CE 3372 WATER SYSTEMS DESIGN

LESSON 16: STORM SEWERS, INLETS, AND CONDUITS FALL 2020

Ó

REVIEW

* Supercritical, Critical, or Subcritical

OUTLINE

- Storm sewer overview
- Inlets
 - Design using FHWA methods (as specified in TxDOT Hydraulic Design Manual)
 - Representative of typical design computations involved, change to fit your jurisdiction

STORM SEWERS

- Inlets to capture runoff
- Conduits to convey to outfall
 - Lift Stations if cannot gravity flow to outfall
 - Detention and diversions

 \bigcirc

 Outfall release back into environment

STORM SEWER SYSTEMS

STORM SEWER INLETS

- Spread width
- Combination Inlet
 - Curb+Grate
- Carryover
 - Flow that passes beyond the inlet (none in this picture - complete
 capture)

STORM DRAINS

 A storm drain is a system of curbs and gutters, inlets, and pipe networks that receives runoff and conveys it to some point where it is discharged into a pond, channel, stream, or another pipe system.

 A storm drain may be comprised of a closed-conduit, an open conduit, or some combination of the two

DESIGN CHALLENGES

- Drainage in urban areas is challenging because of:
 - Heavy traffic and subsequent higher risks
 - -Wide roadway sections
 - Relatively flat grades, both longitudinal and transverse
 - Shallow water courses
 - Absence of side ditches
 - Concentrated flow

DESIGN CHALLENGES

- Drainage in urban areas is challenging because of:
 - Potential for costly property damage from water ponding or flow through built-up areas
 - Roadway section must carry traffic and serve as a channel to carry water to a discharge point
 - Limited ROW to place drainage infrastructure
 - -Outfalls not convenient
 - Infrastructure impacts multiple jurisdictions
 - Water quality

STORM DRAIN DESIGN

- Establish design parameters and criteria
- Decide layout, component location, and orientation
- Use appropriate design tools
- Comprehensive documentation
- The process is iterative

STREETS AND FLOW IN STREETS

• Ditch sections

STREETS AND FLOW IN STREETS

Flow in curb-and-gutter sections

Figure 10-2. Gutter Flow Cross Section Definition of Terms

RATIONAL & MODIFIED RATIONAL

- The "Rational Equation" is an equation that is used in the vast majority of urban storm drain designs.
- The basic equation (HDM) is:

$$Q = \frac{CIA}{Z}$$

Equation 4-20.

- Z is a dimensions correction coefficient
- C is a "runoff coefficient"
- I is rainfall intensity for an appropriate duration and frequency
- A is contributing area, in acres.

INTENSITY-DURATION-FREQUENCY

- Intensity is the ratio of an accumulated depth to some averaging time usually the time of concentration.
- Called "inlet time" for inlet design.

$$i_{avg} = \frac{D}{T_C}$$

RUNOFF COEFFICIENTS

Runoff coefficients are tabulated, and selected from a land use description.

Chapter 4 — Hydrology

Section 12 - Rational Method

Type of drainage area	Runoff coefficient				
Business:					
Downtown areas	0.70-0.95				
Neighborhood areas	0.30-0.70				
Residential:					
Single-family areas	0.30-0.50				
Multi-units, detached	0.40-0.60				
Multi-units, attached	0.60-0.75				
Suburban	0.35-0.40				
Apartment dwelling areas	0.30-0.70				
Industrial:					
Light areas	0.30-0.80				
Heavy areas	0.60-0.90				
Deduc constants	0.10.0.25				

Table 4-10: Runoff Coefficients for Urban Watersheds

TC APPLIES WHERE?

CURBS

• Curbs are the usual roadway bounding feature in urban areas.

Vary in height from negligible to as much as 8 inches

• Curbs serve multiple purposes

- Minor redirection for errant vehicles
- Bounding feature for water running in the roadway as an open channel

 Curbs provide constraint that allows them to become a part of inlets.

ROADWAY PONDING WIDTH

- The primary design criterion for urban storm drainage systems is usually ponded width" in the roadway
 - Ponded width is the width of the roadway covered by ponded water
 - What remains is considered usable roadway
- The portion with water ponded is considered to be a traffic hazard
- In the design process, each side of the roadway must is considered separately with respect to ponding.

INCREASE IN PONDED WIDTH

VELOCITY AND TRAVEL TIME

 As average velocity of contribution increases, travel time for a given distance decreases

 All other things being equal, as travel time decreases, critical duration decreases, and the intensity associated with it increases

PONDED WIDTH

- Ponded width computations will usually involve all "Z" values in the typical section.
- \sim Z₁ is usually the slope closest to the curb and gutter.

PONDED DEPTH

- Ponded depth is the depth at the curb (or edge).
- If at an inlet, the depth would be measured from the lip of the inlet.

INLET PLACEMENT TO REDUCE WIDTH

- Inlets are placed in low points
- Consider intersections
- Acceptable ponding widths

INLET PLACEMENT TO REDUCE WIDTH

• Ponding width

INLET PLACEMENT TO REDUCE WIDTH

• Partial capture with carryover

INLET PLACEMENT

- Locations dictated by physical demands, hydraulics, or both
- Logical locations include:
 - Sag configurations
 - Near intersections
 - At gore islands
 - Super-elevation transitions
- Allowable ponded width guides location selection

ALLOWABLE PONDED WIDTH

Typical Transportation Guidelines

- Limit ponding to one-half the width of the outer lane for the main lanes of interstate and controlled access highways
- Limit ponding to the width of the outer lane for major highways, which are highways with two or more lanes in each direction, and frontage roads
- Limit ponding to a width and depth that will allow the safe passage of one lane of traffic for minor highways

CURB INLET ON GRADE

- Compute length of inlet for total interception
- Subjective decision of actual length
- Estimate carryover

CURB INLET ON GRADE

- Design guidance in HDM pp. 10-30 10-35.
- Formula for estimating required length
 - Need geometry
 - Need desired flow (to capture)
 - Calculate equivalent cross slope
 - Inlet height used here
 - Apply formula for required inlet length

CURB INLET ON GRADE

• Value of carryover

 Uses more of inlet open area – hence may be able to use shorter inlet (if there is compelling need)

CARRYOVER

GUTTER FLOWLINE EXTENSION

- Inlet length is proportional to longitudinal slope
- As slope increases, required length increases

PROFILE GRADE VS. INLET LENGTH

- Inlet length is proportional to longitudinal slope
- As slope increases, required length increases

SAG INLETS

- Inlets placed at low point of a vertical curve.
- Various actual geometries, lowest point is the key feature.

PONDED WIDTH VS. VERTICAL CURVATURE

• As slope of vertical curve decreases, spread width increases

PONDED WIDTH VS. VERTICAL CURVATURE

• Median inlet configuration

INLETS AND INLET PERFORMANCE (VIDEOS)

• Grate On-Grade

INLET'S AND INLET PERFORMANCE (VIDEOS)

• Grate with Ditch Block (Sag Condition)

NLETS AND INLET PERFORMANCE (VIDEOS)

• Tandem Grate Inlets On Grade

• Tandem Grate Inlets with Ditch Block (Sag Condition)

DESIGN DISCHARGE

- The design discharge to the inlet is based on the desired risk (AEP), the surface area that drains to the inlet, and the time of concentration
- The time of concentration in this context is also called the inlet time

DESIGN DISCHARGE (1 OF 2)

• The "steps" for the inlet are:

- State the desired risk (typically 10-50% AEP)
- Determine the area that drains to the inlet

• Determine the T_c appropriate for the area P • If $T_c < 10$ min., then use 10 min as the averaging time.

DESIGN DISCHARGE (2 OF 2)

• The "steps" for the inlet are:

• Compute intensity from T_c.

 EBDLKUP.xls, or equation in HDM – be sure to check time units with either tool!

• Estimate a reasonable runoff coefficient, C.

Apply rational equation to estimate design discharge, Q

CAPACITY COMPUTATIONS

- Based on the design flow, gutter geometry, longitudinal and cross slope, and inlet length and height.
- Computations for Inlet On-grade
- Computations for Inlet in Sag

CURB OPENING INLET DESIGN VARIABLES

- Ponding width = T
- Gutter depression = a
- Gutter depression width = W

• Use HDM Equations 10-8 through 10-16

NORMAL DEPTH

• TxDOT HDM Eq 10-1

$$d = 1.24 \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$$

where

Q = design flow (cfs); n = Manning's roughness coefficient; $S_x = \text{pavement cross slope};$ S = friction slope; d = ponded depth (ft).

• TXDOT HDM Eq 10-2

$$T=\frac{d}{S_{x}}$$

RATIO OF DEPRESSED SECTION FLOW TO TOTAL FLOW

$$E_o = \frac{K_w}{K_w + K_o}$$

where

 K_w = conveyance in depressed section (cfs); K_o = conveyance beyond depressed section (cfs); E_o = ratio of depressed section flow to total flow.

CONVEYANCE

• TxDOT HDM Eq 10-9

$$K = \frac{1.486A^{5/3}}{nP^{2/3}}$$

where

A = cross section area (sq ft); n = Manning roughness coefficient; P = wetted perimeter (ft); K = conveyance.

AREA OF THE DEPRESSED GUTTER SECTION

• TxDOT HDM Eq 10-10

$$Aw = WS_{\times}\left(T - \frac{W}{2}\right) + \frac{1}{2}aW$$

where

- *W* = depression width (ft);
- S_x = pavement cross slope;
- *T* = ponded width (ft);
- a = curb opening depression (ft);
- A_w = area of depressed gutter section(sq.ft.).

WETTED PERIMETER OF THE DEPRESSED GUTTER SECTION

• TxDOT HDM Eq 10-11

$$P_W = \sqrt{(WS_X + a)^2 + W^2}$$

where

W = depression width (ft); $S_x =$ pavement cross slope; a = curb opening depression (ft); $P_w =$ wetted perimeter of depressed gutter section (ft).

AREA OF CROSS SECTION BEYOND THE DEPRESSION

• TxDOT HDM Eq 10-12

where

$$S_{x} = \text{pavement cross} A_{o} p \Rightarrow \frac{S_{x}}{2} (T - W)^{2}$$

$$T = \text{ponded width (ft)};$$

$$W = \text{depression width (ft)};$$

 A_o = area of cross section beyond depression.

WETTED PERIMETER OF CROSS SECTION BEYOND THE DEPRESSION

• TxDOT HDM Eq 10-13

 $P_o = T - W$

where

T = ponded width (ft);
 W = depression width (ft);
 P_o = wetted perimeter of cross section beyond depression (ft).

EQUIVALENT CROSS SLOPE

• TxDOT HDM Eq 10-14

$$S_e = S_x + \frac{a}{W} E_e$$

where

 S_x = pavement cross slope; a = curb opening depression (ft); W = depression width (ft); E_0 = ratio of depression flow to total flow; S_e = equivalent cross slope.

LENGTH OF CURB INLET REQUIRED

* TxDOT HDM Eq 10-15

$$Lr = 0.6Q^{0.42}S^{0.3} \left(\frac{1}{nS_e}\right)^{0.6}$$

where

- Q =flow (cfs);
- S =longitudinal slope;
- *n* = Manning's roughness coefficient;
- S_e = equivalent cross slope;
- L_r = length of curb inlet required.

USE SPREADSHEET TOOL

- Implements inlet computations
- Need to think about what trying to accomplish; the tool is not yet nbr ena

	A	В	L	U	E	F	
1	Inlet Intercep	ot Capacity Ca	lculations				
2	ID	ES13-Inlet					
3	Q	11	<-Discharge (cfs)	Carryover = 1	L	
4	Sx	0.02	<-Transverse	Slope	Total Q = 12 cfs		
5	S	0.0035	<-Longitudina	al Slope			
6	n	0.013	<-Manning's	n			
7							
8	У	0.40	<-Normal De	-1)			
9	Т	19.955639	<-Ponded Width (HDM 10-2)				
.0	Depressed S	ection					
.1	W	5	<-Depression	Width			
2	а	0.35	<-Depression	Depth			
.3							
.4	Α	2.6205639	<-Flow Area	(HDM 10-10)			
.5	Р	5.0202092	<-Wetted Perimeter (HDM 10-11)				
.6	К	194.20132	<-Conveyanc	e (HDM 10-9)			
.7	Beyond Depr	essed Section	1				
.8	Ao	2.2367114	<-Flow Area	(HDM 10-12)			
.9	Ро	14.955639	<-Wetted Pe	rimeter (HDN	10-13)		
20	Ко	72.036961	<-Conveyanc	e (HDM 10-9)			
21	Flow Ratio						
2	E	0.7294267	<-Flow ratio	(HDM 10-8)			
23	Se	0.0710599	<-Equivalent	Side Slope (H	DM 10-14)		
24							
25	Lr	19.925807	<-Required L	ength (HDM 1	LO-15)		
26			-		-		
27	Equations Ab	ove are from	the 2011 Hyd	Iraulic Design	Manual		
28	-		-				

CAPACITY IN SAG PLACEMENT

- Depends on water depth at opening and opening height
- Determine if orifice-only flow (d>1.4h)
- If d<1.4h compute using a weir flow equation and orifice flow equation for the depth condition, then choose the larger length

ORIFICE FLOW

- d>1.4h
- Use equation 10-19

 $Q = C_o h L \sqrt{2gd_o}$

Equation 10-19.

WEIR FLOW

- d<1.4h
- Use equation 10-18

$$L = \frac{Q}{C_{w}d^{1.5}} - 1.8W$$

Equation 10-18.

DROP INLETS ON GRADE AND SAG

 \cap

 \bigcirc

Ó

 \bigcirc

• Choose grate of standard dimension (e.g. Type-H, etc. from standards and specifications server)

 Choose grate of standard dimension (e.g. Type-H, etc. from standards and specifications server)

 Determine allowable head (depth) for the inlet location. Lower of the curb height and depth associated with allowable pond width

- Determine the capacity of the grate inlet opening as a weir.
- Perimeter controls the capacity.

$$Q_{w} = C_{w}P^{1.5}$$

Equation 10-32.

Figure 10-16. Perimeter Length for Grate Inlet in Sag Configuration

- Determine the capacity of the grate inlet opening as an orifice.
- Area controls the capacity.

• Compare the weir and orifice capacities, choose the lower value as the inlet design capacity.

Figure 10-17. Relationship between Head and Capacity for Weir and Orifice Flow

SPREADSHEET TOOLS

 \sim

	A	В	С	D	E	F	G	Н	1	J
1	Inlet Intercept Capacity Calculations									
2	ID	H2								
3	Q	4.53384	<-Discharge	(cfs)						
4	Sx	0.02083	<-Transverse	Slope						
5	S	0.005	<-Longitudin	al Slope						
6	n	0.016	<-Manning's	n						
7										
8	У	0.29388	<-Normal De	pth (HDM 10-	-1)					
9	Т	14.1062	<-Ponded W	dth (HDM 10	-2)					
10										
11	L	3	<-Length							
12	w	1.5	<-Width							
13										
14	Frontal Conv	Conveyance								
15	Af	0.41738	<-Flow Area	(HDM 10-10)						
16	Pf	1.50033	<-Wetted Pe	rimeter (HDN	1 10-11)					
17	Kw	16.5195	<-Conveyance	e (HDM 10-9)						
18	Curb Convey	ance								
19	Ao	1.65538	<-Flow Area	(HDM 10-12)						
20	Po	12.6062	<-Wetted Pe	rimeter (HDN	1 10-13)					
21	Ко	39.7195	<-Conveyance	e (HDM 10-9)						
22	Flow Ratio									
23	E	0.29374	<-Flow ratio	(HDM 10-8)						
24	Splash Over	Velocity								
25	vo	6.126	Parallel Bars	with Transvei	rse Rods Grat	e (formula ch	anges for diff	erent grates s	ee Table HDN	/l pg 10-40)
26	Approach Ve	locity								
27	v	2.18735	<-Velocity (H	DM 10-26)						
28	Ratio Frontal	Flow to To	otal Flow							
29	Rf	1	<-Ratio (HDN	1 10-24,10-25)					
30	Ratio Side Flo	ow to Total	Flow							
31	Rs	0.29815	<-Ratio (HDN	1 10-28)						
32	Efficiency									
33	Ef	0.50431	<-Efficiency (HDM 10-29)						
34	Capture									
35	Qi	2.28646	<- (HDM 10-3	30)						
36	Carryover			-						
37	Qco	2.24738	<- (HDM 10-3	31)						
38				-						

NEXT TIME

- Conduit design
 - Rational method for storm sewer conduit sizing (by-hand)
 - Used to obtain initial estimates of required diameters, flowlines, and hydraulic grade lines.