another pipe system.

 A storm drain may be comprised of a closed-conduit, an open conduit, or some combination of the two

## DESIGN CHALLENGES

- Drainage in urban areas is challenging because of:
  - Heavy traffic and subsequent higher risks
  - Wide roadway sections
  - Relatively flat grades, both longitudinal and transverse
  - -Shallow water courses
  - Absence of side ditches
  - Concentrated flow

#### DESIGN CHALLENGES

- Drainage in urban areas is challenging because of:
  - —Potential for costly property damage from water ponding or flow through built-up areas
  - Roadway section must carry traffic and serve as a channel to carry water to a discharge point
  - Limited ROW to place drainage infrastructure
  - Outfalls not convenient
  - Infrastructure impacts multiple jurisdictions
  - Water quality

# STORM DRAIN DESIGN

- Establish design parameters and criteria
  - Decide layout, component location, and orientation
- Use appropriate design tools
- Comprehensive documentation
- The process is iterative

## STREETS AND FLOW IN STREETS

Curb-and-gutter sections

Curb

Inlet (Curb Opening + Grate)

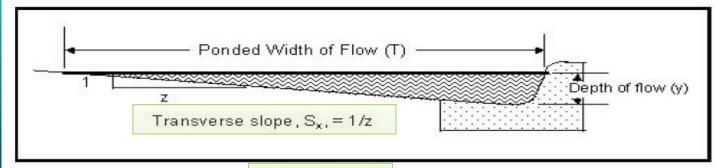
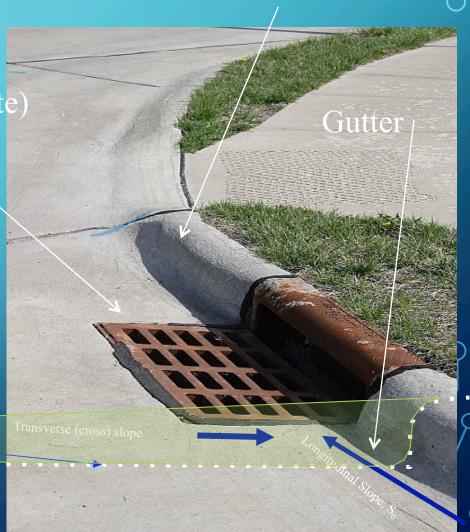
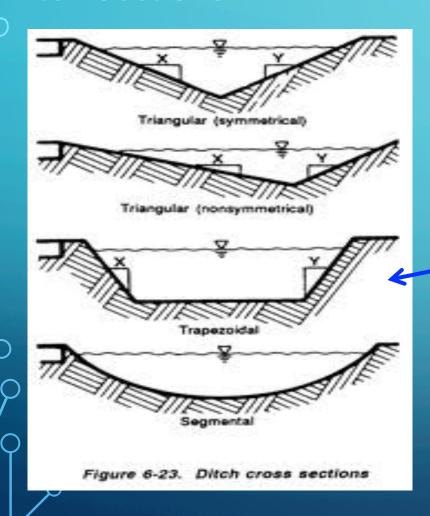





Figure 10-2. Gutter Flow Cross Section Definition of Terms



# STREETS AND FLOW IN STREETS

#### • Ditch sections





#### STREETS AND FLOW IN STREETS

Flow in curb-and-gutter sections

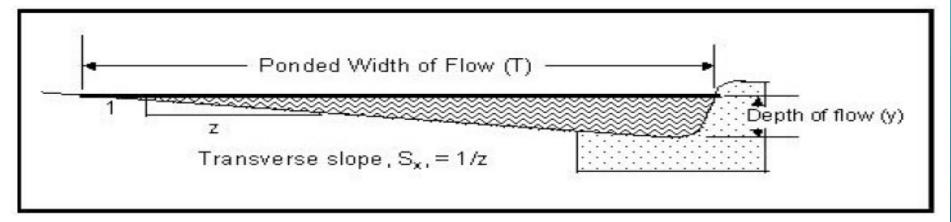



Figure 10-2. Gutter Flow Cross Section Definition of Terms

$$y = z \left(\frac{Q n S_x}{S^{1/2}}\right)^{3/8}$$
Equation 10-1.

$$T = 1.24 \left(\frac{Qn}{S_x^{5/3} S^{1/2}}\right)^{3/8}$$
Equation 10-4

#### RATIONAL & MODIFIED RATIONAL

- The "Rational Equation" is an equation that is used in the vast majority of urban storm drain designs.
- The basic equation (HDM) is:

$$Q = \frac{CIA}{Z}$$
Equation 4-20.

- Z is a dimensions correction coefficient
- C is a "runoff coefficient"
- I is rainfall intensity for an appropriate duration and frequency
- A is contributing area, in acres.

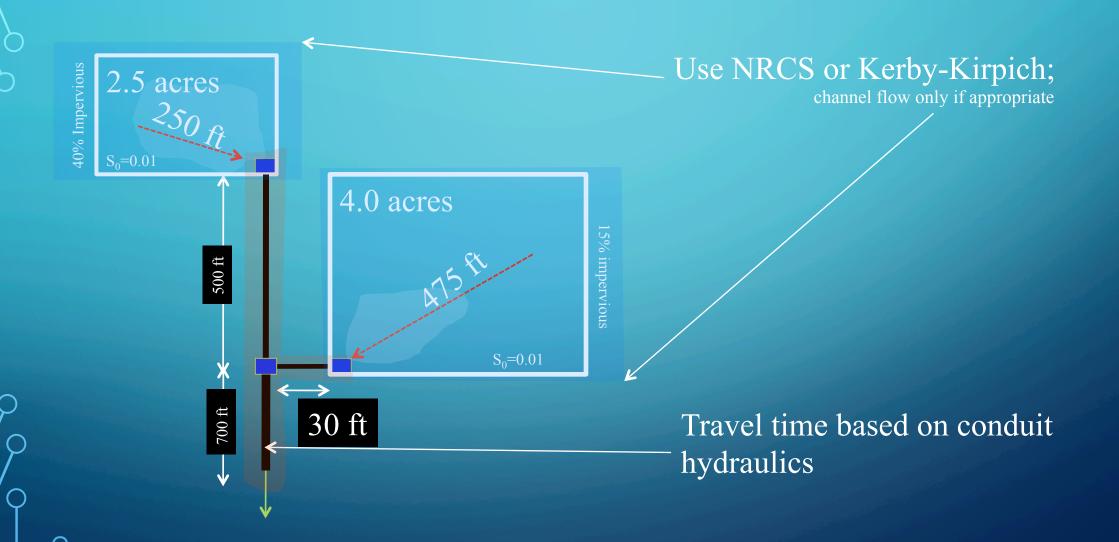
#### NTENSITY-DURATION-FREQUENCY

- Intensity is the ratio of an accumulated depth to some averaging time usually the time of concentration.
- Called "inlet time" for inlet design.

$$i_{avg} = \frac{D}{T_C}$$

## RUNOFF COEFFICIENTS

 Runoff coefficients are tabulated, and selected from a land use description


Chapter 4 — Hydrology

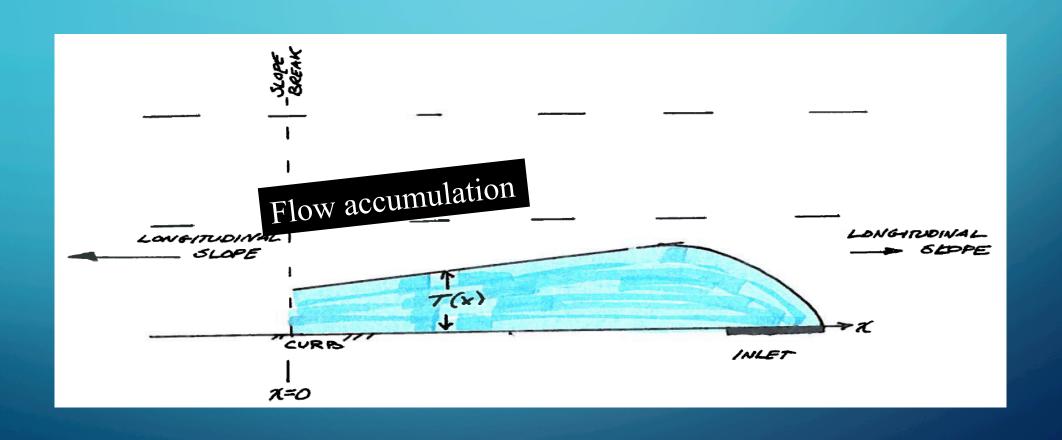
Section 12 — Rational Method

Table 4-10: Runoff Coefficients for Urban Watersheds

| Type of drainage area    | Runoff coefficient |
|--------------------------|--------------------|
| Business:                |                    |
| Downtown areas           | 0.70-0.95          |
| Neighborhood areas       | 0.30-0.70          |
| Residential:             |                    |
| Single-family areas      | 0.30-0.50          |
| Multi-units, detached    | 0.40-0.60          |
| Multi-units, attached    | 0.60-0.75          |
| Suburban                 | 0.35-0.40          |
| Apartment dwelling areas | 0.30-0.70          |
| Industrial:              |                    |
| Light areas              | 0.30-0.80          |
| Heavy areas              | 0.60-0.90          |
| Decles cometaries        | 0.10.0.26          |

# TC APPLIES WHERE?




#### CURBS

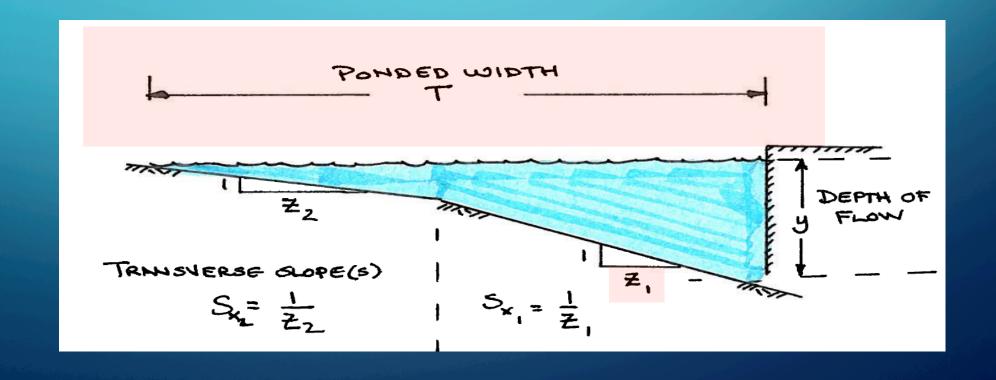
- Curbs are the usual roadway bounding feature in urban areas.
  - Vary in height from negligible to as much as 8 inches
- Curbs serve multiple purposes
  - Minor redirection for errant vehicles
  - Bounding feature for water running in the roadway as an open channel
- Curbs provide constraint that allows them to become a part of inlets.

## ROADWAY PONDING WIDTH

- The primary design criterion for urban storm drainage systems is usually "ponded width" in the roadway
  - Ponded width is the width of the roadway covered by ponded water
  - What remains is considered usable roadway
- The portion with water ponded is considered to be a traffic hazard
- In the design process, each side of the roadway must is considered separately with respect to ponding.

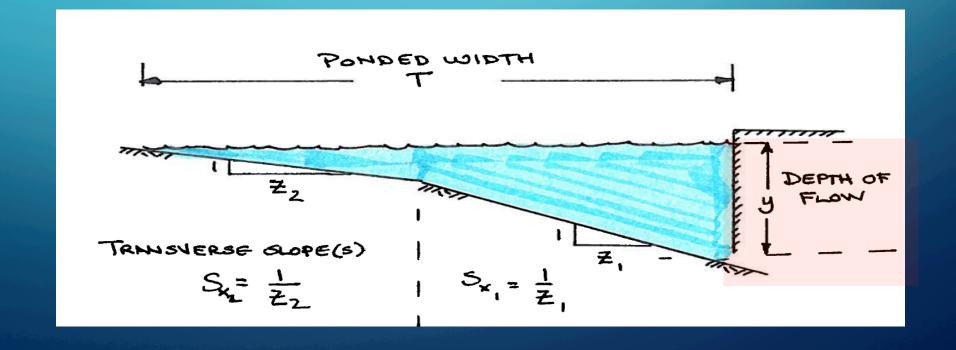
#### INCREASE IN PONDED WIDTH




#### VELOCITY AND TRAVEL TIME

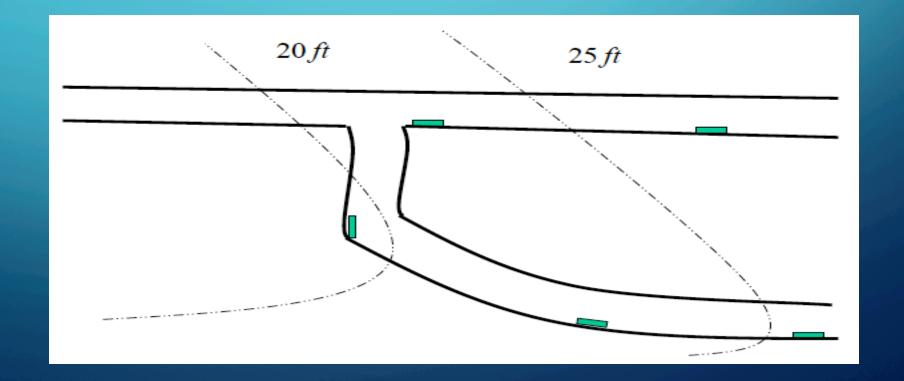
 As average velocity of contribution increases, travel time for a given distance decreases

• All other things being equal, as travel time decreases, critical duration decreases, and the intensity associated with it increases


#### PONDED WIDTH

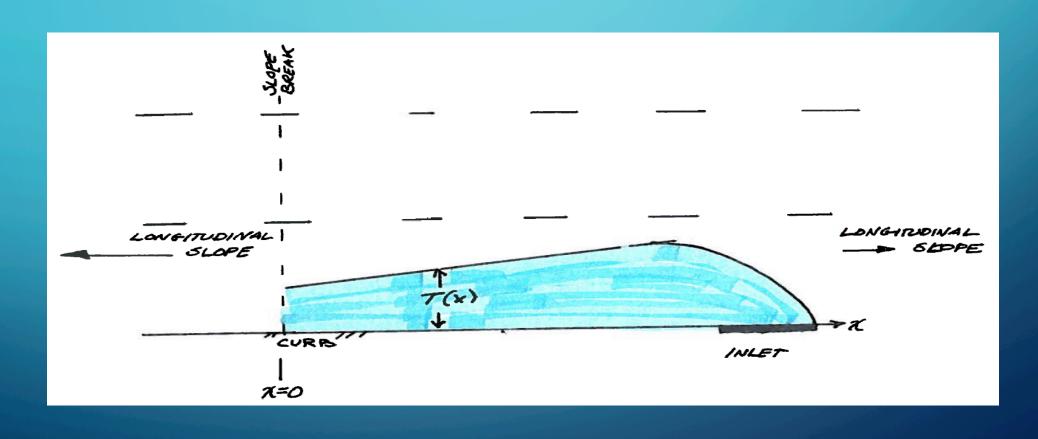
- Ponded width computations will usually involve all "Z" values in the typical section.
- Z<sub>1</sub> is usually the slope closest to the curb and gutter.




#### PONDED DEPTH

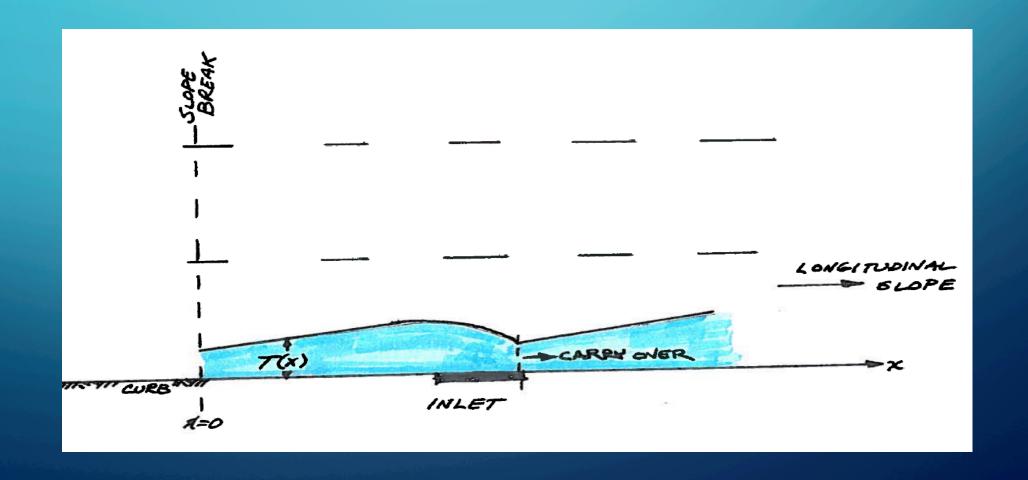
- Ponded depth is the depth at the curb (or edge).
- If at an inlet, the depth would be measured from the lip of the inlet.




# INLET PLACEMENT TO REDUCE WIDTH

- Inlets are placed in low points
- Consider intersections
- Acceptable ponding widths




# INLET PLACEMENT TO REDUCE WIDTH

b • Ponding width

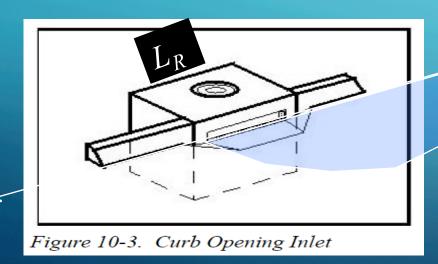


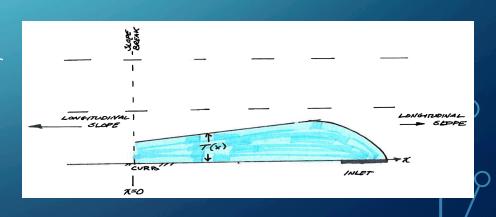
## INLET PLACEMENT TO REDUCE WIDTH

Partial capture with carryover



## INLET PLACEMENT


- Locations dictated by physical demands, hydraulics, or both
- Logical locations include:
  - Sag configurations
  - Near intersections
  - At gore islands
  - Super-elevation transitions
- Allowable ponded width guides location selection

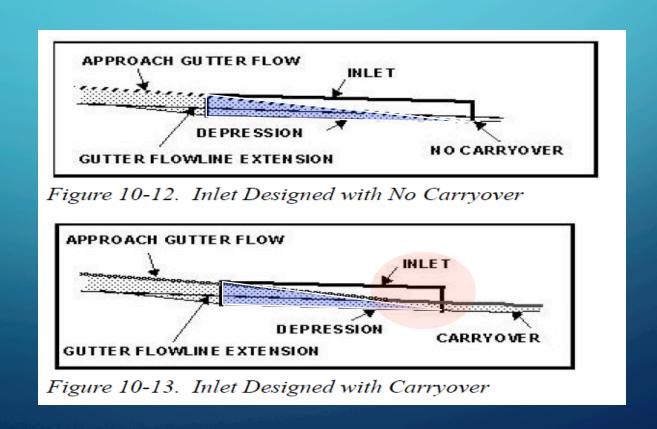

## ALLOWABLE PONDED WIDTH

- Typical Transportation Guidelines
  - Limit ponding to one-half the width of the outer lane for the main lanes of interstate and controlled access highways
  - Limit ponding to the width of the outer lane for major highways, which are highways with two or more lanes in each direction, and frontage roads
  - Limit ponding to a width and depth that will allow the safe passage of one lane of traffic for minor highways

## CURB INLET ON GRADE

- Compute length of inlet for total interception
- Subjective decision of actual length
- Estimate carryover






#### CURB INLET ON GRADE

- Design guidance in HDM pp. 10-30 10-35.
- Formula for estimating required length
  - Need geometry
  - Need desired flow (to capture)
  - Calculate equivalent cross slope
    - Inlet height used here
  - Apply formula for required inlet length

#### CURB INLET ON GRADE

- Value of carryover
  - Uses more of inlet open area hence may be able to use shorter inlet (if there is compelling need)

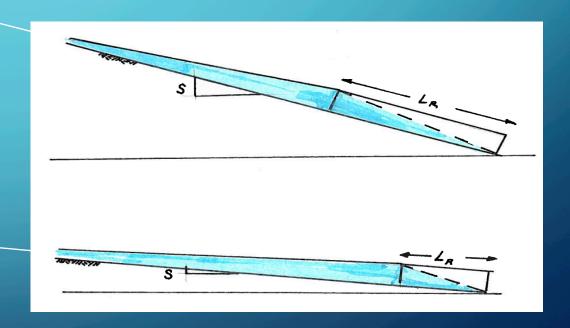


### PROFILE GRADE VS. INLET LENGTH

- Inlet length is proportional to longitudinal slope
- As slope increases, required length increases

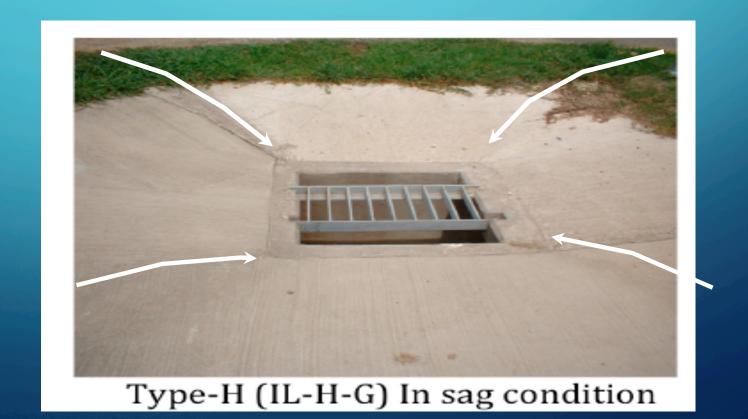
$$L_R \propto S^{0.3}$$

$$L_{r} = z Q^{0.42} S^{0.3} \left(\frac{1}{n S_{e}}\right)^{0.6}$$
Equation 10-15.


Length for complete capture

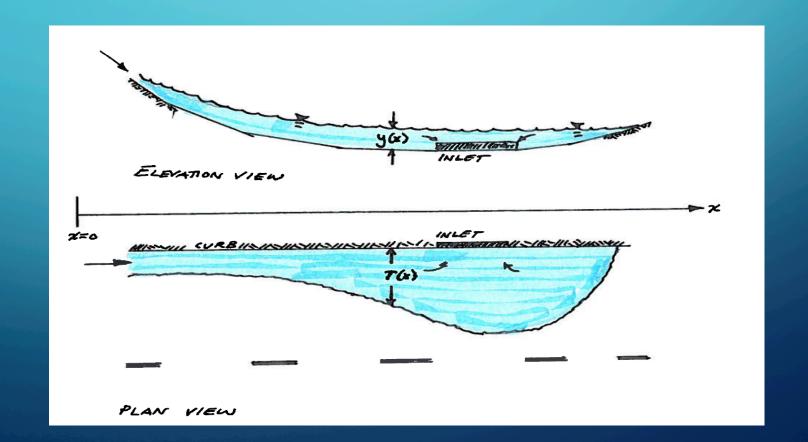
Longitudinal slope

## PROFILE GRADE VS. INLET LENGTH


- Inlet length is proportional to longitudinal slope
- As slope increases, required length increases

$$L_R \propto S^{0.3}$$




#### SAG INLETS

- Inlets placed at low point of a vertical curve.
- Various actual geometries, lowest point is the key feature.



#### PONDED WIDTH VS. VERTICAL CURVATURE

As slope of vertical curve decreases, spread width increases



# ONDED WIDTH VS. VERTICAL CURVATURE

Median inlet configuration

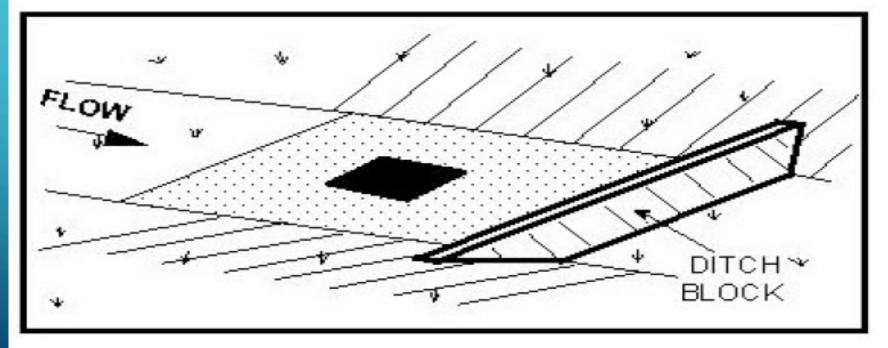
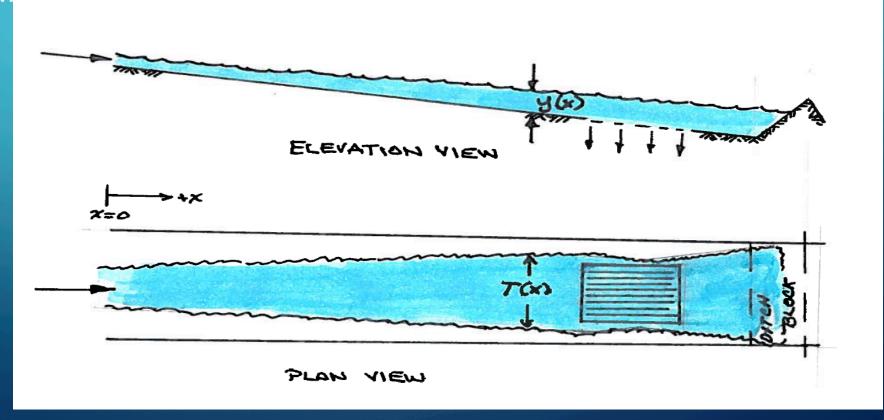




Figure 10-8. Median/Ditch Inlet

# PONDED WIDTH VS. VERTICAL CURVATURE

Median inlet configuration



# NLETS AND INLET PERFORMANCE (VIDEOS)

Grate On-Grade



# NLETS AND INLET PERFORMANCE (VIDEOS)

Grate with Ditch Block (Sag Condition)



# INLETS AND INLET PERFORMANCE (VIDEOS)

Tandem Grate Inlets On Grade



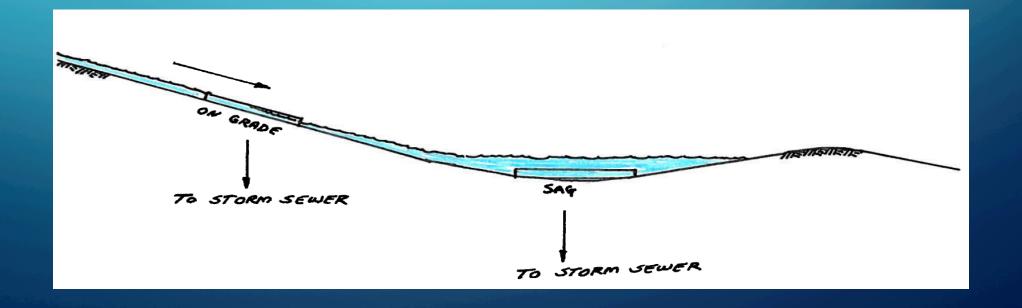
### Tandem Grate Inlets with Ditch Block (Sag Condition)



# DESIGN DISCHARGE

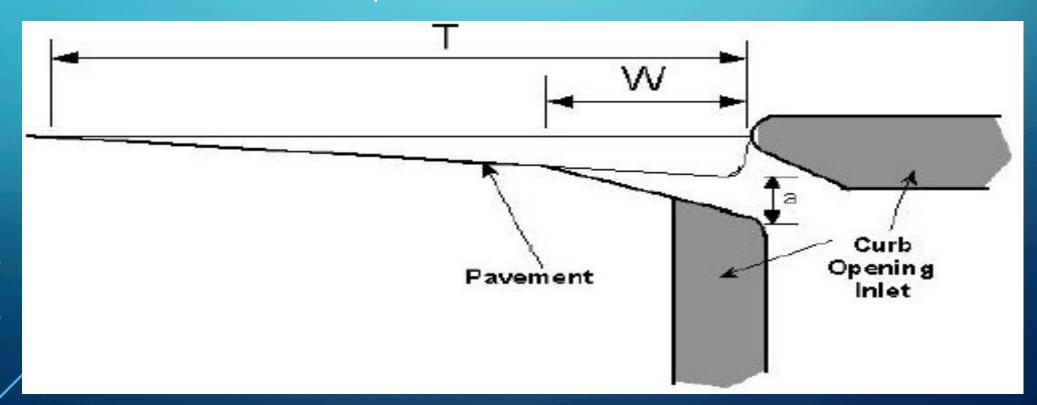
- The design discharge to the inlet is based on the desired risk (AEP), the surface area that drains to the inlet, and the time of concentration
- The time of concentration in this context is also called the inlet time

# DESIGN DISCHARGE (1 OF 2)


- The "steps" for the inlet are:
  - State the desired risk (typically 10-50% AEP)
  - Determine the area that drains to the inlet
  - Determine the T<sub>c</sub> appropriate for the area
    - If T<sub>c</sub><10 min., then use 10 min as the averaging time.

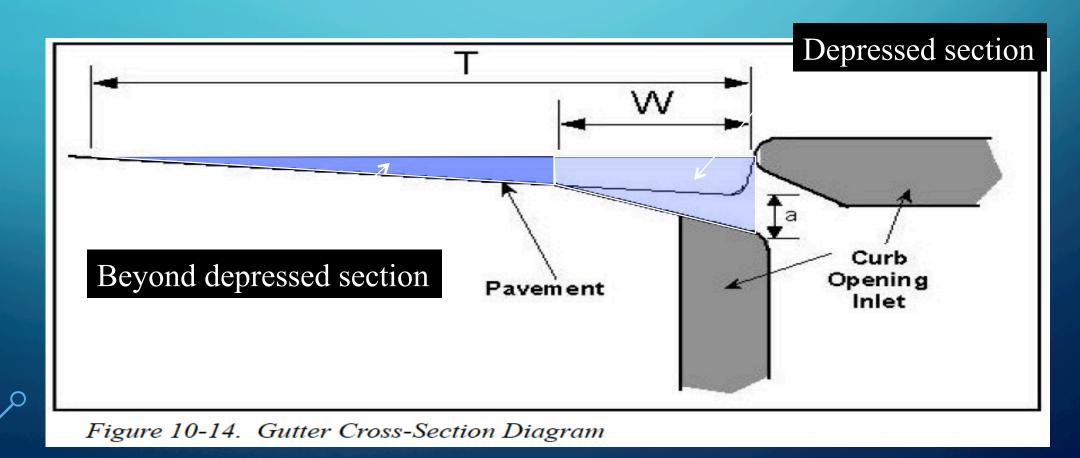
# DESIGN DISCHARGE (2 OF 2)

- The "steps" for the inlet are:
  - Compute intensity from T<sub>c</sub>.
    - EBDLKUP.xls, or equation in HDM be sure to check time units with either tool!
  - Estimate a reasonable runoff coefficient, C.
  - Papply rational equation to estimate design discharge, Q


## CAPACITY COMPUTATIONS

- Based on the design flow, gutter geometry, longitudinal and cross slope, and inlet length and height.
- Computations for Inlet On-grade
- Computations for Inlet in Sag




### CURB OPENING INLET DESIGN VARIABLES

- Ponding width = T
- Gutter depression = a
- Gutter depression width = W



### DETERMINING INLET LENGTH

Use HDM Equations 10-8 through 10-16



# NÖRMAL DEPTH

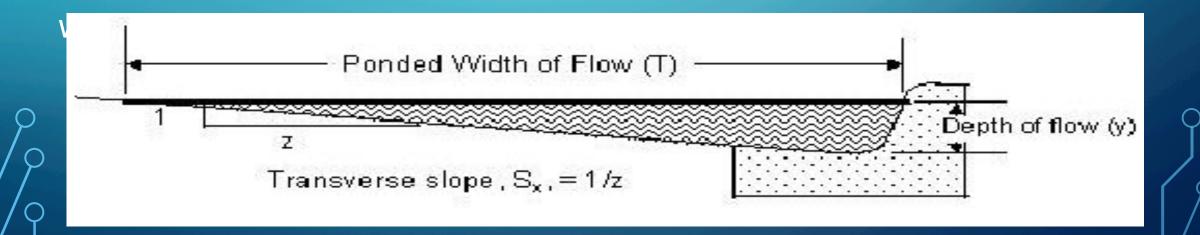
> TxDOT HDM Eq 10-1

$$d = 1.24 \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$$

#### where

```
Q = \text{design flow (cfs);}

n = \text{Manning' s roughness coefficient;}


S_x = \text{pavement cross slope;}

S = \text{friction slope;} d = \text{ponded depth (ft).}
```

## PONDED WIDTH

• TxDOT HDM Eq 10-2

$$T=\frac{d}{S_x}$$



# RATIO OF DEPRESSED SECTION FLOW TO TOTAL FLOW

TxDOT HDM Eq 10-8

$$E_o = \frac{K_w}{K_w + K_o}$$

where

 $K_w$  = conveyance in depressed section (cfs);  $K_o$  = conveyance beyond depressed section (cfs);  $E_o$  = ratio of depressed section flow to total flow.

# CONVEYANCE

• TxDOT HDM Eq 10-9

$$K = \frac{1.486A^{5/3}}{nP^{2/3}}$$

#### where

A =cross section area (sq ft);

n = Manning roughness coefficient;

P =wetted perimeter (ft);

K = conveyance.

### AREA OF THE DEPRESSED GUTTER SECTION

• TxDOT HDM Eq 10-10

$$Aw = WSx\left(T - \frac{W}{2}\right) + \frac{1}{2}aW$$

#### where

```
W = depression width (ft);
```

$$S_x$$
 = pavement cross slope;

$$T =$$
ponded width (ft);

$$a = \text{curb opening depression (ft)};$$

$$A_w$$
 = area of depressed gutter section(sq.ft.).

### WETTED PERIMETER OF THE DEPRESSED GUTTER SECTION

• TxDOT HDM Eq 10-11

$$Pw = \sqrt{(WS_X + a)^2 + W^2}$$

#### where

```
W = depression width (ft);

S_x = pavement cross slope;

a = curb opening depression (ft);

P_w = wetted perimeter of depressed gutter section (ft).
```

### AREA OF CROSS SECTION BEYOND THE DEPRESSION

• TxDOT HDM Eq 10-12

where 
$$A_o = \frac{S_x}{2} (T - W)^2$$

 $S_x$  = pavement cross slope;

T = ponded width (ft);

W = depression width (ft);

 $A_o$  = area of cross section beyond depression.

# WETTED PERIMETER OF CROSS SECTION BEYOND THE DEPRESSION

• TxDOT HDM Eq 10-13

$$P_o = T - W$$

where

T = ponded width (ft); W = depression width (ft);  $P_{\mathcal{O}} = \text{wetted perimeter of cross section beyond depression (ft).}$ 

# EQUIVALENT CROSS SLOPE

• TxDOT HDM Eq 10-14

$$S_e = S_x + \frac{a}{W} E_o$$

#### where

 $S_x$  = pavement cross slope;

a = curb opening depression (ft);

W = depression width (ft);

 $E_0$  = ratio of depression flow to total flow;

 $S_e$  = equivalent cross slope.

### LENGTH OF CURB INLET REQUIRED

\* TxDOT HDM Eq 10-15

where

$$Lr = 0.6Q^{0.42}S^{0.3} \left(\frac{1}{nS_e}\right)^{0.6}$$

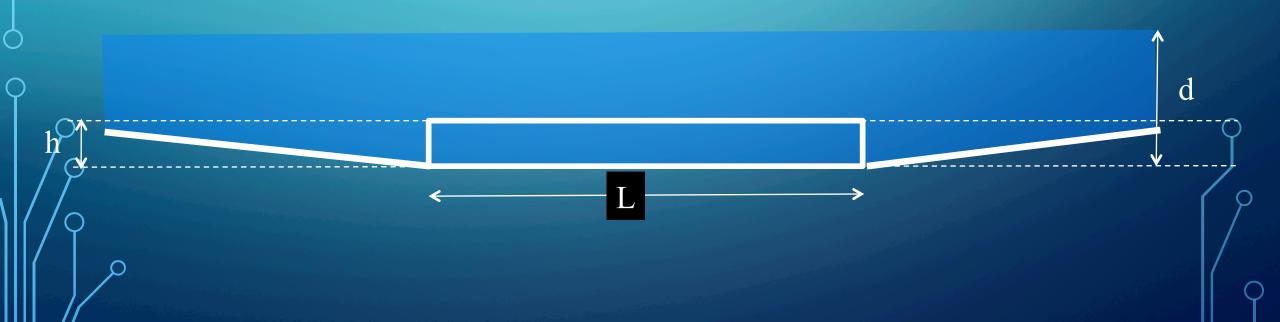
Q = flow (cfs);

S = longitudinal slope;

n = Manning's roughness coefficient;

 $S_e$  = equivalent cross slope;

 $L_r$  = length of curb inlet required.


# USE SPREADSHEET TOOL

- Implements inlet computations
- Need to think about what trying to accomplish; the tool is not yet nbr ena

|    | А                  | R              | C             | ט              | E                | F |  |
|----|--------------------|----------------|---------------|----------------|------------------|---|--|
| 1  |                    | ot Capacity Ca | Iculations    |                |                  |   |  |
| 2  | ID                 | ES13-Inlet     |               |                |                  |   |  |
| 3  | Q                  | 11             | <-Discharge ( | cfs)           | Carryover = 1    |   |  |
| 4  | Sx                 | 0.02           | <-Transverse  | Slope          | Total Q = 12 cfs |   |  |
| 5  | S                  | 0.0035         | <-Longitudina | al Slope       |                  |   |  |
| 6  | n                  | 0.013          | <-Manning's   | n              |                  |   |  |
| 7  |                    |                |               |                |                  |   |  |
| 8  | У                  | 0.40           | <-Normal De   | pth (HDM 10-   | -1)              |   |  |
| 9  | Т                  | 19.955639      | <-Ponded Wi   | dth (HDM 10-   | -2)              |   |  |
| .0 | Depressed S        | ection         |               |                |                  |   |  |
| .1 | W                  | 5              | <-Depression  | Width          |                  |   |  |
| .2 | а                  | 0.35           | <-Depression  | Depth          |                  |   |  |
| .3 |                    |                |               |                |                  |   |  |
| .4 | Α                  | 2.6205639      | <-Flow Area   | (HDM 10-10)    |                  |   |  |
| .5 | Р                  | 5.0202092      | <-Wetted Pe   |                |                  |   |  |
| .6 | K                  | 194.20132      | <-Conveyanc   | e (HDM 10-9)   |                  |   |  |
| .7 | <b>Beyond Depr</b> | essed Section  | 1             |                |                  |   |  |
| .8 | Ao                 | 2.2367114      | <-Flow Area   | (HDM 10-12)    |                  |   |  |
| .9 | Ро                 | 14.955639      | <-Wetted Pe   | rimeter (HDM   | 1 10-13)         |   |  |
| 20 | Ко                 | 72.036961      | <-Conveyanc   | e (HDM 10-9)   |                  |   |  |
| 1  | Flow Ratio         |                |               |                |                  |   |  |
| 22 | E                  | 0.7294267      | <-Flow ratio  | (HDM 10-8)     |                  |   |  |
| 23 | Se                 | 0.0710599      | <-Equivalent  | Side Slope (H  | DM 10-14)        |   |  |
| 24 |                    |                |               |                |                  |   |  |
| 25 | Lr                 | 19.925807      | <-Required L  | ength (HDM 1   | LO-15)           |   |  |
| 26 |                    |                |               |                |                  |   |  |
| 27 | Equations Ab       | ove are from   | the 2011 Hyd  | draulic Design | Manual           |   |  |
| 28 |                    |                |               |                |                  |   |  |

### CAPACITY IN SAG PLACEMENT

- Depends on water depth at opening and opening height
- Determine if orifice-only flow (d>1.4h)
- If d<1.4h compute using a weir flow equation and orifice flow equation for the depth condition, then choose the larger length



# ORIFICE FLOW

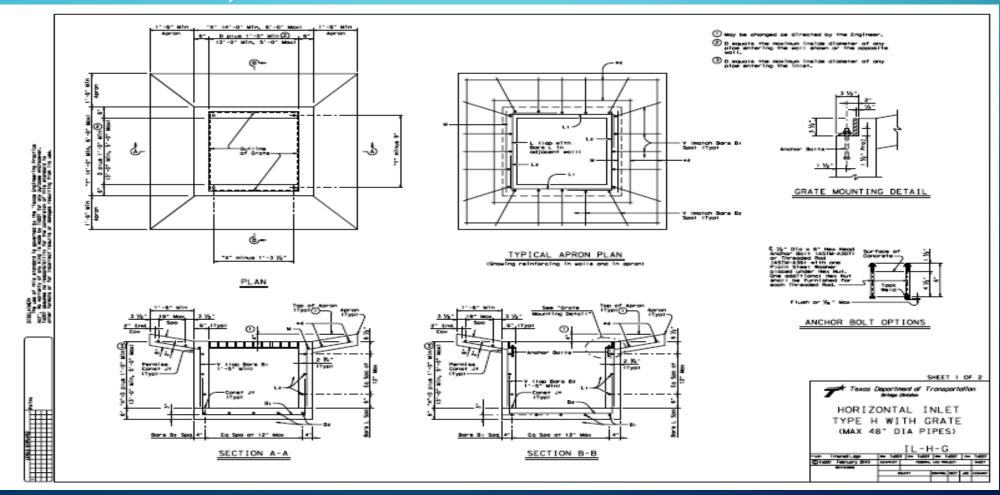
- d>1.4h
- Use equation 10-19

$$Q = C_o h L \sqrt{2gd_o}$$

Equation 10-19.

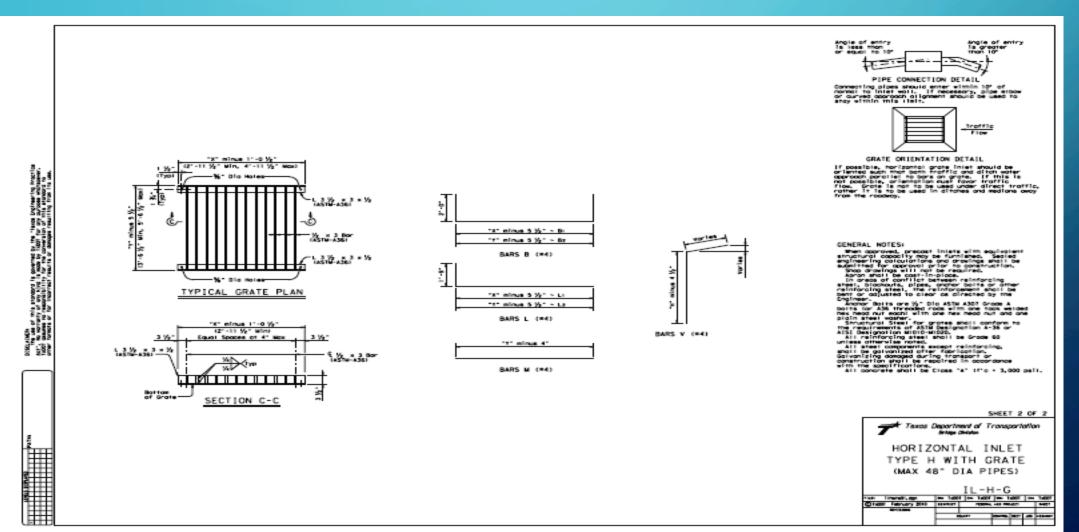
$$L = \frac{Q}{C_0 h \sqrt{2gd_0}}$$

# WEIR FLOW


- d<1.4h
- Use equation 10-18

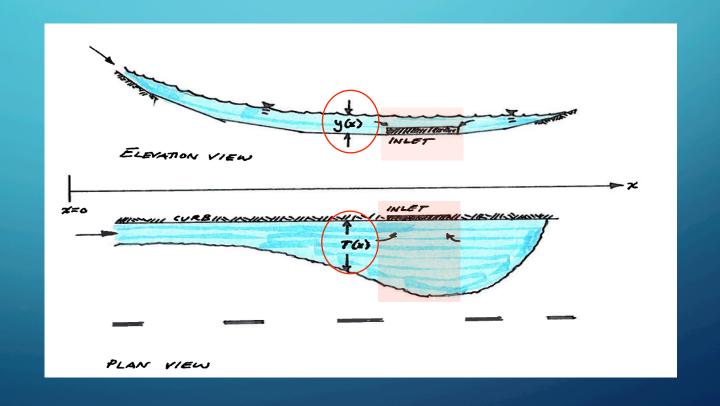
$$L = \frac{Q}{C_w d^{1.5}} - 1.8W$$
Equation 10-18.




### UNLETS AND INLET PERFORMANCE

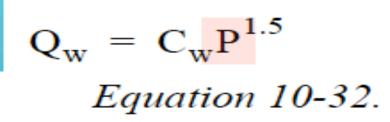
 Choose grate of standard dimension (e.g. Type-H, etc. from standards and specifications server)




### WILETS AND INLET PERFORMANCE

 Choose grate of standard dimension (e.g. Type-H, etc. from standards and specifications server)




## INLETS AND INLET PERFORMANCE

Determine allowable head (depth) for the inlet location. Lower of the curb height and depth associated with allowable pond width



### NULETS AND INLET PERFORMANCE

- Determine the capacity of the grate inlet opening as a weir.
- Perimeter controls the capacity.



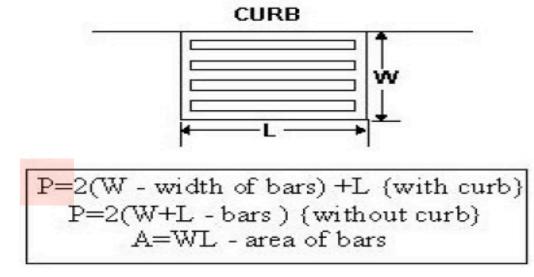
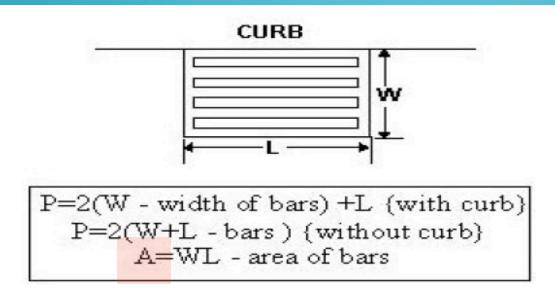




Figure 10-16. Perimeter Length for Grate Inlet in Sag Configuration

### INLETS AND INLET PERFORMANCE

- Determine the capacity of the grate inlet opening as an **orifice**.
- Area controls the capacity.



$$Q_o = C_o A \sqrt{2 g h}$$
  
Equation 10-33.

Figure 10-16. Perimeter Length for Grate Inlet in Sag Configuration

## INLETS AND INLET PERFORMANCE

 Compare the weir and orifice capacities, choose the lower value as the inlet design capacity.

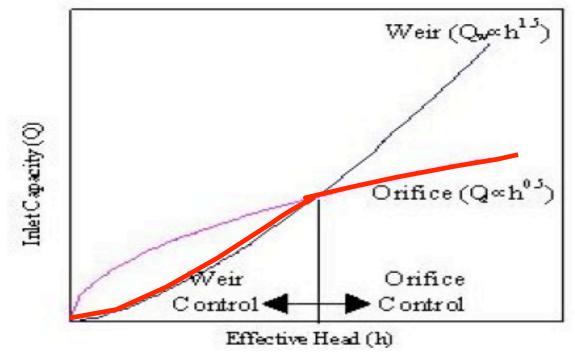



Figure 10-17. Relationship between Head and Capacity for Weir and Orifice Flow

# SPREADSHEET TOOLS

| 1  | Α                                | В                                | С                       | D             | Е             | F               | G              | Н            |              |  |
|----|----------------------------------|----------------------------------|-------------------------|---------------|---------------|-----------------|----------------|--------------|--------------|--|
| 1  | Inlet Intercep                   | t Capacity                       | Calculations            |               |               |                 |                |              |              |  |
| 2  | ID                               | H2                               |                         |               |               |                 |                |              |              |  |
| 3  | Q                                | 4.53384                          | <-Discharge (           | cfs)          |               |                 |                |              |              |  |
| 4  | Sx                               | 0.02083                          | <-Transverse Slope      |               |               |                 |                |              |              |  |
| 5  | S                                | 0.005                            | <-Longitudinal Slope    |               |               |                 |                |              |              |  |
| 6  | n                                | 0.016                            | <-Manning's n           |               |               |                 |                |              |              |  |
| 7  |                                  |                                  |                         |               |               |                 |                |              |              |  |
| 8  | У                                | 0.29388                          | <-Normal De             | pth (HDM 10-  | -1)           |                 |                |              |              |  |
| 9  | Т                                | 14.1062                          | <-Ponded Width (HDM 10- |               | -2)           |                 |                |              |              |  |
| 10 |                                  |                                  |                         |               |               |                 |                |              |              |  |
| 11 | L                                | 3                                | <-Length                |               |               |                 |                |              |              |  |
| 12 | w                                | 1.5                              | <-Width                 |               |               |                 |                |              |              |  |
| 13 |                                  |                                  |                         |               |               |                 |                |              |              |  |
| 14 | Frontal Conv                     | Frontal Conveyance               |                         |               |               |                 |                |              |              |  |
| 15 | Af                               | 0.41738                          | <-Flow Area             | (HDM 10-10)   |               |                 |                |              |              |  |
| 16 | Pf                               | 1.50033                          | <-Wetted Per            | rimeter (HDN  | 1 10-11)      |                 |                |              |              |  |
| 17 | Kw                               | 16.5195                          | <-Conveyanc             | e (HDM 10-9)  |               |                 |                |              |              |  |
| 18 | Curb Convey                      | ance                             |                         |               |               |                 |                |              |              |  |
| 19 | Ao                               |                                  | <-Flow Area             |               |               |                 |                |              |              |  |
| 20 | Po                               |                                  | <-Wetted Per            |               |               |                 |                |              |              |  |
| 21 | Ко                               | 39.7195                          | <-Conveyanc             | e (HDM 10-9)  |               |                 |                |              |              |  |
| 22 | Flow Ratio                       |                                  |                         |               |               |                 |                |              |              |  |
| 23 | E                                |                                  | <-Flow ratio            | (HDM 10-8)    |               |                 |                |              |              |  |
| 24 | Splash Over \                    |                                  |                         |               |               |                 |                |              |              |  |
| 25 | vo                               | 6.126 Parallel Bars with Transve |                         | rse Rods Grat | e (formula ch | anges for diffe | erent grates s | ee Table HDN | /l pg 10-40) |  |
| 26 | Approach Ve                      |                                  |                         |               |               |                 |                |              |              |  |
| 27 | v                                |                                  | <-Velocity (H           | DM 10-26)     |               |                 |                |              |              |  |
| 28 | Ratio Frontal Flow to Total Flow |                                  |                         |               |               |                 |                |              |              |  |
| 29 | Rf                               |                                  | <-Ratio (HDM            | 1 10-24,10-25 | )             |                 |                |              |              |  |
| 30 | Ratio Side Flo                   |                                  |                         |               |               |                 |                |              |              |  |
| 31 | Rs                               | 0.29815                          | <-Ratio (HDN            | 1 10-28)      |               |                 |                |              |              |  |
| 32 | Efficiency                       |                                  |                         |               |               |                 |                |              |              |  |
| 33 | Ef                               | 0.50431                          | <-Efficiency (          | HDM 10-29)    |               |                 |                |              |              |  |
| 34 | Capture                          |                                  |                         |               |               |                 |                |              |              |  |
| 35 | Qi                               | 2.28646                          | <- (HDM 10-3            | 30)           |               |                 |                |              |              |  |
| 36 | Carryover                        |                                  |                         |               |               |                 |                |              |              |  |
| 37 | Qco                              | 2.24738                          | <- (HDM 10-3            | 31)           |               |                 |                |              |              |  |
| 38 |                                  |                                  |                         |               |               |                 |                |              |              |  |

### **NEXT TIME**

- Conduit design
  - Rational method for storm sewer conduit sizing (by-hand)
  - Used to obtain initial estimates of required diameters, flowlines, and hydraulic grade lines.