CE 3372 WATER SYSTEMS DESIGN

LESSON 12: OPEN CHANNEL FLOW (GRADUALLY VARIED FLOW) FALL 2020

 \bigcap

 \circ

 \bigcap

 \bigcap

FLOW IN OPEN CONDUITS • Gradually Varied Flow Hydraulics

• Principles

- Resistance Equations
- Specific Energy
- Subcritical, critical, supercritical and normal flow.

DESCRIPTION OF FLOW

• Open channels are conduits whose upper boundary of flow is the **liquid surface**.

- **Storm sewers** and **sanitary sewers** are typically designed to operate as open channels.
- The relevant hydraulic principles are the concept of friction, gravitational, and pressure forces.

DESCRIPTION OF FLOW

 \bullet For a given discharge, Q, the flow at any section can be described by the flow depth, cross section area, elevation, and mean section velocity.

• The flow-depth relationship is non-unique, and knowledge of the flow type is relevant.

OPEN CHANNEL NOMENCLATURE \cdot Flow depth is the depth of flow at a station (section) measured from the

channel bottom.

• Elevation of the channel bottom is the elevation at a station (section) measured from a reference datum (typically MSL).

• Slope of the channel bottom is called the topographic slope (or channel slope).

 \bigcap

• Slope of the water surface is the slope of the HGL, or slope of WSE (water surface elevation).

 \bigcap

• Slope of the energy grade line (EGL) is called the energy or friction slope.

- Like closed conduits, the various terms are part of mass, momentum, and energy balances.
- Unlike closed conduits, geometry is flow dependent, and the pressure term is replaced with flow depth.

- Open channel pressure head: y
- Open channel velocity head: V²/2g

(or Q2/2gA2)

- Open channel elevation head: z
- Open channel total head: h=y+z+V2/2g
- Channel slope: $S_0 = (z_1 z_2)/L$

• Typically positive in the down-gradient direction.

 \bullet Friction slope: S_f = (h₁-h₂)/L

UNIFORM FLOW

• Uniform flow (normal flow; pg 104) is flow in a channel where the depth does not vary along the channel.

• In uniform flow the slope of the water surface would be expected to be the same as the slope of the bottom surface.

UNIFORM FLOW

- Uniform flow would occur when the two flow depths *y1* and *y2* are equal.
- •In that situation:
	- the velocity terms would also be equal.
	- the friction slope would be the same as the bottom slope.

Sketch of gradually varied flow.

• Gradually varied flow means that the change in flow depth moving upstream or downstream is gradual (i.e. NOT A WATERFALL!).

- The water surface is the hydraulic grade line (HGL).
- The energy surface is the energy grade line (EGL).

• Energy equation has two components, a specific energy and the elevation energy.

Energy Equation from 0 = (2) $\frac{y^2}{2y^2} + y$, $z = \frac{y^2}{2y} + y^2 + z^2 + h$
 $\overline{z} = \frac{y^2}{2y} + y^2 - z^2 + h$
 $\overline{z} = \frac{z}{2y}$ at each section

Sketch of gradually varied flow.

• Energy equation has two components, a specific energy and the elevation energy.

 $E_1 + (z_1 - z_2) = E_2 + b_2$ $= S_{0} \times x$ $S_f \Delta x$ $\int_{0}^{8} E_1 + S_0 dx = E_2 + S_f dx$

Sketch of gradually varied flow.

• Energy equation is used to relate flow, geometry and water surface elevation (in GVF)

$$
E_1 + S_0 \Delta x = E_2 + S_f \Delta x
$$

• The left hand side incorporating channel slope relates to the right hand side incorporating friction slope.

GRADUALLY VARIED FLOW Rearrange a bit

 $S_0 - S_f = \frac{E_2 - E_1}{\Delta x}$

• In the limit as the spatial dimension vanishes the result is.

 $S_0 - S_f =$ *dE dx*

GRADUALLY VARIED FLOW **• Energy Gradient:**

$S_0 - S_f$ *dE dx* = *dE dy dy dx*

• Depth-Area-Energy

• (From pp 119-123; considerable algebra is hidden)

dE dy $=1-\frac{Q^2}{\gamma A^2}$ *gA*³ *dA dy* $=1-Fr^2$

GRADUALLY VARIED FLOW • Make the substitution:

 $S_0 - S_f = (1 - Fr^2)$ *dy dx*

 $S_0 - S_f$

 $\overline{2}$

1− *Fr*

dy

dx

=

• Rearrange

 \bigcap

 $\overline{\mathcal{C}}$

Variation of Water Surface Elevation Discharge and Section Geometry

> Discharge and Section Geometry

• Basic equation of gradually varied flow

 \circ

• It relates slope of the hydraulic grade line to slope of the energy grade line and slope of the bottom grade line.

$$
\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2}
$$

• This equation is integrated to find shape of water surface (and hence how full a sewer will become)

• Before getting to water surface profiles, critical flow/depth needs to be defined

• Specific energy:

- Function of depth.
- Function of discharge.
- Has a minimum at y_c .

CRITICAL FLOW \rightarrow Has a minimum at y_c .

 \bigcap

$$
\frac{dF}{dy}\bigg|_{y_{c}} = 0
$$

Necessary and sufficient condition for a minimum (gradient must vanish)

$$
\frac{dF}{dy} = 1 - \frac{Q^2}{gA^3} \frac{dA}{dy}
$$

$$
dA = \frac{1}{\sqrt{\frac{1}{\left(\frac{1}{3} \right)^{2}} \cdot \frac{1}{\left(\frac{1}{3} \right)^{2}} \cdot \frac{1}{\left(\frac{1}{3} \right)^{2}}}} = \frac{1}{\sqrt{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}
$$

 $\overline{\mathcal{F}}$

Variation of energy with respect to depth; Discharge "form"

Depth-Area-Topwidth relationship

Tdy $\rightarrow \angle A =$

CRITICAL FLOW \bullet Has a minimum at y_c.

$$
\frac{dF}{dy} = 1 - \frac{Q^2 T}{gA^3}
$$

At critical depth the gradient is equal to zero, therefore:

Variation of energy with respect to depth; Discharge "form", incorporating topwidth.

$$
Fr^2 = \frac{Q^2 T}{g A^3}
$$

• Right hand term is a squared Froude number. Critical flow occurs λ when Froude number is unity. \blacklozenge Froude number is the ratio of inertial (momentum) to gravitational **forces**

DEPTH-AREA

 \rightarrow The topwidth and area are depth dependent and geometry dependent functions:

 $T = T(y)$ (Togwidth is a
finction of depth)

 $A = A(y)$ (Flow onea is a
function of depth)

SUPER/SUB CRITICAL FLOW • Supercritical flow when KE >

 KE_c

• Subcritical flow when KE<KE

> • Flow regime affects slope of energy gradient, which determines how one integrates to find HGL.

 \bigcap

 \bigcap

Consider a rectangular channel

Depth-Area Function:

$$
A(y) = By
$$

Depth-Topwidth Function:

$$
\mathcal{T}(y)=\mathcal{B}
$$

B

A ly

Bvz

 \bigcap

Consider a rectangular channel

Substitute functions

Solve for critical depth

$$
\mathcal{Y}^{\epsilon} = \left(\frac{Q^2}{gB^2}\right)^{\frac{1}{3}}
$$

Compare to Eq. 3.104, pg 123)

Trapezoidal Channel

 $A(y) = By + y^2/m$

Depth-Area Function: Depth-Topwidth Function:

 $T(y) = B + \frac{2y}{m^2}$

Trapezoidal Channel

 \bigcap

 m -Sideslope

Substitute functions

 $\frac{Q_{5}^{2}T}{J^{4}^{3}} = \frac{Q^{2}(B + \frac{24}{m^{4}})}{J^{2}(By + y^{2}/m)^{3}}$

 $T(y) = B + \frac{2y}{m^2}$

Aly) = Bg + y²/m

Solve for critical depth, By trial-and-error is adequate.

Can use HEC-22 design charts.

Trapezoidal Channel m -Sideslope al-and-error: $1 = \frac{(500)^2}{32.2} \cdot \frac{(20 + 2y)}{(20y + y^2)^3} = 57^2(y)$ B Guess this values $8 = 20$ ft $8 = 500 + t^3/s$ Adjust from Fr $m = 1$ Fily) Remarks the big (supercurricut) 18.7 \leftarrow too big $y = \frac{Q^2 T}{a^3} = \frac{Q^2 (B + \frac{24}{m^4})}{a^3}$ 2.2 $\overline{\mathcal{Z}}$ 0.6 + too small lauborchead) 3 \leftarrow very close 2.5 1.09 \leftarrow acceptable (critical) 1.01 2.56

 $\alpha(y) = cos^{-1}(1 - \frac{2y}{D})$

The most common sewer geometry (see pp 236-238 for similar development)

Depth-Topwidth:

$$
\mathcal{T}(y) = \text{D}\sin\alpha c
$$

Depth-Area:

 $A(y) = \frac{D^2}{4}(x - sin\alpha cos\alpha)$

Remarks:

Some references use radius and not diameter. If using radius, the half-angle formulas change. DON'T mix formulations.

These formulas are easy to derive, be able to do so!

The most common sewer geometry (see pp 236-238 for similar development)

Depth-Topwidth:

Tly) = Dsina

Depth-Area:

 $A(y) = \frac{D^2}{4}(x - sin\alpha cos\alpha)$

Depth-Froude Number:

 $F_r^2(y) = \frac{Q^2 D sin \kappa}{g (\frac{D^2}{4} (\alpha - sin \kappa cos \kappa))}$

 \bigcap

 \wedge \circ \cap

• Energy equation has two components, a specific energy and the elevation energy.

Energy Equation from 0 = (2) $\frac{y^2}{2y^2} + y$, $z = \frac{y^2}{2y} + y^2 + z^2 + h$
 $\overline{z} = \frac{y^2}{2y} + y^2 - z^2 + h$
 $\overline{z} = \frac{z}{2y}$ at each section

Sketch of gradually varied flow.

 \bigcap

• Equation relating slope of water surface, channel slope, and energy slope:

• Procedure to find water surface profile is to integrate the depth taper with distance:

$$
HGL(x) = \int_{x_0}^{x_1} \left(\frac{dy}{dx}\right) + \left(\frac{dz}{dx}\right)dx = \int_{x_0}^{x_1} \frac{S_0 - S_f}{1 - Fr^2} + \left(\frac{dz}{dx}\right)dx
$$

CHANNEL SLOPES AND PROFILES

• All flows approach normal depth

• M1 profile.

- Downstream control
- Backwater curve
- Flow approaching a "pool"
- Integrate upstream

Boxkwaterdownstream control

• All flows approach normal depth

• M2 profile.

- Downstream control
- Backwater curve
- Flow accelerating over a change in slope
- Integrate upstream

Backwater -
downstream

• All flows approach normal depth

• M3 profile.

- Upstream control
- Backwater curve
- Decelerating from under a sluice gate.
- Integrate downstream

• All flows approach normal depth

• S1 profile.

- Downstream control
- Backwater curve
- Integrate upstream

• All flows approach normal depth

• S2 profile.

• All flows approach normal depth

• S3 profile.

- Upstream control
- Frontwater curve
- Integrate downstream

• Numerous other examples, see any hydraulics text (Henderson is good choice).

• Flow profiles identify control points to start integration as well as direction to integrate.

WSP USING ENERGY EQUATION • Variable Step Method

- Choose y values, solve for space step between depths.
	- Non-uniform space steps.

 \bigcap

• Prisimatic channels only.

 $5 + 5.4x = 5.1544x$

Solve two BX

 $\Delta x = \frac{\mathcal{K}_2 - \mathcal{K}_1}{\mathcal{S}_0 - \mathcal{S}_F}$

WSP ALGORITHM

O Start from a section with known depth. 2 Calculate E, for sturting section. (3) Calculate s_f for starting section \oplus ferturb depth slightly, calculate new E_z (5) Calculate S_{F_2} at new section 6) Compute average friction slope Sp (7) Solve to next section and repeat (8) Move

EXAMPLE

46 O

Rectangular Channel, B= Im, Q=2.5m3/s $S_o = 0.001$, $n = 0.025$. Water Hows over a weir at y=2.0m yūst
Upstream of weir. Compute W.s.P.

EXAMPLE **• Energy/depth function**

 $E = \frac{Q^2}{2gA^2} + \frac{U}{f} = \frac{(2.5)^2}{2(9.8)(m)(y)^2} + \frac{U}{f} = \frac{0.32}{y^2}$

• Friction slope function

 $S_F = \frac{n^2 Q}{A^2 R_n^{4/3}} = \frac{n^2 (2.5)^2}{u^2/4}$

• Start at known section

 \bigcap

Sterhny or control section $\begin{array}{|c|c|c|c|c|}\n\hline\n\frac{d}{d} & \frac{f(y)}{d} & \frac{f(y)}{d} & \frac{f(y)}{d} \\
\hline\n\end{array}$ Section $\boldsymbol{\chi}$ $|$ 0

• Compute space step (upstream)

Find $\frac{dX}{dr} = \frac{1.898 - 2.079}{0.001 - 0.000135} = \frac{-0.181}{0.000865}$ $= -209.3$

EXAMPLE • Start at known section

 \bigcap

• Compute space step (upstream)

 $4\frac{1}{2}\frac{1}{3} = \frac{1.724 - 1.898}{0.001 - 0.000191} = \frac{-0.174}{0.000809} = -215.1$

EXAMPLE • Continue to build the table

Starting or control section K Elg) | SLg) $\Delta \chi$ \mathcal{S}_{σ} Section 2.079 0.000114 0.001 △ 0 2.0 1.898 0.000157 0.001 -209.3 -209.3 1.8 2 1.724 0.000225 0.001 -215.1 -424.3 3 1.6

EXAMPLE • Use tabular values and known bottom elevation to construct WSP.

WSP FIXED STEP METHOD

• Fixed step method rearranges the energy equation differently:

$$
E_2 = E_1 + \frac{S_0 - S_f}{\Delta x}
$$

• Right hand side and left hand side have the unknown "y" at section 2.

- Implicit, non-linear difference equation.
- Use SWMM or HEC-RAS for this (or take Open Channel Flow class)

• Apply WSP computation to a circular conduit

Energy Equation from $0 \rightarrow 4$
 $\frac{V_1^2}{dy} + y_1 + z_1 = \frac{V_2^2}{2g} + y_2 + z_2 + h_2$
 $\overline{z_1}$ $\overline{z_2}$ - Specific energy

Sketch of gradually varied flow.

DEPTH-AREA RELATIONSHIP

 \bigcap

10 O

 $\alpha(y) = cos^{-1}(1 - \frac{2y}{D})$

The most common sewer geometry (see pp 236-238 for similar development)

Depth-Topwidth:

$$
\mathcal{T}(y) = \text{D}\sin\alpha c
$$

Depth-Area:

 $A(y) = \frac{D^2}{4}(x - sin\alpha cos\alpha)$

Depth-Froude Number:

 $F_r^2(y) = \frac{Q^2 D sin \kappa}{g (\frac{D^2}{4} (\alpha - sin \kappa cos \kappa))}$

- Compute WSE in circular pipeline on 0.001 slope.
- Manning's n=0.02
- \bullet Q = 11 cms
- \bullet D = 10 meters
- Downstream control depth is 8 meters.

 \bigcap

Use spreadsheet, start at downstream control.

• Compute Delta X, and move upstream to obtain station positions.

• Use Station location, Bottom elevation and WSE to plot water surface profile.

NEXT TIME \bigcap \rightarrow Introduction to SWMM