

CE 3372 WATER SYSTEMS DESIGN

LECTURE 12: STORAGE AND EXTENDED PERIOD SIMULATION

- STORAGE CONCEPTS
 - FLOW EQUALIZATION
- EPANET TANK MODEL(S)
 - SINGLE PERIOD SIMULATION
 - BUT MULTIPLE PERIOD SIMULATION -- INTERESTING
- MULTIPLE PERIOD SIMULATION
 - REASONS
 - MULTIPLIER TABLE

STORAGE

- STORAGE IS USED IN WATER SUPPLY, STORM WATER MANAGEMENT, AND WASTEWATER SYSTEMS FOR A VARIETY OF REASONS.
 - ONE PRIMARY REASON IS FLOW EQUALIZATION GENERALLY THINGS ARE DESIGNED FOR A PARTICULAR STEADY FLOW RATE AND STORAGE CAN BE USED TO ACCOMMODATE VARIABLE FLOW RATES IN A SYSTEM.
- STORAGE IS EITHER ELEVATED (ABOVE GRADE), AT GRADE (RESERVOIR, TANKS, PONDS, ETC.) OR BELOW GRADE (SUBSURFACE VAULTS — NOT AQUIFERS).

STORAGE COMPARTMENTS

Fire

- FIRE STORAGE
- FLOW-EQUALIZATION STORAGE
- EMERGENCY STORAGE

Flow Equalization

Emergency

0

FIRE STORAGE

- FIRE STORAGE IS SUFFICIENT STORAGE TO ALLOW THE SYSTEM TO MEET ROUTINE USES PLUS SUBSTANTIAL FIRE FLOW.
 - THE DESIRABLE VOLUME IS BASED ON EXPECTED FIRE
 FLOW RATES MULTIPLIED BY THE REQUIRED FIRE
 FLOW DURATION.

- FLOW-EQUALIZATION STORAGE IS SUFFICIENT STORAGE TO ACCOUNT FOR PEAK DEMANDS IN THE SYSTEM WITHOUT HAVING TO EXCEED SUPPLY CAPACITY.
 - A DESIRABLE VOLUME IS 1-2 DAYS OF AVERAGE DAILY DEMAND.

EMERGENCY STORAGE

- EMERGENCY STORAGE TO ALLOW THE SYSTEM TO OPERATE WITHOUT EXTERNAL SUPPLY SOURCES FOR A PERIOD OF TIME TO ALLOW FOR REPAIRS OR OTHER UNUSUAL CIRCUMSTANCES.
 - WITHOUT EMERGENCY STORAGE, EVERY UPSET WILL LEAD
 TO A "BOIL-WATER" ORDER OR SUBSTANTIAL INTERRUPTION
 OF SERVICE THESE KINDS OF INTERRUPTIONS SHOULD BE
 RARE IF THE SYSTEM IS WELL ENGINEERED.
 - A DESIRABLE VOLUME IS 1-2 DAYS OF AVERAGE DAILY DEMAND.

HOM WUCH5

- ENGINEERING WOULD TEND TO CHOOSE FOR THE LARGER VOLUMES
- ECONOMICS WILL ARGUE FOR THE SMALLER VOLUMES

THE ENGINEER WILL HAVE TO BALANCE THESE COMPETING CHOICES IN A DESIGN.

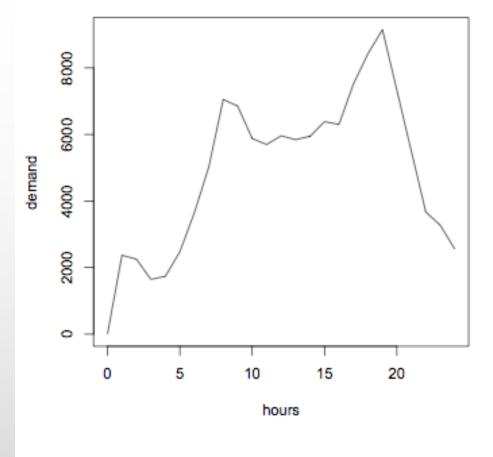
RESIDENCE TIME

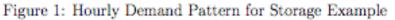
- ADDITIONALLY, RESIDENCE TIMES IN ANY STORAGE RESERVOIR FOR TREATED WATER SHOULD NOT EXCEED A REASONABLE AMOUNT DISINFECTION RESIDUAL CONTACT TIME.
 - FOR CHLORINE/CHLORAMINE DISINFECTION TIME IS ON THE ORDER OF 6-10 DAYS
 - AN HYDRAULIC RETENTION TIME OF ANY SUCH RESERVOIR SHOULD BE NO LONGER THAN 8 DAYS (AS A REASONABLE RULE OF THUMB).

HYDRAULIC RETENTION TIME

 HYDRAULIC RETENTION TIME IS THE RATIO OF STORAGE VOLUME TO AVERAGE DISCHARGE THROUGH THE RESERVOIR

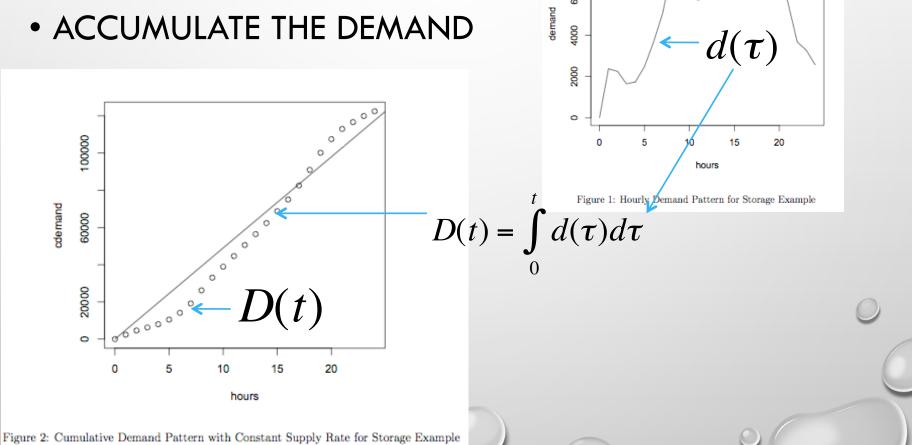
$$HRT = \frac{V_{\text{tank}}}{Q_{\text{average-daily}}}$$





- OPERATING (FLOW-EQUALIZATION) STORAGE IS DETERMINED AS FOLLOWS:
 - 1. DETERMINE THE HOURLY DEMAND FOR A TYPICAL DESIGN DAY.
 - 2. COMPUTE THE CUMULATIVE DRAFT (CUMULATIVE VOLUME AS A FUNCTION OF TIME)
 - 3. COMPUTE THE AVERAGE CONSTANT DRAFT RATE (FLOW RATE THAT IF APPLIED OVER THE DAY END AT THE SAME ACCUMULATED VALUE)
 - THE EQUALIZATION STORAGE IS THE SUM OF THE TWO LARGEST DEVIATIONS FROM THE AVERAGE FLOW LINE TO THE CUMULATIVE DRAFT LINE.

FLOW EQUALIZATION STORAGE


 DEMAND PATTERN FROM HISTORICAL DATA APPROPRIATE TO THE SERVICE AREA.

FLOW EQUALIZATION STORAGE 8000 6000 demand ACCUMULATE THE DEMAND 4000

FLOW EQUALIZATION STORAGE

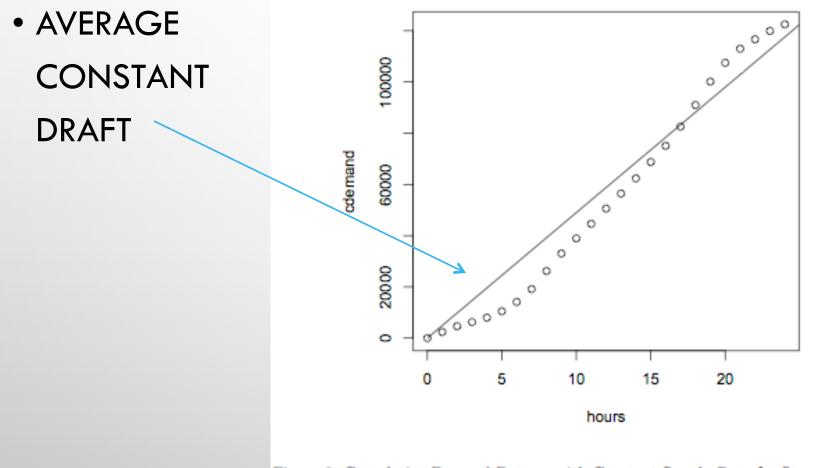


Figure 2: Cumulative Demand Pattern with Constant Supply Rate for Storage Example

FLOW EQUALIZATION STORAGE

- SUM THE 2 LARGEST
 DEVIATIONS
- STORAGE REQUIRED
 V1+V2
- IN THIS CHART, ABOUT 25000
 VOLUME UNITS.



Figure 2: Cumulative Demand Pattern with Constant Supply Rate for Storage Example

FLOW EQUALIZATION

- THE ENGINEER NEEDS TO DECIDE WHICH DEMAND TO
 USE:
 - DAILY
 - PEAK
- THESE VOLUMES ARE ADDED TO THAT NEEDED FOR EMERGENCY AND FIRE FLOW.
- DETERMINES THE TANK VOLUME REQUIRED
- TANK TYPE (ELEVATED, AT-GRADE, BURIED) DETERMINES SHAPE – ELEVATION, DIAMETER, MIN-LEVEL, MAX-LEVEL.

ELEVATED TANKS HAVE SUBSTANTIAL STRUCTURAL

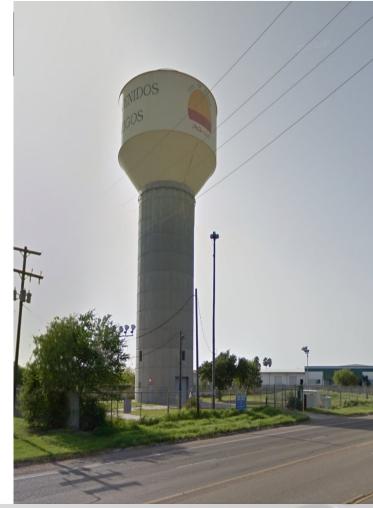
CONSIDERATIONS

TYPICAL INSTALLATION

Notice of Public Hearing City of Pharr DWSRF Program Clean Water Tier II Program City of Pharr WTP Expansion Project

Date/Time/Place of Hearing

The City of Pharr will hold a public hearing on <u>**Tuesday, January 21, 2014 at 5:00 PM</u>** in the Council Chambers (118 S. Cage Blvd, Pharr, TX 78577) as part of the regularly scheduled City Council Meeting.</u>


The hearing is to discuss the proposed City of Pharr Water Transmission Main and Elevated Storage Tank Project, alternatives to the proposed project, and their associated costs. <u>One purpose of the hearing is to discuss the potential environmental impacts of the project and the alternatives to it.</u>

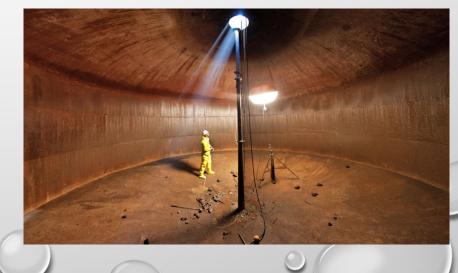
Project Description

The City of Pharr (City) is making improvements to the water distribution system to address low pressures in the City's North Region and adding elevated storage to accommodate growth. The improvements include the installation of a water transmission main from the High Service Pump Station (HSPS) to the existing Expressway 83 and LBJ Elevated Storage Tanks. The transmission mains range from 12, 16, to 20-inch and extend approximately 4-miles. A 1-MG elevated storage tank is also being added (Eldora Elevated Storage Tank) at the intersection of Eldora and Dahlia St.

Project Cost and Estimated Monthly Bill to a Typical Residential Customer

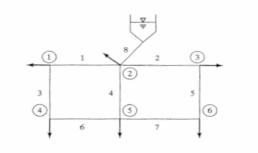
The estimated construction cost of the proposed project is approximately \$9.1-Million. The Citv of Pharr has carefully studied the economic impact of not only this project but

- USED TO MITIGATE PEAK FLOWS FROM DEVELOPMENT.
- PROVIDE WATER QUALITY BENEFIT.
- DEVELOP A WATER RESOURCE (RAINWATER HARVESTING)


UNDERGROUND "TANK"

- MORE THAN A HOLE IN THE GROUND
 - NEEDS STRUCTURE TO SUPPORT SURFACE LOADS
 - NEEDS A WAY TO DRAIN COMPLETELY (USUALLY A PUMP)

Rainstore³ is perfect for water harvesting. two layers of geotextile fabric encase an impermeable liner. A maintenance/access port is shown.



READINGS

- EPA NET USER MANUAL HOW TO MODEL STORAGE TANKS IN A WATER DISTRIBUTION SYSTEM.
 - INTERESTING WEB-RESOURCES
 - <u>HTTP://WWW.INVISIBLESTRUCTURES.COM/RAINSTORE3.HTML</u>
 - <u>HTTP://WWW.UPOUT.COM/BLOG/SAN-FRANCISCO-3/HERES-WHAT-IT-</u> LOOKS-LIKE-UNDER-THOSE-BRICK-CIRCLES-IN-THE-STREET

RECALL EARLIER EXAMPLE

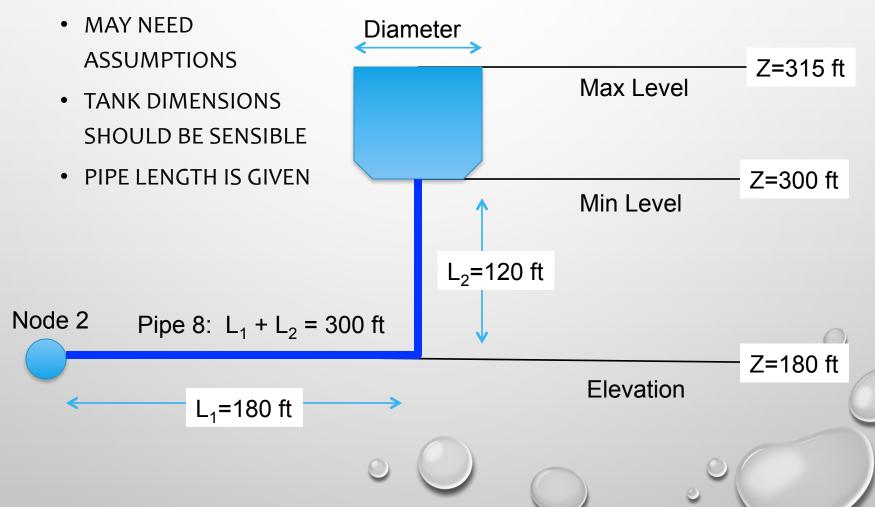
Compute the discharge in each pipe and the pressure at each junction node for the 8-pipe system shown in Figure 1. The water surface elevation in the storage tank is 315.0 ft. Prepare your solution using EPA-NET. Report your results in U.S. Customary units. Identify the node with the lowest pressure in your solution. Include a transmittal letter with the solution.

Pipe Data

Pipe	Le	ngth	Diam	Friction	
no.	m	ft	mm	in.	factor
1	1,220	4,000	254	10	0.024
2	1,829	6,000	254	10	0.024
3	1,829	6,000	305	12	0.022
4	1,982	6,500	610	24	0.018
5	2,134	7,000	254	10	0.024
6	915	3,000	457	18	0.020
7	1,524	5,000	254	10	0.024
8	91	300	305	12	0.022

Junction Data

Junction	Ground	elevation	Demand		
node	m	ft	ℓps	gpm	
1	51.8	170	31.5	500	
2	54.9	180	31.5	500	
3	50.3	165	31.5	500	
4	47.3	155	94.6	1,500	
5	45.7	150	63.1	1,000	
6	44.2	145	94.6	1,500	


Figure 1: Network and Data for Problem 1

MODELING PROTOCOL

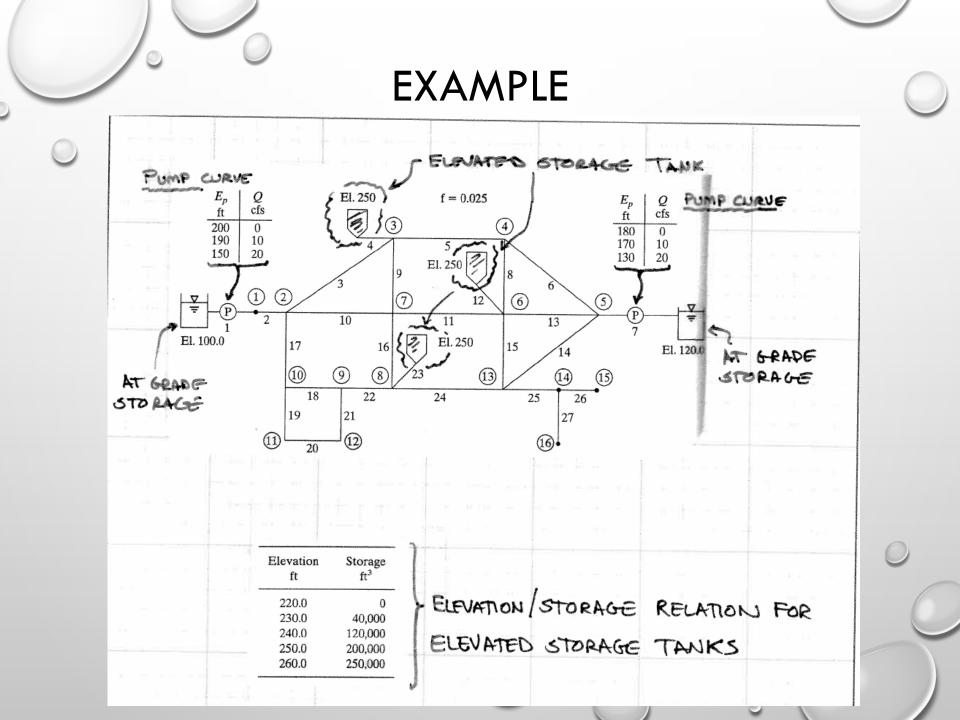
- SKETCH A LAYOUT ON PAPER
- IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES
- IDENTIFY NODE ELEVATIONS; DEMANDS
- SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION
- IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS

TANK

• SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION

EXTENDED PERIOD SIMULATION

- EPANET AND SIMILAR PROGRAMS FIND STEADY-FLOW SOLUTIONS
- EXTENDED PERIOD SIMULATION PRODUCES A SEQUENCE OF STEADY STATES WITH APPROXIMATIONS FOR:
 - TANKS DRAIN AND FILL
 - PRESSURES CAN CHANGE AT BEGINNING AND END OF A TIME INTERVAL
 - PUMP OPERATING POINTS MOVING ALONG A PUMP CURVE

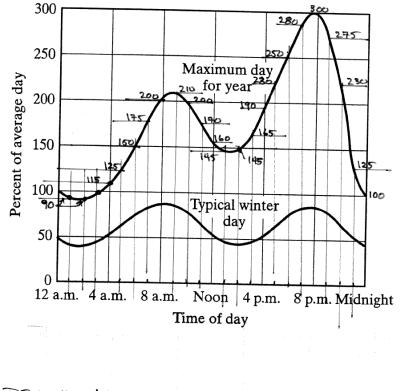

- EXTENDED PERIOD SIMULATION USED FOR:
 - MODELING PRESSURE IN SYSTEMS DURING CHANGING DEMAND –USUALLY AT HOURLY TIME SCALE
 - STORAGE TANK OPERATION AND SIZING
 - WATER QUALITY SIMULATION
 - EPANET CAN APPROXIMATE WATER QUALITY FROM MULTIPLE SOURCES – HAS USES IN
 - WATER AGE IN SYSTEM
 - DETECTION OF INTRUSIONS INTO A SYSTEM
 - SEVERITY OF CONTAMINATION (IMPACT ASSESSMENT)

- IN EPANET ASSIGN A DEMAND PATTERN TO A NODE
- SET SIMULATION TIMES
- PROGRAM THEN FOLLOWS THE PATTERN

MODELING PROTOCOL

- SKETCH A LAYOUT ON PAPER
- IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES
- IDENTIFY NODE ELEVATIONS; DEMANDS
- SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION
- IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS
- IDENTIFY DEMAND PATTERN(S) AND TANK OPERATING CONSIDERATIONS

	Fixed grade (ft)	Minor loss coefficient	Diameter (in)	Length (ft)	Node DS	Node US	ipe o.
	100.0	0.5	24.0	2,000.0	1	0	1
		0.0	24.0	800.0	2	1	2
		0.0	18.0	5,000.0	3	2	3
	250.0	0.5	18.0	700.0	0	3	4
		0.0	12.0	3,700.0	4	3	5
		0.0	15.0	3,900.0	4	5	6
Diag allacard -	120.0	0.5	24.0	2,100.0	5	0	7
FIPE CHARACIERIST		0.0	10.0	2,500.0	4	6 🛼	8
		0.0	12.0	3,100.0	7	3	9
PIPE CHARACTERIST (ADJUST LOSS		0.0	18.0	5,500.0	7	2	10
Critovor was		0.0	15.0	3,700.0	7	6	11
COEF. TO GET	250.0	0.5	18.0	900.0	6	0	12
		0.0	15.0	2,900.0	<u>.</u> 6	5	13
f=0.025		0.0	15.0	4,500.0	13	5	14
(given)		0.0	15.0	2,500.0	13	6	15
-0		0.0	15.0	2,700.0	8	7	16
		0.0	18.0	3,100.0	10	2	17
10		0.0	15.0	1,900.0	9	10	18
IN PRACTICAL CASE		≈ 0.0	8.0	1,600.0	11	10	19
IN PRACTICAL CASE	15. 1	0.0	6.0	1,500.0	12	11	20
USE FIFE MATERY	3	0.0	8.0	1,650.0	12	9	21
INFO.	Ę.	0.0	15.0	2,900.0	9	8	22
• • • •	250.0	7.5	18.0	1,900.0	8	0	23
	1.	0.0	15.0	3,100.0	8	13	24
	3	0.0	8.0	1,600.0	14	13	25
	2 2 5	0.0	6.0	1,750.0	15	14	26
	· · · · · · · · · · · · · · · · · · ·	0.0	6.0	1,500.0	16	14	27

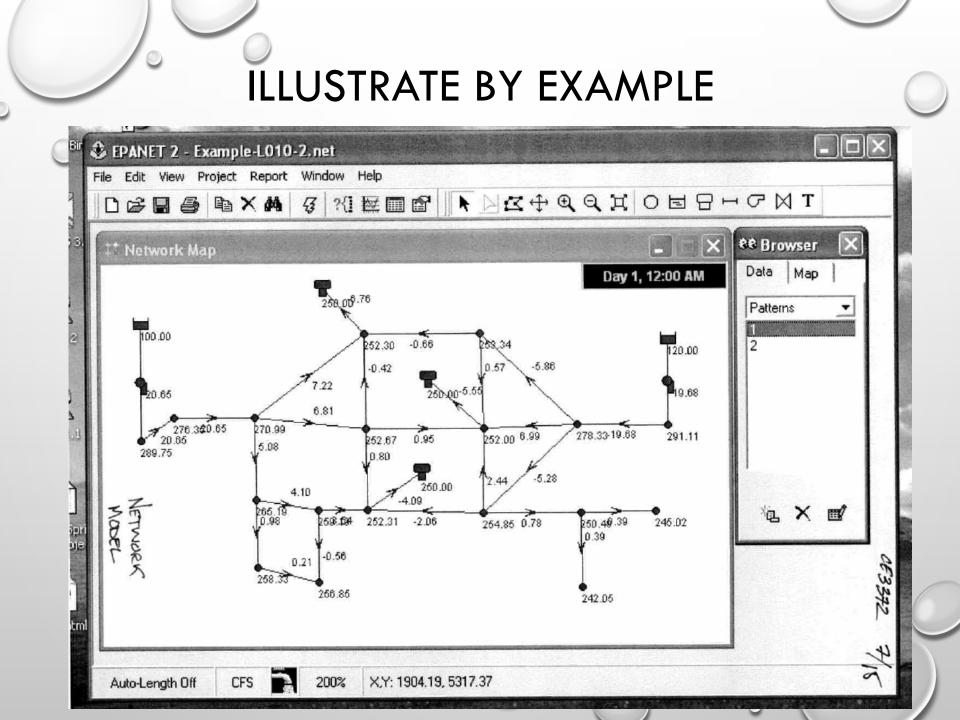

1.54

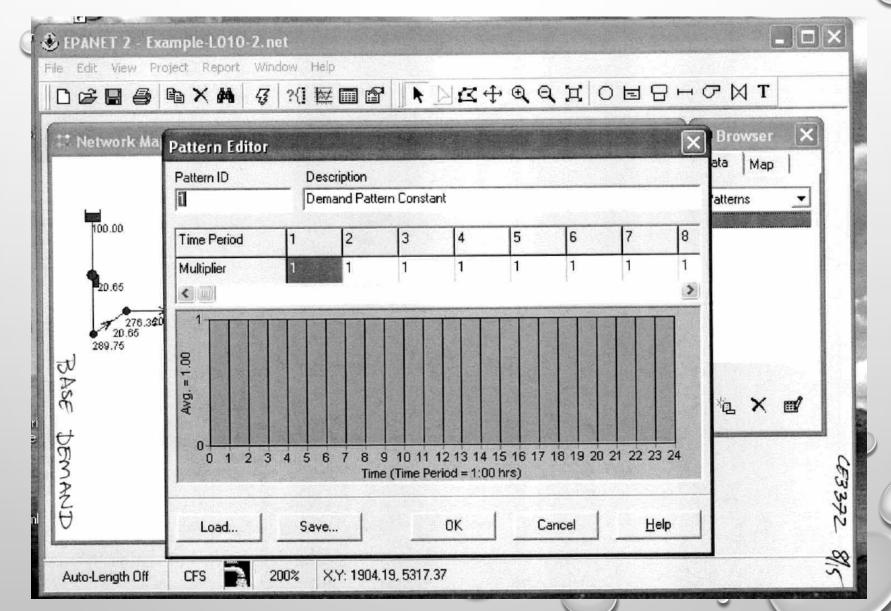
DEMAND (CES)

Igal H3 Min 7.48 gal

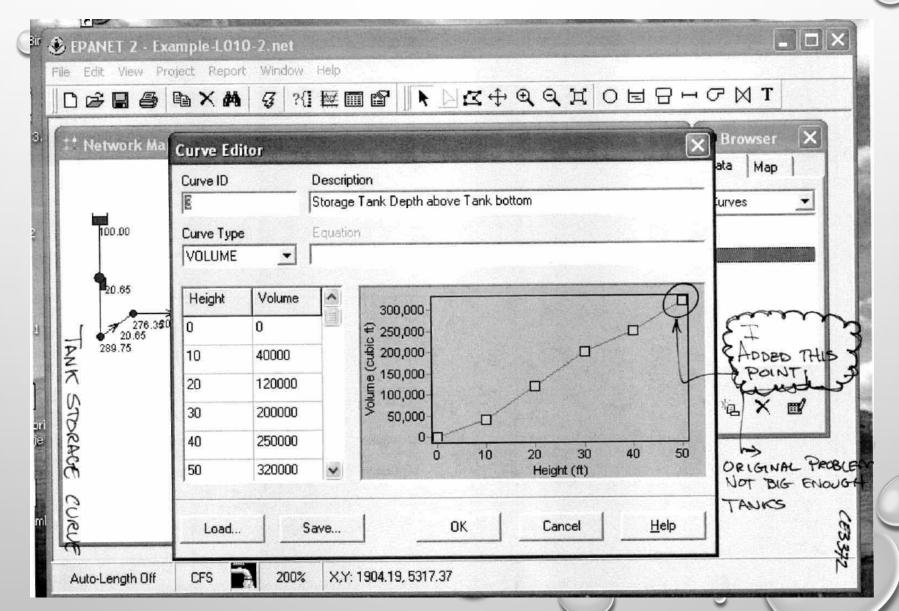
Junction no.	Elevation (ft)	Demand (gpm)
1	90.00	0
2	110.00	694 [🤉
3	95.00	694
4	105.00	2,083
5	100.00	694
6	103.00	2,428 5
7	97.00	2,083
8	103.00	1,044 💈
9	107.00	0
10	112.00	0
11	115.00	350 C
12	112.00	350 O/
13	110.00	0
14	120.00	0
15	135.00	175 0
16	130.00	175 📿

BADE DEMAND & NODE TOPOGRAPHY

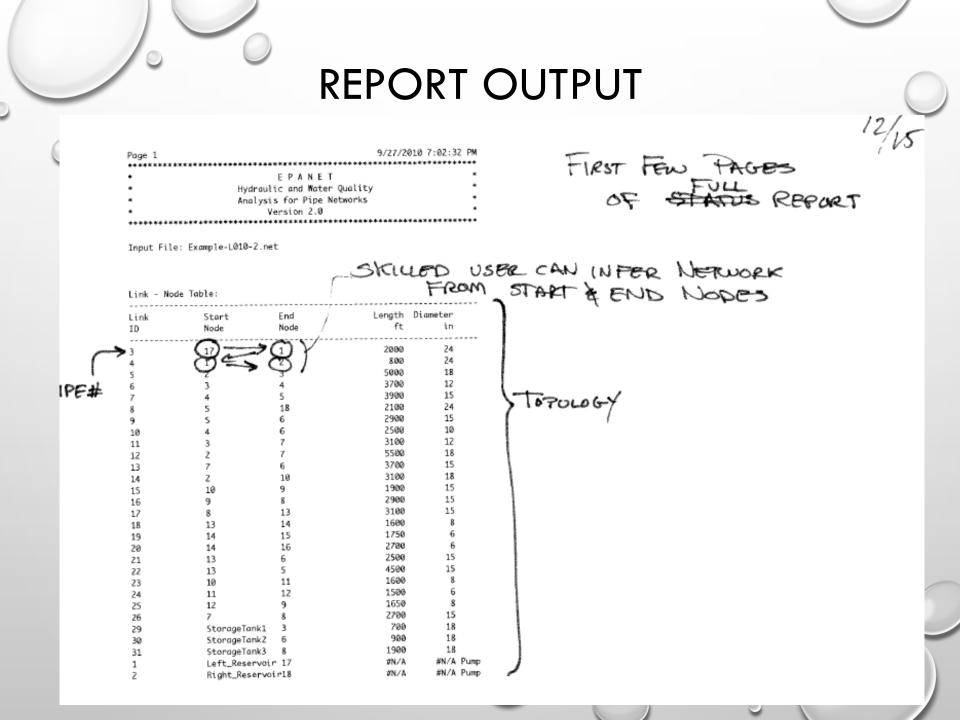


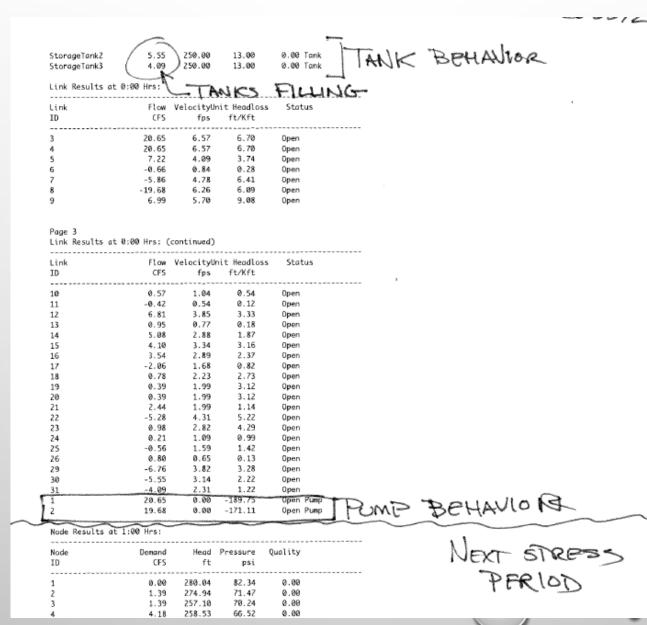

PEMAND MULTIPLERS - READ FROM CHART FOR HOUR OF DAY

BUILD MULTIPIER TABLE


HOUR	FACTOR (MULTIPLER)	CLOCK TIME
1	1.0	0:00
2	0.9	1:00
3	0.9	2:00
4	1.0	3:00
5	1.15	4:00
6	1.25	5:00
}	1.5	6:00
8	1,75	7:00
٩	2.0	8:00
0	2.10	9:00
11	2.0	10:00
12	1.7	11:00
3	1.6	12:00
14	1.45	13:00
15	1.45	14:00
[6	1.65	15:00
17	1.90	16:00
18	2.30	17:00
19	2.50	18:00
20	2.80	19:00
21	3.00	20:00
22	2.75	21:00
23	2.30	22:00

- BUILD NETWORK LAYOUT
 - NODES (JUNCTIONS, TANKS, RESERVOIRS)
 - LINKS (PIPES, PUMPS, VALVES)
- ADD PUMP CURVES
 - BROWSER/DATA/CURVES/ADD (TYPE=PUMP)
- ADD STORAGE CURVES
 - BROWSER/DATA/CURVES/ADD (TYPE=STORAGE)
- ADD DEMAND PATTERN(S)
 - BROWSER/PATTERNS/ADD




) b × # 3 ?{!	፼፼₽₽₫₹₽₽₽₽		
* Network A	Лар			88 Browser 🗙
	Times Options		🔀 12:00 AM	Data Map
	Property	Hrs:Min	14	Options 💌
h00.00	Total Duration	24:00 - CHANGE ;		Hydraulics
100.00	Hydraulic Time Step	1:00 DEFAULT IS	120.00	Quality Reactions
4	Quality Time Step	0:05 (SWAPSHOT)		Times
20.65	Pattern Time Step	1:00	19.68	Energy
276.	3¢0. Pattern Start Time	0:00	291,11	
• 20.66 289.75	Reporting Time Step	1:00		
~	Report Start Time	0:00		CRASSING STREET
S E	Clock Start Time	12 am		a × 🖬
r S	Statistic	None	245.02	e × ₩
Munple				
1				f
PERIOD			154	
10				1

Network Ma	Pattern Editor		1	141515				the second second	X	Browser	X
the district of the second	Pattern ID		scription							ata Map	1
-	Ø	Va	riable Dem	and				energia de la com	in the second se	atterns	-
100.00	Time Period	1	2	3	4	5	6	7	8		
	Multiplier	1	.9	.9	1	1.15	1.25	1.5	1.7	1	
20.65									>		
276.3 9 20.65 289.75	3							H			100
	92										
AR	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				T				and the		
AR									The second	^治 ×	
	0	3 4 5	678	9 10 11	12 13 14	15 16 17 1	8 19 20 3	21 22 23 2	4	57755	
ĥ	0 1 2 3				riod = 1:00					1/2042	0
VARIABLE DEMAND	0123		Tim	e (Time Fe						Second Street Street	CE3372

նաթ	Usage Avg Factor Effic		-		Cost /day				
	100.00 75.0 100.00 75.0				0.00 0.00				
				and Charge: al Cost:	0.00 0.00		st	STRESS	PERIO
ode Results at	0:00 Hrs:				×	<u> </u>	1	Spaces	,
lode	Demand	Head Pr	ressure (Quality	19 (4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
ED	CFS	ft	psi						
	0.00	276.35	80.75	0.00					
2	1.54	278.99	69.76	0.00					
3	1.54	252.30	68.16	0.00	-				
4	4.64	253.34	64.27	0.99	1.0	>		-	
5	1.54	278.33	77.27	0.00		Ressur	Be ILI	(-ST	
5	5.40	252.00	64.56	0.00		and the second	10		
7	4.64	252.67	67.45	0.00					
8	2.32	252.31	64.70	0.00 0.00					
9	0.00	259.19	65.94 / 66.38	0.00					
10	0.00	265.19	62.11	0.00					
11 12	0.77	256.85	62.76	0.00					
13	0.00	254.85	62.76	0.00					
13	0.00	250.49	56.54	0.00					
15	0.39	245.02	47.67	0.00					
16	0.39	242.05	48.55	0.00					
17	0.00	289.75	82.22	0.00					
18	0.00	291.11	74.14	0.00					
Left_Reservoir	-20.65	100.00	0.00	0.00 Reserv					
Right_Reservoir		120.00	0.00	0.00 Reserv	oir				
StorageTank1	6.76	250.00	13.00	0.00 Tank					

PUMP BEHAVIOR

NEXT STRESS PERIOD

		-
		F

30

31

20.65 0.00 -189.75 19.68 0.00 -171.11

3.14

Z.31

-5.55

-4.09

2.22

1.22

Open

Open

Open Pump

Open Pump

Node Results at 1:00 Hrs:

Node	Demand	Head	Pressure	Quality
ID	CES	ft	psi	
1	0.00			
2	1.39	274.94	71.47	0.00
3	1.39	257.10	70.24	0.00
4	4.18	258.53	66.52	0.00
5	1.39	281.90	78.82	0.00
6	4.86	256.42	66.48	0.00
7	4.18	257.20	69.41	0.00
8	2.09	256.32	66.43	0.00
9	0.00	263.43	67.78	0.00
10	0.00	269.35	68.18	0.00
11	0.69	263.37	64.29	0.00
12	0.69	261.74	64.88	0.00
13	0.00	259.08	64.59	0.00
14	0.00	255.52	58.72	0.00
15	0.35	251.06	50.29	0.00
16	0.35	248.63	51.40	0.00
17	0.00			
18	0.00	294.01		
Left_Reservoi	r -20.13	100.00	0.00	0.00 Reservoir

Page 4

Node Results at 1:00 Hrs: (continued)

Node ID	Demand CF5	Head ft	Pressure psi	Quality	
Right_Reservoir StorageTank1 StorageTank2 StorageTank3	-19.14 6.66 6.12 4.95	120.00 254.87 253.99 252.94	0.00 15.11 14.73 14.27		

Link Results at 1:00 Hrs:

Link	Flow	VelocityUnit Headloss	Status
ID	CFS	fps ft/Kft	

	1	19,25	0.00	-197.62	0pen	Pump												
	2	18.32	0.00	-178.24	0pen	Pump												
							-											
	Node Results at 6	:00 Hrs:																
	Node	Demand	Head	Pressure	Quality													
	ID	CF5	ft	psi														
	1	0.00	285.74	84.82	0.00													
	2	2.31	281.07	74.12	0.00													
	3	2.31	268.66	75.25	0.00													
	4	6.96	265.69	69.63	0.00													
	5	2.31	286.57	80.84	0.00													
	6	8.10	265.66	70.91	0.00													
	7	6.96	266.48	73.43	0.00													
	8	3.48	266.24	78.73	0.00													
	9	0.00	270.36	70.78	0.00													
	10	0.00	275.37	70.79	0.00													
	11	1.15	263.58	64.38	0.00													
	12	1.15	262.89	65.38	0.00													
	13	0,00	268.12	68.52	0.00													
	15	0.00	258.51	60.02	0.00													
	15	0.58	246.50	48.31	0.00													
	15	0.58	239.97	47.65	0.00													
	16	0.00	297.44	85.55	0.00													
	18	0.00	297.78	77.03	0.00													
	Left_Reservoir	-19.28	100.00	0.00		Reservoir												
		-19.20	120.00	0.00		Reservoir												
	Right_Reservoir	1.37	268.55	21.04		Tank												
	StorageTank1	-1.24	266.76	20.26		Tank		tan	time t	TANK TON	THUR TOALLING	THUR TOALLING	THUR TONUNG	TANK DRAINING	THUR TOALLING	THUR TOALLING	THUR TONING	TANK TOANNING
-	StorageTank2	1.66	265.85	19.86	0.00			JANN	IDNN 9	JANK PRAI	IANK OKNINI	IANK PRAINING						
	StorageTank3	1.66	203.03	13.00	0.00	1.04110												

43	1.30	2.16	7.30	open
24	0.14	0.73	0.46	Open
25	-1.01	2.90	4.52	Open
26	0.64	0.52	0.09	Open
29	-1.37	0.78	0.15	Open
30	1.24	0.70	0.12	Open
31	-1.66	0.94	0.21	Open
1	19.28	0.00	-197.44	Open I
2	18.41	0.00	-177,78	Open i

Open Pump)Pumps	PRODUCING	Less	Q
------------------	-----------	------	---

Node Results at 7:00 Hrs:

Node	Demand	Head	Pressure	Quality
ID	CFS	ft	psi	don't ch
10	Cr3		por	
1	0.00	285.05	84.51	0.00
2	2.69	280.32	73.80	0.00
3	2.69	269.26	75.51	0.00
4	8.12	262.59	68.28	0.00
5	2.69	284.82	80.08	0.00
6	9.45	265.78	70.53	0.00
7	8.12	265.85	73.16	0.00
8	4.06	266.43	70.81	0.00
9	0.00	269.68	70.49	0.00
10	0.00	274.44	70.39	0.00
11	1.35	259.39	62.56	0.00
12	1.35	258.86	63.63	0.00

Page 12

Node Results at 7:00 Hrs: (continued)

	Node Results at 7:0	00 Hrs: (0	continued)							
	Node ID	Demand CFS	Head P ft	ressure psi	Quality					
(13 14 15 16 17 18 Left_Reservoir StorageTank1 StorageTank2 StorageTank3 Link Results at 7:0	0.00 0.68 0.68 0.00 0.00 -19.39 -18.69 -0.20 -2.25 -1.36	267.47 254.47 238.23 229.42 296.87 296.36 100.00 120.00 269.26 266.13 266.70	68.23 58.27 44.73 43.08 85.31 76.42 0.00 0.00 21.34 19.99 20.23	6.00 6.00 6.00 6.00 6.00 6.00 6.00 Reso 6.00 Reso 6.00 Tani 6.00 Tani	ervoir K	TANKS	, - ,	DRAININ	G
	Link ID	Flow CFS	VelocityUni fps	t Headloss ft/Kft	s Status					
	-			F 64	A		-			0

• WATER QUALITY IN EPANET