
CE 4333 Practical Computational Hydraulics SUMMER 2017

5 Simultaneous Linear Systems of Equations

Many engineering simulations require the solution of simultaneous algebraic equa-
tions. These algebraic equation systems are either linear or non-linear in the unknown
variables. Many computation schemes have been developed to solve the resulting
systems, mostly depending on the structure of the systems (and the corresponding
coefficient matrices).

The solution of linear (or non-linear for that matter) can be accomplished using either
direct methods or iterative (successive approximation) methods. The method choice
depends on:

1. The amount of computation required (size of the problem) and computer mem-
ory available.22

2. The accuracy of the solution required.

3. The ability to control accuracy (i.e. find accurate enough solutions) to improve
overall computation speed and throughput.

Direct solution methods lead to results by means of finite and predictable opera-
tions count, but at the expense of error amplification and difficulty to deal with
near-singular systems. Iterative methods can converge to exact solutions, are robust
in near-singular cases, but at the expense of a non-predictable number of opera-
tions.

In this chapter we will see how to solve systems using built-in method(s) in R and
will also see the simplest of the iterative methods, Jacobi iteration. Jacobi iteration is
presented for several reasons: it is simple to program, it shows the beauty of iteration
when it works, and introduces a concept called pre-conditioning. For problems in
this workbook, the built in solve(...) is recomended; we will use Jacobi iteration
later on the the aquifer flow models, because the model equation structure is quite
amenable to this kind of solution method.

For really large systems of equations iterative methods probably dominate because
they are quite amenable to out-of-core solution — Jacobi iteration is ideal for parallel
processing in a GPU23

22In the past, the memory was indeed an issue – its less so today; a really big problem of thousands
of equations and thousands of variables might indeed be too big for any single computer array
and would require out-of-core solver techniques, which I suspect are a slowly dying art.

23Graphics Processing Unit — Nearly all our laptops have GPU; either an Intel, NVIDIA, or AMD.
These are intended for rendering graphics, but can be directly accessed with the proper software
tools and can perform floating point operations really quickly. For example on my laptop I have
an NVIDIA GeForce GT750M which I can program using a CUDA toolkit. If I had a really large
system to solve, I would try Jacobi iteration, make each equation a thread, the solution guess
a thread, and the update a thread. Its relatively easy to multiply, add, and divide threads, so
one could compute the update directly from parallel thread multiplication using the guess, then
thread addition to update the guess, and repeat. GPU programming is beyond this handbook, but
remember that one can trade efficiency for speed if the operations are simple vector arithmetic.

Page 85 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

5.1 Numerical Linear Algebra – Matrix Manipulation

This section introduces use of matrices in R to learn how to address particular ele-
ments of a matrix – once that is understood, the remaining arithmetic is reasonably
straightforward.

5.2 The Matrix — A data structure

Listing 25 is script fragment that reads in two different matrices A and B, and writes
them back to the screen. While such an action alone is sort of meaningless, the code
does illustrate how to read the two different files, and write back the result in a row
wise fashion.

The two matrices are

A =

12 7 3

4 5 6

7 8 9

 (30)

and

B =

5 8 1 2

6 7 3 0

4 5 9 1

 (31)

Now that we have a way (albeit pretty arcane) for getting matrices into our pro-
gram from a file24 we can explore some elementary matrix arithmetic operations, and
then will later move on to some more sophisticated operations, ultimately culminat-
ing in solutions to systems if linear equations (and non-linear systems in the next
chapter).

24The read from a file is a huge necessity — manually entering values will get old fast. I have
written matrix generators whose purpose in life is to construct matrices and put them into files
for subsequent processing — often these programs are pretty simple because of structure in a
problem, at other times they rival the solution tool in complexity; once for a Linear Programming
model (circa 1980’s) I developed a code to write a 1200 X 1200 matrix to a file, which would be
functionally impossible to enter by hand.

Page 86 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 25. R code demonstrating reading in two matrices.

R script for some matrix operations
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "MatrixA.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
Read the first file
yy <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
filename <- "MatrixB.txt" # change the filename
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
Read the second file
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Get Row and Column Counts ###################
HowManyColumnsA <- length(yy)
HowManyRowsA <- length(yy$V1)
HowManyColumnsB <- length(zz)
HowManyRowsB <- length(zz$V1)
############### Build A and B Matrices ####################
Amat <- matrix(0,nrow = HowManyRowsA , ncol = HowManyColumnsA)
Bmat <- matrix(0,nrow = HowManyRowsB , ncol = HowManyColumnsB)
for (i in 1: HowManyRowsA){

for(j in 1:(HowManyColumnsA)){
Amat[i,j] <- yy[i,j]

}
}
rm(yy) # deallocate zz and just work with matrix and vectors
for (i in 1: HowManyRowsB){

for(j in 1:(HowManyColumnsB)){
Bmat[i,j] <- zz[i,j]

}
}
rm(zz) # deallocate zz and just work with matrix and vectors
############# Echo Input ###################################
print(Amat)
print(Bmat)

5.3 Matrix Arithmetic

Analysis of many problems in engineering result in systems of simultaneous equations.
We typically represent systems of equations with a matrix. For example the two-
equation system,

2x1 + 3x2

4x1 − 3x2

= 8

= − 2
(32)

Could be represented by set of vectors and matrices25

A =

2 3

4 −3

 x =

x1

x2

 b =

 8

−2

 (33)

and the linear system then written as

A · x = b (34)

25Usually called “vector-matrix” form. Additionally, a vector is really just a matrix with column
rank = 1 (a single column matrix).

Page 87 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

So the “algebra” is considerably simplified, at least for writing things, however we now
have to be able to do things like multiplication (indicated by ·) as well as the concept
of addition and subtraction, and division (multiplication by an inverse). There are
also several kinds of matrix multiplication – the inner product as required by the
linear system, the vector (cross product), the exterior (wedge), and outer (tensor)
product are a few of importance in both mathematics and engineering.

The remainder of this section will examine the more common matrix operations.

5.3.1 Matrix Definition

A matrix is a rectangular array of numbers. 1 5 7 2
2 9 17 5
11 15 8 3

 (35)

The size of a matrix is referred to in terms of the number of rows and the number of
columns. The enclosing parenthesis are optional above, but become meaningful when
writing multiple matrices next to each other. The above matrix is 3 by 4.

When we are discussing matrices we will often refer to specific numbers in the matrix.
To refer to a specific element of a matrix we refer to the row number (i) and the column
number (j). We will often call a specific element of the matrix, the ai,j -th element
of the matrix. For example a2,3 element in the above matrix is 17. In R we would
refer to the element as a matrix[i][j] or whatever the name of the matrix is in the
program.

5.3.2 Multiply a matrix by a scalar

A scalar multiple of a matrix is simply each element of the matrix multiplied by the
scalar value. Consider the matrix A below.

A =

12 7 3
4 5 6
7 8 9

 (36)

If the scalar is say 2, then 2×A is computed by doubling each element of A, as

2A =

24 14 6
8 10 12
17 16 18

 (37)

In R we can simply perform the arithmetic as

Page 88 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 26. R code demonstrating scalar multiplication.

#######################
twoA <- 2 * Amat
print(twoA)

Figure 55 is an example using the earlier A matrix and multiplying it by the scalar
value of 2.0.

Figure 55. Multiply each element in amatrix by a scalar .

Page 89 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

5.3.3 Matrix addition (and subtraction)

Matrix addition and subtraction are also element-by-element operations. In order to
add or subtract two matrices they must be the same size and shape. This require-
ment means that they must have the same number of rows and columns. To add or
subtract a matrix we simply add or subtract the corresponding elements from each
matrix.

For example consider the two matrices A and 2A below

A =

12 7 3
4 5 6
7 8 9

 2A =

24 14 6
8 10 12
17 16 18

 (38)

For example the sum of these two matrices is the matrix named 3A, shown be-
low:

A + 2A =

12 + 24 7 + 14 3 + 6
4 + 8 5 + 10 6 + 12
7 + 14 8 + 16 9 + 18

 =

36 21 9
12 15 18
21 24 27

 (39)

Now to do the operation in R, we need to read in the matrices, perform the addition,
and write the result. In the code example in 56 I added a third matrix to store the
result – generally we don’t want to clobber existing matrices, so we will use the result
instead.

Subtraction is performed in a similar fashion, except the subtraction operator is
used.

Page 90 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 56. Add each element in A to each element in twoA, store the result in threeA..

Page 91 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

5.3.4 Multiply a matrix

One kind of matrix multiplication is an inner product. Usually when matrix multi-
plication is mentioned without further qualification ,the implied meaning is an inner
product of the matrix and a vector (or another matrix).

Matrix multiplication is more complex than addition and subtraction. If two matrices
such as a matrix A (size l x m) and a matrix B (size m x n) are multiplied together,
the resulting matrix C has a size of l x n. The order of multiplication of matrices is
extremely important26.

To obtain C = A B, the number of columns in A must be the same as the number of
rows in B. In order to carry out the matrix operations for multiplication of matrices,
the i, j-th element of C is simply equal to the scalar (dot or inner) product of row i
of A and column j of B.

Consider the example below

A =

(
1 5 7
2 9 3

)
B =

 3 −2
−2 1
1 1

 (40)

First, we would evaluate if the operation is even possible, A has two rows and three
columns. B has three rows and two columns. By our implied multiplication “rules”
for the multiplication to be defined the first matrix must have the same number of
rows as the second matrix has columns (in this case it does), and the result matrix will
have the same number of rows as the first matrix, and the same number of columns
as the second matrix (in this case the result will be a 2X2 matrix).

C = AB =

(
c1,1 c1,2

c2,1 c2,2

)
(41)

And each element of C is the dot product of the row vector of A and the column
vector of B.

26Matrix multiplication is not transitive; A B 6= B A.

Page 92 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

c1,1 =
(
1 5 7

)
·

 3
−2
1

 =
(
(1)(3) + (5)(−2) + (7)(1)

)
= 0 (42)

c1,2 =
(
1 5 7

)
·

−2
1
1

 =
(
(1)(−2) + (5)(1) + (7)(1)

)
= 10 (43)

c2,1 =
(
2 9 3

)
·

 3
−2
1

 =
(
(2)(3) + (9)(−2) + (3)(1)

)
= −9 (44)

c2,2 =
(
2 9 3

)
·

−2
1
1

 =
(
(2)(−2) + (9)(1) + (3)(1)

)
= 8 (45)

Making the substitutions results in :

C = AB =

(
0 10
−9 8

)
(46)

So in an algorithmic sense we will have to deal with three matrices, the two source
matrices and the destination matrix. We will also have to manage element-by-element
multiplication and be able to correctly store through rows and columns. In R this
manipulation is handled for us by the matrix multiply operator % * %.

Figure 57 is a script that multiplies the two matrices above and prints the re-
sult.27

5.3.5 Identity matrix

In computational linear algebra we often need to make use of a special matrix called
the “Identity Matrix”. The Identity Matrix is a square matrix with all zeros except
the i, i0-th element (diagonal) which is equal to 1:

27Internal to R the actual code for the multiplication is three nested for-loops. The outer loop
counts based rows of the first matrix, the middle loop counts based on columns of the second
matrix, and the inner most loop counts based on columns of the first matrix (or rows of the
second matrix). In many practical cases we may actually have to manipulate at the element level
— similar to how the zz object was put into a matrix explicitly above.

Page 93 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 57. Matrix multiplication example.

I3×3 =

1 0 0
0 1 0
0 0 1

 (47)

Usually we don’t bother with the size subscript i used above and just stipulate that
the matrix is sized as appropriate. Multiplying any matrix by (a correctly sized)
identity matrix results in no change in the matrix. IA = A

Page 94 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

In R the identity matrix is easily created using <matrix name> <- diag(dimension).

5.3.6 Matrix Inverse

In many practical computational and theoretical operations we employ the concept
of the inverse of a matrix. The inverse is somewhat analogous to“dividing” by the
matrix. Consider our linear system

A · x = b (48)

If we wished to solve for x we would “divide” both sides of the equation by A. Instead
of division (which is essentially left undefined for matrices) we instead multiply by
the inverse of the matrix28. The inverse of a matrix A is denoted by A−1 and by
definition is a matrix such that when A−1 and A are multiplied together, the identity
matrix I results. e.g. A−1A = I

Lets consider the matrixes below

A =

(
2 3
4 −3

)
(49)

A−1 =

1
6

1
6

2
9
−1

9

 (50)

We can check that the matrices are indeed inverses of each other using R and matrix
multiplication — it should return an identity matrix.

Figure 58 is our multiplication script modified where A = A and B = A−1 per-
form the multiplication and then report the result. The result is the identity matrix
regardless of the order of operation.29

Now that we have some background on what an inverse is, it would be nice to know
how to find them — that is a remarkably challenging problem. Here we examine a
classical algorithm for finding an inverse if we really need to — computationally we
only invert if necessary, there are other ways to “divide” that are faster.

5.3.7 Gauss-Jordan method of finding A−1

There are a number of methods that can be used to find the inverse of a matrix using
elementary row operations. An elementary row operation is any one of the three
operations listed below:

28The matrix inverse is the multiplicative inverse of the matrix – we are defining the equivalent of a
division operation, just calling it something else. This issue will be huge later on in our workbook,
especially when we are dealing with non-linear systems

29Why do you think this is so, when above we stated that multiplication is intransitive?

Page 95 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 58. Matrix multiplication used to check an inverse..

1. Multiply or divide an entire row by a constant.

2. Add or subtract a multiple of one row to/from another.

3. Exchange the position of any 2 rows.

The Gauss-Jordan method of inverting a matrix can be divided into 4 main steps.
In order to find the inverse we will be working with the original matrix, augmented
with the identity matrix – this new matrix is called the augmented matrix (because

Page 96 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

no-one has tried to think of a cooler name yet).

A|I =

(
2 3 | 1 0
4 −3 | 0 1

)
(51)

We will perform elementary row operations based on the left matrix to convert it to
an identity matrix – we perform the same operations on the right matrix and the
result when we are done is the inverse of the original matrix.

So here goes – in the theory here, we also get to do infinite-precision arithmetic, no
rounding/truncation errors.

1. Divide row one by the a1,1 value to force a 1 in the a1,1 position. This is
elementary row operation 1 in our list above.

A|I =

(
2/2 3/2 | 1/2 0
4 −3 | 0 1

)
=

(
1 3/2 | 1/2 0
4 −3 | 0 1

)
(52)

2. For all rows below the first row, replace rowj with rowj − aj,1 ∗ row1. This
happens to be elementary row operation 2 in our list above.

A|I =

(
1 3/2 | 1/2 0

4− 4(1) −3− 4(3/2) | 0− 4(1/2) 1− 4(0)

)
=

(
1 3/2 | 1/2 0
0 −9 | −2 1

)
(53)

3. Now multiply row2 by 1
a2,2

. This is again elementary row operation 1 in our list

above.

A|I =

(
1 3/2 | 1/2 0
0 −9/− 9 | −2/− 9 1/− 9

)
=

(
1 3/2 | 1/2 0
0 1 | 2/9 −1/9

)
(54)

4. For all rows above and below this current row, replace rowj with rowj − a2,2 ∗
row2. This happens to again be elementary row operation 2 in our list above.
What we are doing is systematically converting the left matrix into an identity
matrix by multiplication of constants and addition to eliminate off-diagonal
values and force 1 on the diagonal.

A|I = (55)(
1 3/2− (3/2)(1) | 1/2− (3/2)(2/9) 0− (3/2)(−1/9)
0 1 | 2/9 −1/9

)
= (56)(

1 0 | 1/6 1/6
0 1 | 2/9 −1/9

)
(57)

Page 97 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

5. As far as this example is concerned we are done and have found the inverse.
With more than a 2X2 system there will be many operations moving up and
down the matrix to eliminate the off-diagonal terms.

So the next logical step is to build an algorithm to perform these operations for
us.

In R inversion is simply performed using the solve(...) function where the only
argument passed to the function is the matrix.30

Figure 59 is a screen capture of using solve(...) to find the inverse of A. The result
is identical to the input matrix A−1 above. While we now have the ability to solve
linear systems by rearrangement into

x = A−1 · b (58)

this is generally not a good approach (we are solving n linear systems to obtain the
inverse, instead of only the one we seek!).

Instead to solve a linear system, we would supply the coefficient matrix A and the
right hand side b, and then supply these two matrices to the solve routine
(e.g. x <- solve(A,b)).

30If we have to write code ourselves, its not terribly hard, but is lengthy and consequently error-
prone. Sometimes we have no choice, but in this workbook, we will use the built-in tool as much as
possible. R does not use Gaussian reduction unless we tell it to do so, it implements a factorization
called LU (or Cholesky) decomposition, then computes the inverse by repeated solution of a linear
system with the right hand side being selected from one of the identify matrix columns (as was
done above).

Page 98 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 59. The matrix inversion script showing results of a run and various input and output..

Page 99 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

5.4 Jacobi Iteration – An iterative method to find solutions

Iterative methods are often more rapid and economical in storage requirements than
the direct methods in solve(...).31 The methods are useful (necessary) for non-
linear systems of equations — we will use this feature later when we find solutions to
networks of pipelines.

Lets consider a simple example:

8x1 + 1x2 − 1x3

1x1 − 7x2 + 2x3

2x1 + 1x2 + 9x3

= 8
= − 4
= 12

(59)

The solution is x1 = 1, x2 = 1, x3 = 1. We begin the iterative scheme by refactoring
each equation in terms of a single variable (there is a secret pivot step to try to make
the system diagonally dominant – the example above has already been pivoted, or
“pre-conditioned” for the solution method):

x1

x2

x3

= 1.000 −0.125x2 0.125x3

= 0.571 0.143x1 0.286x3

= 1.333 −0.222x1 −0.111x2

(60)

Then supply an initial guess of the solution (e.g. (0, 0, 0)) and put these values into
the right-hand side, the resulting left-hand side is an improved (hopefully) solution.
Repeat the process until the solution stops changing, or goes obviously haywire.

This sequence of operation for the example above produces the results listed in Table
4.

Table 4. Jacobi Iteration Solution Sequence.

Iteration: 1-st 2-nd 3-rd 4-th 5th 6-th 7-th 8-th
x1 0 1.000 1.095 0.995 0.993 1.002 1.001 1.000
x2 0 0.571 1.095 1.026 0.990 0.998 1.001 1.000
x3 0 1.333 1.048 0.969 1.000 1.004 1.001 1.000

As a practical matter, refactoring the equations can instead be accomplished by com-
puting the inverse of each diagonal coefficient – and matrix multiplication, scalar
division, and vector addition are all that is required to find a solution (if the method
will actually work).

In linear algebra terms the Jacobi iteration method (without refactoring) performs
the following steps:

31The R solve routine is pretty robust, if you tell it sparse=TRUE it has a lot of internal methods to
pre-condition the problem for fast solution. But for really big systems we may wish to program
our own solver — especially if these systems have some special and predictable structure.

Page 100 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

1. Read in A, b, and xguess.

2. Construct a vector from the diagonal elements of A. This vector, W, will have
one column, and same number of rows as A.

3. Perform matrix arithmetic to compute an error vector, residual = A·xguess−b.

4. Divide this error vector by the diagonal weights update = residual/W

5. Update the solution vector xnew = xguess − update

6. Test for stopping, if not indicated, move the new solution into the guess and
return to step 3.

7. If time to stop, then report result and stop.

Listing 27 implements in R the algorithm described above to find solutions by the
Jacobi iteration method. The script does not pre-condition the linear system (so we
have to do that ourselves).

Listing 27. R code demonstrating Jacobi Iteration.

R script to implement Jacobi Iteration Method to
find solution to simultaneous linear equations
assumes matrix is pre -conditioned to diagional dominant
assumes matrix is non -singular
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "LinearSystem000.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
Here we open the connection to the file (within read.table)
Then the read.table attempts to read the entire file into an object named zz
Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Row and Column Counts #######################
HowManyColumns <- length(zz)
HowManyRows <- length(zz$V1)
tolerance <- 1e-12 #stop when error vector is small
itermax <- 200 # maximum number of iterations
############### Build A, x, and B ##############################
Amat <- matrix(0,nrow = HowManyRows , ncol = (HowManyColumns -2))
xguess <- numeric (0)
Bvec <- numeric (0)
Wvec <- numeric (0)
##
for (i in 1: HowManyRows){

for(j in 1:(HowManyColumns -2)){
Amat[i,j] <- zz[i,j]

}
Bvec[i] <- zz[i,HowManyColumns -1]
xguess[i] <- zz[i,HowManyColumns]
Wvec[i] <- Amat[i,i]

}
rm(zz) # deallocate zz and just work with matrix and vectors
##################### Implement Jacobi Iteration #############
for(iter in 1: itermax){
Bguess <- Amat %*% xguess
residue <- Bguess - Bvec
xnew <- xguess - residue/Wvec
xguess <- xnew
testval <- t(residue) %*% residue
if (testval < tolerance) {

message ("sum squared error vector small : ",testval);
break

}
}
if(iter == itermax) message (" Method Fail")
message (" Number Iterations : ", iter)
message (" Coefficient Matrix : ")
print(cbind(Amat))
message (" Solution Vector : ")
print(cbind(xguess))
message (" Right -Hand Side Vector : ")
print(cbind(Bvec))

Page 101 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 60 is a screen capture of the script in Listing 27 applied to the example
problem.

Figure 60. Jacobi Iteration applied to Example Problem.

Page 102 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

6 Simultaneous Non-Linear Systems of Equations

Non-linear systems are extensions of the linear systems cases except the systems
involve products and powers of the unknown variables. Non-linear problems are
often quite difficult to manage, especially when the systems are large (many rows and
many variables).

The solution to non-linear systems, if non-trivial yet alone even possible, are itera-
tive.

Within the iterative steps is a linearization component – these linear systems which
are intermediate computations within the overall solution process are treated by an
appropriate linear system method (direct or iterative).

In R it is sometimes successful to solve by the nonlinear minimization tool built-in,
but neither efficient, nor particularly useful when the system gets large. On the CRAN

there are a couple of packages devoted to non-linear systems, and these would be
reasonable places to consider.

In this chapter we will illustrate an iterative technique called Quasi-Linearization,
and the next chapter we will formally extend Newton’s method to multi-dimensional
cases.

x2 + y2

ex + y
= 4
= 1

(61)

Suppose we have a solution guess xk, yk, which of course could be wrong, but we could
linearize about that guess as

A =

(
xk + yk
0 + 1

)
x =

(
xk+1

yk+1

)
b =

(
4

1− exk

)
(62)

Now the system is linear, and we can solve for xk+1 much like the Jacobi iteration of
the previous chapter. If the system is convergent (not all are) then we update in the
same fashion, and repeat until complete.

Listing 28 is a script that implements the quasi-linearization method. The starting
vector is crucial, and the next several screen captures illustrate good starting vectors
(resulting in a solution) and poor ones.

Page 103 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 28. R code demonstrating Non-Linear by quasi-linearization.

R script to solve non -linear example by quasi -linearization
Amat <- matrix(0,nrow=2,ncol =2)
Brhs <- numeric (0)
x_guess <- c(-1.9, 0.8)
maxiter <- 20
message (" Initial Guess"); print(x_guess); message (" Original Equations - x_guess ");
message(x_guess [1]^2 + x_guess [2]^2, " : should be 4 ")
message(exp(x_guess [1]) + x_guess [2], " : should be 1 ")
Construct the current quasi -linear model
for (iter in 1: maxiter){
Amat [1,1] <- x_guess [1]; Amat [1,2] <- x_guess [2];
Amat [2,1] <- 0 ; Amat [2,2] <- 1;
Brhs [1] <- 4
Brhs [2] <- 1-exp(x_guess [1])
Solve for the new guess
x_new <- solve(Amat ,Brhs)
Update
x_guess <- x_new
}
print(Amat); print(Brhs);
message (" Current Guess"); print(x_new)
message (" Original Equations - x_new")
message(x_new [1]^2 + x_new [2]^2, " : should be 4 ")
message(exp(x_new [1]) + x_new[2], " : should be 1 ")

Figure 61 is a screen capture of the algorithm started near a solution, that sort-of
converges to the solution. Not really satisfying, but at least not divergent.

Figure 61. Quasi-linear, started near a solution, converges (sort-of) to the solution.

Page 104 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 62 is a screen capture of the algorithm started near a solution, that fails to
converge — it actually diverged.

Figure 62. Quasi-linear, started near a solution, fails to converge.

What is really needed is a much more reliable algorithm. Sometimes the non-linear
minimization tools can successfully be used. We will try that next.

Lets restructure our equation system a bit into

f(x) =
f1(x, y) = x2 + y2 −4
f2(x, y) = ex + y −1

(63)

At the solution x, the result should be f(x) = 0. But if we are not at a solution,
then the result will be non-zero (and represents the error) — one tool we have is a
non-linear minimization tool in R that can minimize functions. So now we need the
sum-of-squared errors, which with vectors is simply the inner product of the vector
with itself:

F(x) = f(x)T · f(x) (64)

Page 105 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

So lets rewrite the script to construct f(x) and F(x), then implement the non-linear
minimizer, nlm(...) in R. Listing 29 is a listing that implements these changes.
Notice the two prototype functions, the first takes vector input and returns vector
output — internal (to the function) definition of a vector using func <- numeric(0)

provides the memory space in the program.32

Listing 29. R code demonstrating Non-Linear by Minimization.

R script for system of non -linear equations using minimization
WARNING -- This is not recomended for large systems
forward define the functions
####### f(x) #################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######### F(x) ###############
bigF <- function(x_vector){

vector <- numeric (0)
vector <- func(x_vector)
bigF <- t(vector) \%*\% vector
return(bigF)

}
#############################
forward define some variables
starting guess
x_guess <- c(1,-1.7)
result <- nlm(bigF ,x_guess)
message (" Estimated bigF Value : ",result$minimum)
message (" Estimated x_vector Value : ")
print(result$estimate)
message (" Estimated func Value : ")
print(func(result$estimate))

Figure 63 is a screen capture of the script for the first solution to the system of equa-
tions, we have started quite close to a solution and the method converges to the correct
solution. The object named result contains several items of which we have only ac-
cessed two. Notice how we have addressed these items using the name$attribute

method.

Figure 64 is a screen capture of the script for the second solution to the system of
equations, we have started quite close to a solution and the method converges to the
correct solution.

Naturally, to be really useful we should test the method for starting values relatively
far from the solution; Figure 65 is a screen capture of such testing for a few different
start vectors. Observe that the solution at (-1.8,0.8) is the preferred solution in
most cases unless we start very close to the second solution at (1,-1.7). This kind
of preference to one solution over another is quite common in non-linear systems
(sometimes these particular solutions are called attractors). The related observation
is that we can find starting vectors that simply fail — this phenomenon is also quite
common (sometimes called sensitive dependence on initial conditions).

32If you get an error message with the words ... Atomic, it means that something in a
function is trying to address a variable for which there is no space, or trying to address a global
(external to the function) variable directly. These are pretty hard errors to debug (fix), so I have
gotten into the habit of building and testing the prototype functions before I even try to get the
rest of the program to run.

Page 106 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 63. Solution using nlm(...). Start vector (-1.8,0.8).

Figure 64. Solution using nlm(...). Start vector (1.0,-1.7).

Page 107 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 65. Solution using nlm(...). Varying start vectors.

Using a non-linear minimization technique to solve systems of non-linear equations
is not recommended for anything bigger than a few equations (maybe as many as 8
or 9). Quasi-linearization is a good technique — the example here is intentionally
pathological. The next chapter presents a better technique than quasi-linearization
that can be used for large systems (assuming they will converge at all), and it is the
method that will be used for pipeline networks.

Page 108 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

7 Numerical Methods – Multiple Variable Quasi-

Newton Method

This chapter formally presents the Newton-Raphson method as the preferred alter-
native to using an optimizer routine to solve systems of non-linear equations. The
method is used later in the document to solve for flows and heads in a pipeline net-
work.

Lets return to our previous example where the function f is a vector-valued function
of a vector argument.

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(65)

Lets also recall Newtons method for scalar valued function of a single variable.

xk+1 = xk −
f(xk)
df
dx
|xk

(66)

Extending to higher dimensions, the value x become the vector x and the function f()
becomes the vector function f(). What remains is an analog for the first derivative
in the denominator (and the concept of division of a matrix).

The analog to the first derivative is a matrix called the Jacobian which is comprised
of the first derivatives of the function f with respect to the arguments x. For example
for a 2-value function of 2 arguments (as our example above)

df

dx
|xk =>

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

 (67)

Next recall that division is replaced by matrix multiplication with the multiplicative
inverse, so the analogy continues as

1
df
dx
|xk

=>

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

−1

(68)

Lets name the Jacobian J(x).

So the multi-variate Newton’s method can be written as

xk+1 = xk − J(x)−1|xk · f(x)|xk (69)

Page 109 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

In the linear systems chapter we did find a way to solve for an inverse, but its not
necessary – a series of rearrangement of the system above yields a nice scheme tthat
does not require inversion of a matrix.

First, move the xk to the left-hand side.

xk+1 − xk = −J(x)−1|xk · f(x)|xk (70)

Next multiply both sides by the Jacobian.

J(x)|xk · (xk+1 − xk) = −J(x)|xk · J(x)−1|xk · f(x)|xk (71)

Recall a matrix multiplied by its inverse returns the identity matrix (the matrix
equivalent of unity)

−J(x)|xk · (xk+1 − xk) = f(x)|xk (72)

So we now have an algorithm:

1. Start with an initial guess xk, compute f(x)|xk , and J(x)|xk .

2. Test for stopping. Is f(x)|xk close to zero? If yes, exit and report results,
otherwise continue.

3. Solve the linear system J(x)|xk · (xk+1 − xk) = f(x)|xk .

4. Test for stopping. Is (xk+1 − xk) close to zero? If yes, exit and report results,
otherwise continue.

5. Compute the update xk+1 = xk − (xk+1 − xk), then

6. Move the update into the guess vector xk <= xk+1 =and repeat step 1. Stop
after too many steps.

Now to repeat the example from the previous chapter, except we will employ this
algorithm.

The function (repeated)

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(73)

Then the Jacobian, here we will compute it analytically because we can

J(x) =>

2x 2y

ex 1

 (74)

Page 110 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 30 is a listing that implements the Newton-Raphson method with analytical
derivatives.

Listing 30. R code demonstrating Newton’s Method calculations.

R script for system of non -linear equations using Newton -Raphson with analytical
derivatives

forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector){

jacob <- matrix(0,nrow=2,ncol =2)
jacob [1,1] <- 2* x_vector [1] ; jacob [1,2] <- 2* x_vector [2];
jacob [2,1] <- exp(x_vector [1]); jacob [2,2] <- 1 ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
Newton -Raphson Algorithm
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
###
if(iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)

Figure 66 implements the script in Listing 30 for the example problem.

The next variant is to approximate the derivatives – usually a Finite-Difference ap-
proximation is used, either forward, backward, or centered differences – generally
determined based on the actual behavior of the functions themselves or by trial and
error. For really huge systems, we usually make the program itself make the adaptions
as it proceeds.

The coding for a finite-difference representation of a Jacobian is shown in Listing 31.
In constructing the Jacobian, we observe that each column of the Jacobian is simply
the directional derivative of the function with respect to the variable associated with
the column. For instance, the first column of the Jacobian in the example is first
derivative of the first function (all rows) with respect to the first variable, in this case
x. The second column is the first derivative of the second function with respect to the
second variable, y. This structure is useful to generalize the Jacobian construction
method because we can write (yet another) prototype function that can take the
directional derivatives for us, and just insert the returns as columns. The example
listing is specific to the 2X2 function in the example, but the extension to more
general cases is evident.

Page 111 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 31. R code demonstrating Newton’s Method calculations using finite-difference approxima-
tions to the partial derivatives.

R script for system of non -linear equations using Newton -Raphson with
finite -difference approximated derivatives
forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector ,func){ #supply a vector and the function name
the columns of the jacobian are just directional derivatives

dv <- 1e-06 #perturbation value for finite difference
df1 <- numeric (0);
df2 <- numeric (0);
dxv <- x_vector;
dyv <- x_vector;

perturb the vectors
dxv [1] <- dxv [1]+dv;
dyv [2] <- dyv [2]+dv;
df1 <- (func(dxv) - func(x_vector))/dv;
df2 <- (func(dyv) - func(x_vector))/dv;
jacob <- matrix(0,nrow=2,ncol =2)

for a more general case should put this into a loop
jacob [1,1] <- df1[1] ; jacob [1,2] <- df2[1] ;
jacob [2,1] <- df1[2] ; jacob [2,2] <- df2[2] ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
Newton -Raphson Algorithm
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now ,func),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
###
if(iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)

Page 112 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 66. Newton-Raphson using Analytical Derivatives.

Figure 67. Newton-Raphson using Finite-Difference Approximated Derivatives.

Page 113 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

8 Pipelines and Networks

Pipe networks, like single path pipelines, are analyzed for head losses in order to size
pumps, determine demand management strategies, and ensure minimum pressures in
the system. Conceptually the same principles are used for steady flow systems: con-
servation of mass and energy; with momentum used to determine head losses.

8.1 Pipe Networks – Topology

Network topology refers to the layout and connections. Networks are built of nodes
(junctions) and arcs (links).

8.1.1 Continunity (at a node)

Water is considered incompressible in steady flow in pipelines and pipe networks, and
the conservation of mass reduces to the volumetric flow rate, Q,

Q = AV (75)

where A is the cross sectional of the pipe, and V is the mean section velocity. Typical
units for discharge is liters per second (lps), gallons per minute (gpm), cubic meters
per second (cms), cubic feet per second (cfs), and million gallons per day (mgd). The
continuity equation in two cross-sections of a pipe as depicted in Figure 68 is

A1V1 = A2V2 (76)

Junctions (nodes) are where two or more pipes join together. A three-pipe junction
node with constant external demand is shown in Figure 10. The continuity equation
for the junction node is

Q1 −Q2 −Q3 −D = 0 (77)

Figure 68. Continuity of mass (discharge) across a change in cross section.

In design analysis, all demands on the system are located at junctions (nodes), and
the flow connecting junctions is assumed to be uniform across the cross sections (so

Page 114 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 69. Continuity of mass (discharge) across a node (junction).

that mean velocities apply). If a substantial demand is located between nodes, then
an additional node is established at the demand location.

8.1.2 Energy Loss (along a link)

Equation 101 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (78)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 77 is a sketch
that illustrates the various components in Equation 101.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-

Page 115 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 70. Definition sketch for energy equation.

draulic behavior must be supplied using their respective pump/turbine curves.

8.1.3 Velocity Head

The velocity in αV
2

2g
is the mean section velocity and is the ratio of discharge to flow

area. The kinetic energy correction coefficient is

α =

∫
A
u3dA

V 3A
(79)

where u is the point velocity in the cross section (usually measured relative to the
centerline or the pipe wall; axial symmetry is assumed). Generally values of α are
2.0 if the flow is laminar, and approach unity (1.0) for turbulent flow. In most water
distribution systems the flow is usually turbulent so α is assumed to be unity and the
velocity head is simply V 2

2g
.

8.1.4 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 102 is the relationship of mechanical power to added pump head.

ηP = Qρghp (80)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.

Page 116 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

If the relationship is re-written in terms of added head33 the pump curve is

hp =
ηP

Qρg
(81)

This relationship illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for
computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (82)

8.1.5 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 109 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (83)

8.2 Pipe Head Loss Models

The Darcy-Weisbach, Chezy, Manning, and Hazen-Williams formulas are relation-
ships between physical pipe characteristics, flow parameters, and head loss. The
Darcy-Weisbach formula is the most consistent with the energy equation formulation
being derivable (in structural form) from elementary principles.

hLf
= f

L

D

V 2

2g
(84)

where hLf
is the head loss from pipe friction, f is a dimensionless friction factor, L is

the pipe length, D is the pipe characteristic diameter, V is the mean section velocity,
and g is the gravitational acceleration.

The friction factor, f , is a function of Reynolds number ReD and the roughness ratio
ks
D

.

f = σ(ReD,
ks
D

) (85)

The structure of σ is determined experimentally. Over the last century the structure
is generally accepted to be one of the following depending on flow conditions and pipe
properties

1. Laminar flow (Eqn 2.36, pg. 17 Chin (2006)) :

f =
64

ReD
(86)

33A negative head loss!

Page 117 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

2. Hydraulically Smooth Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
2.51

Red
√
f

) (87)

3. Hydraulically Rough Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
) (88)

4. Transitional Pipes (Colebrook-White Formula)(Eqn 2.35 pg. 17 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
+

2.51

Red
√
f

) (89)

5. Transitional Pipes (Jain Formula)(Eqn 2.39 pg. 19 Chin (2006)):

f =
0.25

[log10(
ke
D

3.7
+ 5.74

Re0.9d
)]2

(90)

8.3 Pipe Networks Solution Methods

Several methods are used to produce solutions (estimates of discharge, head loss,
and pressure) in a network. An early one, that only involves analysis of loops is
the Hardy-Cross method. A later one, more efficient, is a Newton-Raphson method
that uses node equations to balance discharges and demands, and loop equations to
balance head losses. However, a rather ingenious method exists developed by Haman
and Brameller (1971), where the flow distribution and head values are determined
simultaneously. The task here is to outline the Haman and Brameller (1971) method
on the problem below – first some necessary definitions and analysis.

The fundamental procedure is:

1. Continuity is written at nodes (node equations).

2. Energy loss (gain) is written along links (pipe equations).

3. The entire set of equations is solved simultaneously.

8.4 Network Analysis

Figure 71 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing. The remaining nodes
(N1 – N4) have demands specified as the purple outflow arrows. The pipes are labeled

Page 118 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 71. Pipe network for illustrative example with supply and demands identified. Pipe dimen-
sions and diameters are also depicted..

(P1 – P6), and the red arrows indicate a positive flow direction, that is, if the flow is
in the indicated direction, the numerical value of flow (or velocity) in that link would
be a positive number.

Define the flows in each pipe and the total head at each node as Qi and Hi where the
subscript indicates the particular component identification. Expressed as a vector,
these unknowns are:

[Q1, Q2, Q3, Q4, Q5, Q6, H1, H2, H3, H4] = x

If we analyze continuity for each node we will have 4 equations (corresponding to
each node) for continunity, for instance for Node N2 the equation is

Q2 −Q3 Q6 = 4

Similarily if we define head loss in any pipe as ∆Hi = f 8Li

π2gD5
i
|Qi|Qi or ∆Hi = LiQi,

where Li = f 8Li

π2gD5
i
|Qi|, then we have 6 equations (corresponding to each pipe) for

energy, for instance for Pipe (P2) the equation is34

−L2Q2 H1 −H2 = 0

34The seemingly awkward way of writing the equations will become apparent shortly!

Page 119 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

If we now write all the node equations then all the pipe equations we could construct
the following coefficient matrix below:35

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0

Declare the name of this matrix A(x), where x denotes the unknown vector of Q
augmented by H as above. Next consider the right-hand-side at the correct solution
(as of yet still unknown!) as

[0, 4, 3, 1, −100, 0, 0, 0, 0, 0] = b

So if the coefficient matrix is correct then the following system would result:

A(x) · x = b

which would look like

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0

Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4

=

0
4
3
1
−100

0
0
0
0
0

(91)

Observe, the system is non-linear because the coefficient matrix depends on the cur-
rent values of Qi for the Li terms. However, the system is full-rank (rows == columns)
so it is a candidate for Newton-Raphson.

35The horizontal lines divide the node and the pipe equations. The upper partition are the node
equations in Q and H, the lower partition are the pipe equations in Q and H

Page 120 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Further observe that the upper partition from column 6 and smaller is simply the
node-arc incidence matrix, and the lower partition for the same columns only contains
Li terms on its diagonal, the remainder is zero. Next observe that the partition
associated with heads in the node equations is the zero-matrix.

Lastly (and this is important!) the lower right partition is the transpose of the node-
arc incidence matrix subjected to scalar multiplication of −1. The importance is that
all the information needed to find a solution is contained in the node-arc incidence
matrix and the right-hand-side – the engineer does not need to identify closed loops
(nor does the computer need to find closed loops).

The trade-off is a much larger system of equations, however solving large systems is
far easier that searching a directed graph to identify closed loops, furthermore we
obtain the heads as part of the solution process.

Page 121 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

9 Pipelines Network Analysis

The prior chapter introduced the non-linear system that results from the analysis of
the pipeline network. This chapter continues the effort and produces a workable R
script that can compute flows and heads given just the node-arc incidence matrix,
and pipe properties.

Recall from the prior chapter the non-linear system to be solved is

A(x) · x = b

which would look like

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0

Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4

=

0
4
3
1
−100

0
0
0
0
0

(92)

The system is non-linear because the coefficient matrix depends on the current values
of Qi for the Li terms. The upper partition from column 6 and smaller is simply
the node-arc incidence matrix, and the lower partition for the same columns only
contains Li terms on its diagonal, the remainder is zero. Next observe that the
partition associated with heads in the node equations is the zero-matrix. The lower
right partition is the transpose of the node-arc incidence matrix subjected to scalar
multiplication of −1. So using the Newton-Raphson approach discussed earlier we
develop a script in R that produces estimates of discharge and total head in the
system depicted in Figure 71.

9.1 Script Structure

The script will need to accomplish several tasks including reading the node-arc inci-
dence matrix supplied as the file in Figure 72 and convert the strings into numeric
values. The script will also need some support functions defined before constructing
the matrix.

The rows of the input file are:

Page 122 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

4

6

1.00 0.67 0.67 0.67 0.67 0.5

800 800 700 700 800 600

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.000011

1 1 1 1 1 1

1 -1 0 -1 0 0

0 1 -1 0 0 1

0 0 0 1 -1 -1

0 0 1 0 1 0

0 4 3 1 -100 0 0 0 0 0

Figure 72. Input file for the problem.

1. The node count.

2. The pipe count.

3. Pipe diameters, in feet.

4. Pipe lengths, in feet.

5. Pipe roughness heights, in feet.

6. Kinematic viscosity in feet2/second.

7. Initial guess of flow rates (unbalanced OK, non-zero vital!)

8. The next four rows are the node-arc incidence matrix.

9. The last row is the demand (and fixed-grade node total head) vector.

9.1.1 Support Functions

The Reynolds number will need to be calculated for each pipe at each iteration of
the solution, so a Reynolds number function will be useful. For circular pipes, the
following equation should work,

Re(Q) =
8L

µπD
|Q| (93)

The Jain equation (Jain, 1976) that directly computes friction factor from Reynolds
number, diameter, and roughness is

f(ks, D,Re) =
0.25

[log(ks
3.7D

+ 5.74
Re0.9

)]2
(94)

Page 123 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Once you have the Reynolds number for a pipe, and the friction factor, then the head
loss factor that will be used in the coefficient matrix (and the Jacobian) is

Li = f
8Li

π2gD5
i

|Qi| (95)

These three support functions are coded in R as shown in Listing 32.

Listing 32. R Code to compute Reynolds numbers and friction factors
.

###
############## Forward Define Support Functions #################
###
Jain Friction Factor Function -- Tested OK 23SEP16
friction_factor <- function(roughness ,diameter ,reynolds){

temp1 <- roughness /(3.7* diameter);
temp2 <- 5.74/(reynolds ^(0.9));
temp3 <- log10(temp1+temp2);
temp3 <- temp3 ^2;
friction_factor <- 0.25/ temp3;
return(friction_factor)

}
Velocity Function
velocity <- function(diameter ,discharge){

velocity <- discharge /(0.25* pi*diameter ^2)
return(velocity)

}
Reynolds Number Function
reynolds_number <- function(velocity ,diameter ,mu){

reynolds_number <- abs(velocity)*diameter/mu
return(reynolds_number)

}
Geometric factor function
k_factor <- function(howlong ,diameter ,gravity){

k_factor <- (16* howlong)/(2.0* gravity*pi^2* diameter ^5)
return(k_factor)

}

9.1.2 Augmented and Jacobian Matrices

The A(x) is built using the node-arc incidence matrix (which does not change),
and the current values of Li. You will also need to build the Jacobian of A(x) to
implement the update as-per Newton-Raphson.

A brief review; at the solution we can write

[A(x)] · x− b = f(x) = 0 (96)

Lets assume we are not at the solution, so we need a way to update the current value
of x. Recall from Newton’s method (for univariate cases) that the update formula
is

xk+1 = xk − (
df

dx
|xk)−1f(xk) (97)

The Jacobian will play the role of the derivative, and x is now a vector (instead of
a single variable). Division is not defined for matrices, but the multiplicative inverse
is (the inverse matrix), and plays the role of division. Hence, the extension to the
pipeline case is

Page 124 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

xk+1 = xk − [J(xk)]
−1f(xk) (98)

where J(xk) is the Jacobian of the coefficient matrix A evaluated at xk. Although a
bit cluttered, here is the formula for a single update step, with the matrix, demand
vector, and the solution vector in their proper places.

xk+1 = xk − [J(xk)]
−1{[A(xk)] · xk − b} (99)

As a practical matter we actually never invert the Jacobian36, instead we solve the
related Linear system of

[J(xk)] ·∆x = {[A(xk)] · xk − b} (100)

for ∆x, then perform the update as xk+1 = xk - ∆x

The Jacobian of the pipeline model is a matrix with the following properties:

1. The partition of the matrix that corresponds to the node formulas (upper left
partition) is identical to the original coefficient matrix — it will be comprised
of 0 or ± 1 in the same pattern at the equivalent partition of the A matrix.

2. The partition of the matrix that corresponds to the pipe head loss terms (lower
left partition), will consist of values that are twice the values of the coefficients
in the original coefficient matrix (at any supplied value of xk.

3. The partition of the matrix that corresponds to the head terms (lower right
partition), will consist of values that are identical to the original matrix.

4. The partition of the matrix that corresponds to the head coefficients in the node
equations (upper right partition) will also remain unchanged.

You will want to take advantage of problem structure to build the Jacobian (you could
just finite-difference the coefficient matrix to approximate the partial derivatives, but
that is terribly inefficient if you already know the structure).

9.1.3 Stopping Criteria, and Solution Report

You will need some way to stop the process – the three most obvious (borrowed from
Newton’s method) are:

1. Approaching the correct solution (e.g. [A(x)] · x− b = f(x) = 0).

36Inverting the matrix every step is computationally inefficient, and unnecessary. As an example,
solving the system in this case would at worst take 10 row operations each step, but nearly 100
row operations to invert at each step – to accomplish the same result, generate an update. Now
imagine when there are hundreds of nodes and pipes!

Page 125 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

2. Update vector is not changing (e.g. xk+1 = xk), so either have an answer, or
the algorithm is stuck.

3. You have done a lot of iterations (say 100).

Listing 33 is a code fragment to find the flow distribution and heads for the example
problem. Not listed is the forward defined functions already listed above – these
should be placed into the script in the location shown (or directly sourced into the
code in R).

Listing 33. R Code to Implement Pipe Network Solution
This fragment reads the data file and converts it into numeric values and reports back the values.

Steady Flow in a Pipe Network Using Hybrid Method (and Newton -Raphson) based on
Haman YM , Brameller A. Hybrid method for the solution of piping networks. Proc IEEE

1971;118(11) :1607?12.
#
Clear all existing objects
rm(list=ls())

###
############## Forward Define Support Functions Go Here ##########
###
Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
pipeCount <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
diameter <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distance <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
roughness <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
viscosity <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
flowguess <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
nodearcs <- (readLines(zz , n = nodeCount , ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
rhs_true <- (readLines(zz , n = pipeCount+nodeCount , ok = TRUE , warn = TRUE ,encoding = "

unknown", skipNul = FALSE))
close(zz) # Close connection zz
#
Convert Input Stream into Numeric Structures
diameter <-as.numeric(unlist(strsplit(diameter ,split=" ")))
distance <-as.numeric(unlist(strsplit(distance ,split=" ")))
roughness <-as.numeric(unlist(strsplit(roughness ,split=" ")))
viscosity <-as.numeric(unlist(strsplit(viscosity ,split=" ")))
flowguess <-as.numeric(unlist(strsplit(flowguess ,split=" ")))
nodearcs <-as.numeric(unlist(strsplit(nodearcs ,split=" ")))
rhs_true <-as.numeric(unlist(strsplit(rhs_true ,split=" ")))
convert nodearcs a matrix
We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
echo input
message ("Node Count = ",nodeCount)
message ("Pipe Count = ",pipeCount)
message ("Pipe Lengths = "); distance
message ("Pipe Diameters = "); diameter
message ("Pipe Roughness = "); roughness
message ("Fluid Viscosity = ",viscosity)
message (" Initial Guess = "); flowguess
message ("Node -Arc -Incidence Matrix = "); nodearcs
#

Page 126 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 34 is a code fragment to construct the coefficient matrix structure for the
non-changing part and allocate variables for the Newton-Raphson method.

Listing 34. R Code to Implement Pipe Network Solution
This fragment constructs the initial A(x) matrix and allocates variables used in the iteration loop.

create the augmented matrix
headCount <- nodeCount
flowCount <- pipeCount
augmentedRowCount <- nodeCount+pipeCount
augmentedColCount <- flowCount+headCount
augmentedMat <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
#
augmentedMat
build upper left partition of matrix -- this partition is constants from node -arc matrix
for (i in 1: nodeCount){

for (j in 1: flowCount){
augmentedMat[i,j] <- nodearcs[i,j]

}
}
augmentedMat
build lower right partition of matrix -- this partition is -1* transpose(node -arc) matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- flowCount +1
jend <- flowCount+headCount
for (i in istart:iend){

for(j in jstart:jend){
augmentedMat[i,j] <- -1*nodearcs[j-jstart+1,i-istart +1]

}
}
augmentedMat
here it should be safe to delete the nodearc matrix
rm(nodearcs)
Need some vorking vectors
HowMany <- 50
tolerance1 <- 1e-24
tolerance2 <- 1e-24
velocity_pipe <-numeric (0)
reynolds <- numeric (0)
friction <- numeric (0)
geometry <- numeric (0)
lossfactor <- numeric (0)
jacbMatrix <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
gq <- numeric (0)
solvecguess <- numeric(length=augmentedRowCount)
solvecnew <- numeric(length=augmentedRowCount)
solvecguess [1: flowCount] <- flowguess [1: flowCount]

compute geometry factors (only need once , goes outside iteration loop)
for (i in 1: pipeCount)
{

geometry[i] <- k_factor(distance[i],diameter[i] ,32.2)
}
geometry

Listing 35 is the code fragment that implements the iteration loop of the Newton-
Raphson method. Within each iteration, the support functions are repeatedly used
to construct the changing part of the coefficient and Jacobian matrices, solving the
resulting linear system, performing the vector update, and testing for stopping.

Page 127 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 35. R Code to Implement Pipe Network Solution
This fragment executes the iteration loop where the Newton-Raphson method and updates are imple-
mented.

going to wrap below into an interation loop -- forst a single instance
for (iteration in 1: HowMany){
################### BEGIN ITERATION OUTER LOOP ###########################
compute current velocity
for (i in 1: pipeCount)
{

velocity_pipe[i]<-velocity(diameter[i],flowguess[i])
}
compute current reynolds
for (i in 1: pipeCount)
{

reynolds[i]<-reynolds_number(velocity_pipe[i],diameter[i],viscosity)
}
compute current friction factors
for (i in 1: pipeCount)
{

friction[i]<-friction_factor(roughness[i],diameter[i],reynolds[i])
}
compute current loss factor
for (i in 1: pipeCount)
{

lossfactor[i] <- friction[i]* geometry[i]*abs(flowguess[i])
}
build the function matrix
operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend){

for(j in jstart:jend){
if ((i-istart +1) == j) augmentedMat[i,j] <- -1* lossfactor[j]

}
}
now build the current jacobian
slick trick -- we will copy the current function matrix , then modify the lower left

partition
jacbMatrix <- augmentedMat
build the function matrix
operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend){

for(j in jstart:jend){
if ((i-istart +1) == j) jacbMatrix[i,j] <- 2* jacbMatrix[i,j]

}
}

now build the gq() vector
gq <- augmentedMat %*% solvecguess - rhs_true
gq
dq <- solve(jacbMatrix ,gq)
update the solution vector
solvecnew <- solvecguess - dq
solvecnew
now test for stopping
test <- abs(solvecnew - solvecguess)
if(t(test) %*% test < tolerance1){

message (" Update not changing -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
test <- abs(gq)
if(t(test) %*% test < tolerance2){

message ("G(Q) close to zero -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
################### END OF ITERATION OUTER LOOP #############################
}
message (" Current Results ")
print(cbind(solvecguess ,gq,dq))
print(cbind(friction ,diameter ,distance ,velocity_pipe))

Page 128 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 73 is a screen capture of the script running the example problem. The first
column in the output is the solution vector. The first 6 rows are the flows in pipes
P1-P6. The remaining 4 rows are the heads at nodes N1-N4.

Figure 73. Screen capture of R script for pipe network analysis.

Page 129 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

9.2 Exercises

1. Figure 74 is a five-pipe network with a water supply source at Node 1, and
demands at Nodes 1-5. Table 5 is a listing of the node and pipe data.

Figure 74. Layout of Simple Network.

Table 5. Node and Pipe Data.

Pipe ID Diameter
(inches)

Length (feet) Rougnhess
(feet)

P1 8 800 0.00001
P2 8 700 0.00001
P3 8 700 0.00001
P4 8 800 0.00001
P5 6 600 0.00001

Node ID Demand
(CFS)

Elevation
(feet)

Head (feet)

N1 2.0 0.0 100
N2 4.0 0.0 ?
N3 3.0 0.0 ?
N4 1.0 0.0 ?

Code the script, build an input file, and determine the flow distribution In your
solution you are to supply

(a) An analysis showing the development of the node-arc incidence matrix
based on the flow directions in Figure 74,

(b) The input file you constructed to provide the simulation values to your
script, and

(c) A screen capture (or output file) showing the results.

2. Code the script and determine the flow distribution in Figures 75 and 76. As-
sume Node N1 has a total head of 300 feet.

In your solution you are to supply

Page 130 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 75. Pipe network for illustrative example with supply and demands identified. Pipe lengths
(in feet) and diameters (in feet) are also depicted..

Figure 76. Pipe network for illustrative example with pipes and nodes labeled..

(a) An analysis showing the development of the node-arc incidence matrix
based on the flow directions in Figure 76,

(b) The input file you constructed to provide the simulation values to your
script, and

(c) A screen capture (or output file) showing the results.

Page 131 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

3. Modify the script to include node elevation information to compute pressures.
Assume all nodes are at elevation 200 feet.

Page 132 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

10 Pumps and Valves

The addition of pumps, turbines, and valves increases some of the complexity for a
network simolator. Valves and other fittings like elbows and such, that have a fixed
setting are modeled as links and the resulting equations look much like pipe loss
equations.

Pumps while also logically categorized as links are more complex because their head
loss behavior is firstly negative – that is they add head to a flow system, and their
ability to actually function is governed by their own performance curve. First we will
reviwe the modified Bernoulli equation again and then construct a prototype pump
function to add to the program and simulate pump performance.

10.1 Energy Loss (along a link)

Equation 101 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (101)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 77 is a sketch
that illustrates the various components in Equation 101.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-
draulic behavior must be supplied using their respective pump/turbine curves.

10.1.1 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 102 is the relationship of mechanical power to added pump head.

ηP = Qρghp (102)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.

If the relationship is re-written in terms of added head37 the pump curve is

hp =
ηP

Qρg
(103)

37A negative head loss!

Page 133 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 77. Definition sketch for energy equation.

Figure 78 is a typical pump curve depicting the kind of information available from a
manufacturer of a pump.

Figure 78. Pump Curve.

In introductory fluid mechanics we spend effort to match the pump curve to the
system curve (head losses in our distribution system) and that match tells us how
the pump-system combination should function. The pump curve relationship, as well
as Equation 103, illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for

Page 134 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (104)

In computational hydraulics we will need to represent the added as a head loss term
(with opposite sign), and the functional form represented by Equation 104 is a good
starting point. Practical (professional) programs will allow the curve to be represented
in a tabular form and will use interpolation (just like our examples earlier) to specify
the added head at a particular flow rate.

The next example will illustrate how to add pumps into the model.

Example 1: Pipe network with pumps
Figure 79 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing – in this example its
head is set at zero. The remaining nodes (N1 – N4) have demands specified as the
purple outflow arrows. The pipes are labeled (P2 – P6), and the red arrows indicate a
positive flow direction, that is, if the flow is in the indicated direction, the numerical
value of flow (or velocity) in that link would be a positive number. The pump replaces

Figure 79. Pipe Network with a Pump.

pipe (P1) from the previous version of this example. We will use the observation that
we really only need to identify which links are pumps, substitute in the correct added
head component and then solve the system as in the earlier example.

We have to specify how the pump curve will be represented. In this example we will
use a functional form.

hp(Q) = Hshutoff −Kpump ×Qn (105)

For this example we will use the following numerical values for the pump function:
Hshutoff = 104.54 feet, Kpump = 0.25 feet/cfs2, and n = 2.

Page 135 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

The hp(Q) is actually written as an added head factor, just like the friction factor,
so we will use absolute values of flow so the term at each computational step can be
placed in the augmented maxrix as if it were a head loss term; the solver will not
know the difference.

The actual functional form employed is

hp(Q) = [Hshutoff/|Q| −Kpump × |Q|]Q (106)

As before the sign of Q at the solution conveys flow direction. The program example
does not trap the potential divide by zero error Hshutoff/|Q|, but one could test for
zero flow, and just apply the shutoff head. Listing 36 implements the prototype
function described above.

Listing 36. R Code to pump prototype function
.

.....
Pump Curve factor function
p_factor <- function(shutoff ,constant ,exponent ,flow){

p_factor <- shutoff/abs(flow) - constant*abs(flow^(exponent -1))
return(p_factor)

}

Next we have to read in the pump characteristics, I decided to just have pumps
replace links (so I won’t have to rebuild a node-arc-incidence matrix), so the pump
characteristics are

1. Link ID – the index of the pipe that is replaced by a pump.

2. Shutoff head.

3. Kpump.

4. Exponent on the pump curve, n. Typically it will be larger than 1.0.

Listing 37 implements the reads from the input file, and builds the pump matrix.

Listing 37. R Code to include pumps in a pipeline network
.

Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
pumpCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
.....
rhs_true <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
pumps <- (readLines(zz, n = pumpCount , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
close(zz) # Close connection zz
.....
pumps <-as.numeric(unlist(strsplit(pumps ,split =" ")))
convert nodearcs a matrix
We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
pumps <-matrix(pumps ,nrow=pumpCount ,ncol=4,byrow=TRUE)
.....

Page 136 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Next we will have to compute the added head factor at each step, just like the friction
factor, and we will overwrite the pipe that the pump replaces.38

Listing 38 implements the computation of the added head factor, and the pump
selection factor.

Listing 38. R Code to include pumps in a pipeline network
.

.................
compute the current pump factor
if(pumpCount > 0){
for (i in 1: pumpCount)

{
addedhead[i] <- p_factor(pumps[i,2],pumps[i,3], pumps[i,4], flowguess[pumps[i,1]])

}
}

build the function matrix
operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend){

for(j in jstart:jend){
if ((i-istart +1) == j) {augmentedMat[i,j] <- -1* lossfactor[j];
if(pumpCount > 0){

for(ipump in 1: pumpCount) {
if(j == pumps[ipump ,1]) augmentedMat[i,j] <- addedhead[ipump]

}
}

}
}

}
print(augmentedMat)
..................

The remainder of the code is unchanged. Listing 39 illustrates the changes in the
input file. We have added a row to indicate how many pumps will be used as the
first record in the file. The last record after the right-hand side vector is the pump
characteristics; one row for each pump. The scripts also test if there are zero pumps
and skip code as needed. Observe we still preserve Link #1 data because its part of
the node-arc matrix, but the length and diameter of the link is irrelevant (but need
to be non-zero because we compute friction factors as if there were a pipe, but never
use them.

Listing 39. Input file with pumps at link#1 in a pipeline network
.

1 <== how many pumps
4
6
1.00 0.67 0.67 0.67 0.67 0.5 <== link #1 needs values as placeholders , but are not used
800 800 700 700 800 600
0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
0.000011
1 1 1 1 1 1
1 -1 0 -1 0 0
0 1 -1 0 0 1
0 0 0 1 -1 -1
0 0 1 0 1 0
0 4 3 1 0 0 0 0 0 0
1 100.54 0.25 2.0 <== Pump Link ID, H_shutoff , K_pump , Exponent

Figure 80 is a screen capture of the example problem run in R Studio. The script
produces the correct flow values, and the pump specified was intended to match the

38This approach is decidedly a hack for illustration purposes. A more advanced program would
probably just treat everything as a link and use a similar database build structure to determine if
a link is a head loss or head add link. My reasoning is that there will be fewer pumps than pipes
in any system, so overwriting a fictitious pipe is not too much trouble.

Page 137 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 80. Pipe Network with a Pump.

previous problem closely in that it produces enough head so that node N1 has nearly
the same head value as the problem without a pump.

10.1.2 Fitting (Minor) Losses

In addition to head loss in the conduit, other losses are created by inlets, outlets,
transitions, and other connections in the system. In fact such losses can be used to
measure discharge (think of the orifice plate in the fluids laboratory). The fittings
create additional turbulence that generates heat and produces the head loss.

Equation 107 is the typical loss model

hminor = K
V 2

2g
(107)

where K is called a minor loss coefficient, and is tabulated (e.g. Table 6) for various
kinds of fittings.

The use is straightforward, and multiple fittings are summed in the loss term in the
energy equation. In practical computation, these losses make the most sense when

Page 138 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

Table 6. Minor Loss Coefficients for Different Fittings.
Fitting Type K

Tee, Flanged, Line Flow 0.2
Tee, Threaded, Line Flow 0.9
Tee, Flanged, Branched Flow 1.0
Tee, Threaded , Branch Flow 2.0
Union, Threaded 0.08
Elbow, Flanged Regular 90o 0.3
Elbow, Threaded Regular 90o 1.5
Elbow, Threaded Regular 45o 0.4
Elbow, Flanged Long Radius 90o 0.2
Elbow, Threaded Long Radius 90o 0.7
Elbow, Flanged Long Radius 45o 0.2
Return Bend, Flanged 180o 0.2
Return Bend, Threaded 180o 1.5
Globe Valve, Fully Open 10
Angle Valve, Fully Open 2
Gate Valve, Fully Open 0.15
Gate Valve, 1/4 Closed 0.26
Gate Valve, 1/2 Closed 2.1
Gate Valve, 3/4 Closed 17
Swing Check Valve, Forward Flow 2
Ball Valve, Fully Open 0.05
Ball Valve, 1/3 Closed 5.5
Ball Valve, 2/3 Closed 200
Diaphragm Valve, Open 2.3
Diaphragm Valve, Half Open 4.3
Diaphragm Valve, 1/4 Open 21
Water meter 7

associated with a particular pipe. If we rewrite the loss equation

hminor =
K

2g

16Q2

π2D4
(108)

we see that these terms can be added to a pipe either as an additional loss term and
placed in the augmented matrix in the same way as the other loss term.

10.1.3 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 109 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (109)

An approach similar to pumps would be employed — the effort in all these cases is to
represent the hydraulic components as a loss factor so the non-linear solver we have
already built can be used.

Page 139 of 272

CE 4333 Practical Computational Hydraulics SUMMER 2017

11 Pipeline Transients — Water Hammer

Unsteady flow in closed conduits is important for estimating the forces involved from
a sudden change in discharge from a pump failing (or starting), or the closing (or
opening) of a valve. The flow variation will create a pressure wave traveling along
the pipe.39 The computational goal is to estimate the magnitude and timing of these
extreme pressures to evaluate the safety of the conduit, or design a pump shutdown
(or startup) or valve operation protocol to control these extreme pressures to some
acceptable magnitude.

11.1 Analysis

If the conduit walls are treated as elastic material, and the liquid is compressible the
velocity of a wave along the conduit is

c =

√
1

ρ(1
Ef

+ D
Ec·e)

(110)

The value c is called the celerity, Ef is the fluid modulus of elasticity, D is the conduit
diameter, Ec is the pipe material modulus of elasticity, e is the conduit wall thickness.
Typical values for water are Ef = 2.2×109 Pa and for steel Ec = 160×109 Pa.

The pipe is approximated as a series of steel rings (all in line, negligible Poisson ratio)
with uniform internal pressure in each ring (but can be different for adjacent rings).
The relative pressure head inside the pipe at any given ring is related to the pipe
diameter as

H =
2c2

g
×

d
2
− d0

2
d
2

(111)

where d
2

is the radius under pressure head H and d0

2
is the radius when pressure head

is zero gage.40

The continuity equation is written for each ring, and a force balance is written between
each ring.41

39These waves will travel in alternating directions as they find boundaries as each end of the dis-
turbed discharge conduit – in some sense the pimeplin becomes a resonant chamber. Over time
the magnitude of the waves will decrease as friction dissipates the energy. During these transients
high and low pressures are applied to the pipe walls and fixtures and can concievably damage
them.

401 atmosphere absolute. It is usually easier to work with gage pressure in practice.
41The time to drain problem is mildly similar the tanks represent a ring where the change in depth

(head) is related to outflow velocity; the outflow velocity is related to force at the outlet – in that
case the pressure force of the water above the outlet; Bernoulli’s equation for that case simplified
the work considerably. Here we will have a series of tanks (rings) that communicate pressure head
and velocity between them. We will arrive at a staggered spatial and temporal grid.

Page 140 of 272

