CE 3372 WATER SYSTEMS DESIGN LESSON 9: EPA-NET INTRODUCTION

INTRODUCTION TO EPANET

- Introduction to EPANET
 - Install on PC
 - Install on Mac (Experimental; Unsupported)
- Background on the program
 - Interface tour
- Example problem (from ES4) on EPANET

SYSTEM COMPONENTS

Water source (Main Supply)

- Lake
- River
- Aquifer

Treatment Facility

- Treats and disinfects water
- Meet water quality standards
- Potable water

Transmission Lines

 Convey water from source – treatment facility facility – network

Pumping Facilities

Provide energy to move water

Intermediate Storage Facilities

- Stabilize line pressures
- Reserve for peak demand periods
- Provide storage for fire flow req.

tribution Lines

onvey water from storage — service areas oped(grid) and Branched Layouts

Appurtenances

 Fire Hydrants. Valves, auxiliary pumps, fittings

NETWORK REPRESENTATION

Distribution network - Consists of items designed to convey potable water at adequate pressures and discharges

- Tanks
- Pumps
- Pipes
- Valves
- Fittings
- Meters
- Other appurtenences

EPANET

- Computer program that simulates flow in closed conduit (pressurized) systems
 - Nodes
 - Links (pipes, pumps, valves)
 - Reservoirs (reservoir, tanks)
 - Demand schedule (extended period simulation)

GETTING THE PROGRAM

- Download and install EPA-NET
 - PC Users Google EPANET or Use the class website
 - MAC Users Use the class website

GETTING THE DOCUMENTATION

- Download and PRINT the user manual
 - EPANET website, or class website.
 - Topology constructed in a GUI
 - Lengths, diameters, friction terms entered for each component (pipe, valve)
 - Demand entered for each node (+ outflow, inflow)

ABOUT THE PROGRAM

- Topology (Network Layout) is constructed in a GUI
- Nodes
 - Demand entered for each node (+ outflow, inflow)
 - Elevation for each node (to calculate pressure)
- Links
 - Lengths, diameters, friction terms entered for each component.
 - Pipes, Pumps, Valves are all "link" components
- Reservoir/Tank
 - All models need a reservoir or tank (like the ground in an electric circuit)

STUFF YOU HAVE TO CHOOSE

- Head Loss Models
 - Darcy-Weisbach
 - Hazen-Williams
 - Chezy-Mannings
- Flow units (CFS, GPM, CMS and such)
 - Select SI or US Customary
 - Preferably before building a model
 - The program does not convert unit SYSTEMS

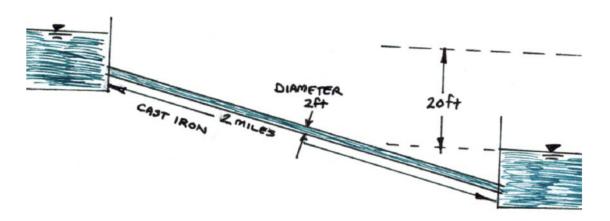
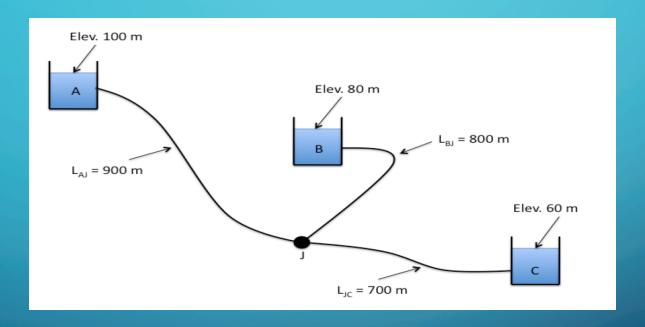
MODELING PROTOCOL

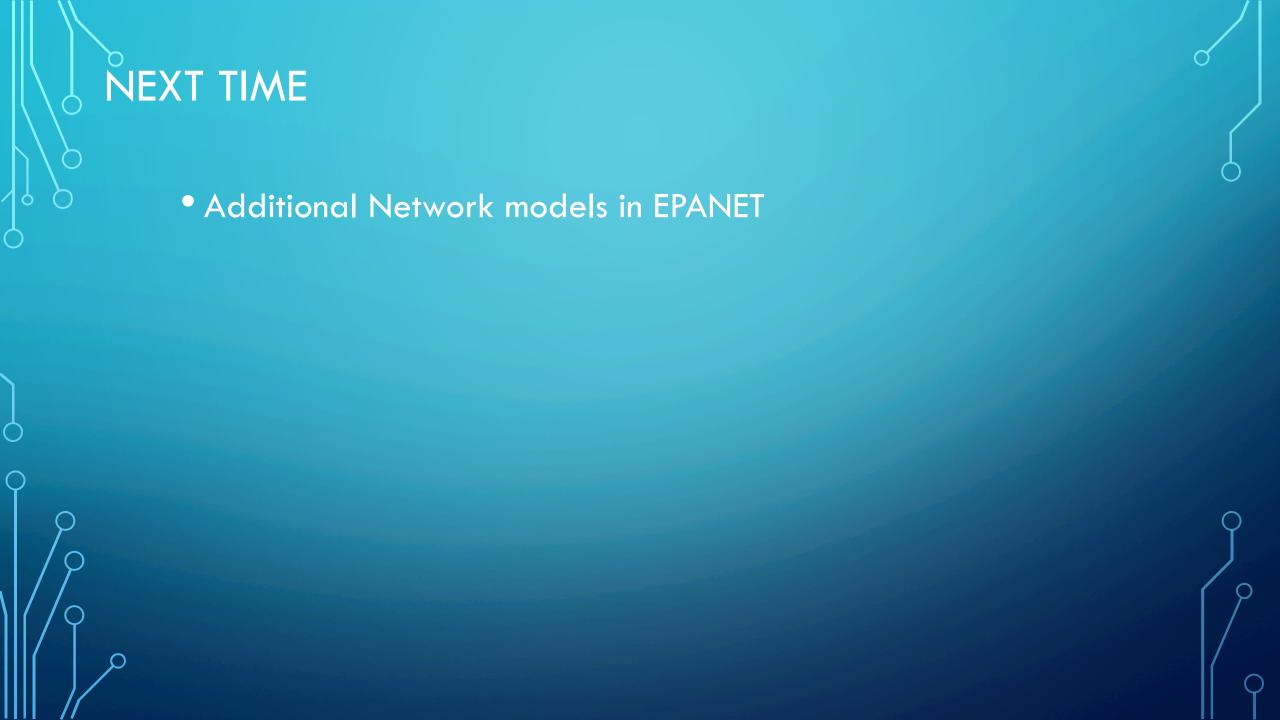
- Sketch a layout on paper
 - Identify pipe diameters; length; roughness values
 - Identify node elevations; demands
 - Supply reservoir (or tank); identify reservoir pool elevation
 - Identify pumps; pump curve in problem units
- Start EPANET, and build the model

EXAMPLE 1

● Example 1 – Flow between two reservoirs

Figure 1 shows two reservoirs connected by a 2 mile long, 2 foot diameter, cast iron pipe. The elevation difference between the two reservoir surfaces is 20 feet. Determine the discharge rate of the reservoir elevations remain unchanged.


Figure 1: Two reservoirs connected by a cast iron pipe

EXAMPLE 2

Example 2 – Three reservoir (branched)

Reservoirs A, B, and C are connected as shown³ in Figure 11. The water elevations in reservoirs A, B, and C are 100 m, 80 m, and 60 m. The three pipes connecting the reservoirs meet at junction J, with pipe AJ being 900 m long, BJ being 800 m long, and CJ being 700 m long. The diameters of all the pipes are 850 mm. If all the pipes are ductile iron, and the water temperature is 293°K, find the direction and magnitude of flow in each pipe.

