CE 3372 WATER SYSTEMS DESIGN LESSON 10: PUMPS IN EPANET FALL 2020 #### **OVERVIEW** - EPANET NETWORK SIMULATION (WITHOUT PUMP) - APPLICATION OF MODELING PROTOCOL - EPANET PUMP SIMULATION - APPLICATION OF MODELING PROTOCOL - EPANET NETWORK SIMULATION (WITH PUMP) - APPLICATION OF MODELING PROTOCOL # PROBLEM STATEMENT Compute the discharge in each pipe and the pressure at each junction node for the 8-pipe system shown in Figure 1. The water surface elevation in the storage tank is 315.0 ft. Prepare your solution using EPA-NET. Report your results in U.S. Customary units. Identify the node with the lowest pressure in your solution. Include a transmittal letter with the solution. Pipe Data | Dina | Length | | Diameter | | Friction | | |-------------|--------|-------|----------|-----|----------|--| | Pipe
no. | m | ft | mm | in. | factor | | | 1 | 1,220 | 4,000 | 254 | 10 | 0.024 | | | 2 | 1,829 | 6,000 | 254 | 10 | 0.024 | | | 3 | 1,829 | 6,000 | 305 | 12 | 0.022 | | | 4 | 1,982 | 6,500 | 610 | 24 | 0.018 | | | 5 | 2,134 | 7,000 | 254 | 10 | 0.024 | | | 6 | 915 | 3,000 | 457 | 18 | 0.020 | | | 7 | 1,524 | 5,000 | 254 | 10 | 0.024 | | | 8 | 91 | 300 | 305 | 12 | 0.022 | | Junction Data | Junction | Ground elevation | | Demand | | |----------|------------------|-----|--------|-------| | node | m | ft | ℓps | gpm | | 1 | 51.8 | 170 | 31.5 | 500 | | 2 | 54.9 | 180 | 31.5 | 500 | | 3 | 50.3 | 165 | 31.5 | 500 | | 4 | 47.3 | 155 | 94.6 | 1,500 | | 5 | 45.7 | 150 | 63.1 | 1,000 | | 6 | 44.2 | 145 | 94.6 | 1,500 | Figure 1: Network and Data for Problem 1 - SKETCH A LAYOUT ON PAPER - IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES - IDENTIFY NODE ELEVATIONS; DEMANDS - SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS ### SKETCH A LAYOUT SKETCH A LAYOUT ON PAPER #### **PIPES** • IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES | Dina | Length | Diameter | Friction | |-------------|--------|----------|----------| | Pipe
no. | ft | in. | factor | | 1 | 4,000 | 10 | 0.024 | | 2 | 6,000 | 10 | 0.024 | | 3 | 6,000 | 12 | 0.022 | | 4 | 6,500 | 24 | 0.018 | | 5 | 7,000 | 10 | 0.024 | | 6 | 3,000 | 18 | 0.020 | | 7 | 5,000 | 10 | 0.024 | | 8 | 300 | 12 | 0.022 | Adjust roughness values to match these. Start at 0.26, use D-W head loss model ### **NODES** • IDENTIFY NODE ELEVATIONS; DEMANDS | Junction | Ground elevation | Demand | | |----------|------------------|--------|--| | node | ft | gpm | | | 1 | 170 | 500 | | | 2 | 180 | 500 | | | 3 | 165 | 500 | | | 4 | 155 | 1,500 | | | 5 | 150 | 1,000 | | | 6 | 145 | 1,500 | | #### **TANK** SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION - TANK DIMENSIONS SHOULD BE SENSIBLE - PIPE LENGTH IS GIVEN Node 2 Pipe 8: $L_1 + L_2 = 300 \text{ ft}$ $L_1 = 180 \text{ ft}$ ### **PUMPS** - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS - NONE THIS PROBLEM! # CONSTRUCT MODEL - RUN SIMULATION Figure 2. Screen Capture Completed EPANET simulation showing node pressures in pounds per square inch, and pipe discharge in cubic feet per second. # RUNS TO MATCH FRICTION FACTORS Figure 3. Screen capture of EPANET simulation showing computed friction factors for each pipe. # FULL STATUS REPORT (1 OF 3) Input File: exercise005-1-1.net Link - Node Table: | Link | Start | End Length Diame | | ameter | | |------|-------|------------------|------|--------|--| | ID | Node | Node | £t. | in | | | | | | | | | | 1 | 2 | 3 | 4000 | 10 | | | 2 | 3 | 4 | 6000 | 10 | | | 3 | 2 | 5 | 6000 | 12 | | | 4 | 3 | 6 | 6500 | 24 | | | 5 | 4 | 7 | 7000 | 10 | | | 6 | 5 | 6 | 3000 | 18 | | | 7 | 6 | 7 | 5000 | 10 | | 300 # FULL STATUS REPORT (2 OF 3) | Node Results: | | | | | | |---------------|--------|--------|----------|---------|------| | Node | Demand | Head | Pressure | Quality | | | ID | CFS | ft | psi | | | | | | | | | | | 2 | 1.11 | 284.88 | 49.78 | 0.00 | | | 3 | 1.11 | 292.57 | 48.77 | 0.00 | | | 4 | 1.11 | 258.00 | 40.29 | 0.00 | | | 5 | 3.33 | 284.86 | 56.27 | 0.00 | | | 6 | 2.22 | 286.92 | 59.33 | 0.00 | | | 7 | 3.33 | 249.00 | 45.06 | 0.00 | | | 9 | -12.21 | 315.00 | 58.50 | 0.00 | Tank | # FULL STATUS REPORT (3 OF 3) | Link Results: | | | | | |---------------|----------|-------------------|-----------------------|--------| | Link
ID | Flow CFS | /elocityUn
fps | it Headloss
ft/Kft | Status | | 1 | -1.18 | 2.15 | 1.92 | Open | | 2 | 2.06 | 3.79 | 5.76 | Open | | 3 | 0.07 | 0.08 | 0.00 | Open | | 4 | 7.86 | 2.50 | 0.87 | Open | | 5 | 0.95 | 1.75 | 1.29 | Open | | 6 | -3.26 | 1.85 | 0.69 | Open | | 7 | 2.38 | 4.36 | 7.58 | Open | | 8 | 12.21 | 15.55 | 74.78 | Open | #### **ASSESS RESULTS** - PROBLEM IS GIVEN IN GPM, SO CHANGING TO CFS IS UNNECESSARY COMPLICATION - VELOCITY IN THE PIPE FROM THE TANK IS 15 FT/SEC HIGHER THAN TYPICALLY DESIRED; CONSIDER LARGER PIPE OR FLOW CONTROL VALVE #### **PUMPS IN EPA-NET** - PUMPS ARE MODELED AS LINKS BETWEEN TWO NODES THAT HAVE PUMPING CURVE PROPERTIES. - EACH NODE MUST HAVE APPROPRIATE ELEVATIONS. - A PUMP IS ADDED AS A LINK, THEN THE PUMP CURVE IS SPECIFIED FOR THAT PUMP. - THE PROGRAM WILL OPERATE THE PUMP OUT-OF-RANGE BUT ISSUE WARNINGS TO GUIDE THE ANALYST TO ERRORS. #### EXAMPLE 4 – LIFTING WITH A PUMP Figure 15 is a conceptual model of a pump lifting water through a 100 mm diameter, 100 meter long, ductile iron pipe from a lower to an upper reservoir. The suction side of the pump is a 100 mm diameter, 4-meter long ductile iron pipe. The difference in reservoir free-surface elevations is 10 meters. The pump performance curve is given as $$h_p = 15 - 0.1Q^2 \tag{1}$$ where the added head is in meters and the flow rate is in liters per second (Lps). The analysis goal is to estimate the flow rate in the system. EXAMPLE 4 – LIFTING WITH A PUMP #### EXAMPLE 4 – LIFTING WITH A PUMP Figure 15 is a conceptual model of a pump lifting water through a 100 mm diameter, 100 meter long, ductile iron pipe from a lower to an upper reservoir. The suction side of the pump is a 100 mm diameter, 4-meter long ductile iron pipe. The difference in reservoir free-surface elevations is 10 meters. The pump performance curve is given as $$h_p = 15 - 0.1Q^2 \tag{1}$$ where the added head is in meters and the flow rate is in liters per second (Lps). The analysis goal is to estimate the flow rate in the system. - SKETCH A LAYOUT ON PAPER - IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES - IDENTIFY NODE ELEVATIONS; DEMANDS - SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS SKETCH A LAYOUT ON PAPER IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES $$L_1 = 4m$$ $D_1 = 100 mm$ $k_{s} \sim 0.85$ $$L_2 = 100 \text{m}$$ $D_2 = 100 mm$ k.~0.85 Table 3.2 Roughness Coefficients for New Pipe | Material | Hazen-Williams C
(unitless) | Darcy-Weisbach ε (feet x 10^{-3}) | Manning's n
(unitless) | | | |-----------------|--------------------------------|--|---------------------------|--|--| | Cast Iron | 130 – 140 | 0.85 | 0.012 - 0.015 | | | | Concrete or | 120 – 140 | 1.0 - 10 | 0.012 - 0.017 | | | | Concrete Lined | | | | | | | Galvanized Iron | 120 | 0.5 | 0.015 - 0.017 | | | | Plastic | 140 – 150 | 0.005 | 0.011 - 0.015 | | | | Steel | 140 – 150 | 0.15 | 0.015 - 0.017 | | | | Vitrified Clay | 110 | | 0.013 - 0.015 | | | - IDENTIFY NODE ELEVATIONS; DEMANDS - NODE 1 = 3M - NODE 2 = 3M - NO DEMANDS AT NODES (NEEDED FOR CONNECTION TO PUMP) - SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION - LOWER RESERVOIR POOL ELEV. = oM - UPPER RESERVOIR POOL ELEV. = 10M - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS - ONE PUMP CONNECTS FROM NODE 1 TO NODE 2 | | E8 ‡ 🛞 📀 | (fx | | | | |---|------------|--------------------|---|--|--| | | Α | В | (| | | | 1 | Pump Curve | Pump Curve Builder | | | | | 2 | | | | | | | 3 | Head (M) | Flow (LPS) | | | | | 4 | 15 | 0 | | | | | 5 | 12.5 | 5 | | | | | 6 | 5 | \10 | | | | | 7 | | | | | | $$h_p = 15 - 0.1Q^2$$ BUILD AND RUN MODEL Figure 18: Example 5 place the nodes, pipes, and the pump link. ### **NETWORK SIMULATION** AN EXAMPLE - WITH A PUMP # PROBLEM STATEMENT STARTING WITH THE SAME SYSTEM AS IN THE FIRST EXAMPLE ADD A PUMP AND ITS SUPPLY TO THE SYSTEM A pump is installed in the 18-inch diameter pipe extending 500 feet from the ground-level reservoir (WSE = 155 ft.) to junction node 4. The booster pump pushes water into the network; three points on the pump curve are listed on the figure. Determine the discharge and flow direction in each line and the pressure at each junction node. Try to match the reported friction factors (in the figures), but do not expect to obtain an exact match, within 20 percent is sufficient. Report your results in U.S. Customary units. Observe that the pump curves are provided in cubic feet per second, while the nodal demands are in gallons per minute – so you need to convert units (either the pump units or the demand units – pump units are easier!) - SKETCH A LAYOUT ON PAPER - IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES - IDENTIFY NODE ELEVATIONS; DEMANDS - SUPPLY RESERVOIR (OR TANK); IDENTIFY RESERVOIR POOL ELEVATION - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS ### SKETCH A LAYOUT SKETCH A LAYOUT ON PAPER ### **PIPES** - IDENTIFY PIPE DIAMETERS; LENGTH; ROUGHNESS VALUES - ADD TO PREVIOUS SYSTEM TO BUILD MODEL #### Pipe Data | Dino | Length | | Diameter | | Friction | |-------------|--------|-------|----------|-----|----------| | Pipe
no. | m | ft | mm | in. | factor | | 9 | 152 | 500 | 457 | 18 | 0.020 | | 10 | 1,220 | 4,000 | 254 | 10 | 0.024 | | 11 | 1,220 | 4,000 | 610 | 24 | 0.018 | | 12 | 1,220 | 4,000 | 305 | 12 | 0.022 | | 13 | 915 | 3,000 | 203 | 8 | 0.026 | | 14 | 1,524 | 5,000 | 305 | 12 | 0.022 | #### **NODES** - IDENTIFY NODE ELEVATIONS; DEMANDS - ADD TO PRIOR SYSTEM TO BUILD MODEL #### Junction Data | Junction | Ground elevation | | Demand | | |----------|------------------|-----|--------|-------| | no. | m | ft | ℓps | gpm | | 7 | 50.3 | 165 | 31.5 | 500 | | 8 | 51.8 | 170 | 63.1 | 1,000 | | 9 | 50.3 | 165 | 31.5 | 500 | #### **PUMPS** - IDENTIFY PUMPS; PUMP CURVE IN PROBLEM UNITS - ADD TO PRIOR SYSTEM TO BUILD MODEL #### Pump Data | E | p | (| 2 | |------|-----|------|------| | m | ft | cms | cfs | | 61.0 | 200 | 0 | 0 | | 53.4 | 175 | 0.28 | 10.0 | | 33.5 | 110 | 0.57 | 20.0 | # CONSTRUCT MODEL - RUN SIMULATION ## STATUS REPORT | | File: exercise004.net
Node Table: | | | 2/18/2 | 016 4:46:39 PM | | |-------------|--------------------------------------|--------------|--|--------------|-------------------|-------| | Link
ID | Start
Node | End
Node | | Length
ft | Diameter
in | | | 1 | 2 | 3 | | 4000 | 10 | | | 2 | 3 | 4 | | 6000 | 10 | | | 3
4 | 2 3 | 5
6 | | 6000
6500 | 12
24 | | | 5 | 4 | 7 | | 7000 | 10 | | | 6 | 5 | 6 | | 3000 | 18 | | | 7 | 6 | 7 | | 5000 | 10 | | | 8 | 9 | 3
5 | | 300
500 | 12 | | | 10 | 12
5 | 5
8 | | 4000 | 18
10 | | | 11 | 6 | 10 | | 4000 | 24 | | | 12 | 7 | 11 | | 4000 | 12 | | | 13 | 8 | 10 | | 3000 | 8 | | | 14
15 | 10
1 | 11
12 | | 5000
#N/A | 12
#N/A Pump | | | | esults: | 12 | | #N/ A | #N/A PUIID | | | Node
ID | CFS | | Pressure
psi | Quality | | | | 2 | 1.11 | 311.58 | 61.35 | 0.00 | | | | 3
4 | 1.11 | 311.30 | 56.89
55.42
70.29
69.62
63.39 | 0.00 | LOW PRESSURE THIS | NOD | | 5 | 3.33 | 317.21 | 70.29 | 0.00 | | IVODI | | 6 | 2.22 | 310.67 | 69.62 | 0.00 | | | | 7 | 3.33 | 291.30 | 63.39 | 0.00 | | | | 8 | 1.11 | 309.55 | 62.63 | 0.00 | | | | 10
11 | 1.11 | 294.75 | 56.22 | 0.00
0.00 | | | | 12 | 0.00 | 321.41 | 139.27 | 0.00 | | | | 1 | -11.73 | 155.00 | 0.00 | 0.00 | Reservoir | | | 9
Link R | -4.92
esults: | | 62.63
60.43
56.22
139.27
0.00
58.50 | | Tank | | | Link | | VelocityU | nit Headlos | | | | | ID
 | CFS | | ft/Kft | | | | | 1 | 0.20 | 0.38 | | 0pen | | | | 2
3 | 1.50
-1.31 | 2.74
1.67 | | Open
Open | | | | 4 | 2.52 | 0.80 | | | | | | 5 | 0.39 | 0.71 | | 0pen | | | | 6 | 5.92 | 3.35 | 2.18 | Open | | | | 7 | 1.69 | 3.09 | 3.87
12.34 | 0pen | | | | 8
9 | 4.92
11.73 | 6.26 | 12.34
8.39 | Open
Open | | | | 10 | 1.17 | | | Open
Open | | | | 11 | 4.53 | 1.44 | 0.30 | Open | | | | 12 | -1.26 | 1.60 | 0.86 | 0pen | | | | 13 | 0.06 | 0.18 | 0.03 | 0pen | | | | 14
15 | 2.37
PUMP DISCHARGE 11.73 | 3.02 | 2.94
-166.41 | Open
Open | Pump | | | -3 | | 0.00 | ADDED HEAD | open | . ump | | Figure 5: Network analysis report (annotated and edited for brevity) #### **NEXT TIME** - STORAGE CONSIDERATIONS - TANKS VS. RESERVOIRS - FLOW EQUALIZATION