CE 3372 WATER SYSTEMS DESIGN

PUMPS AND LIFT STATIONS - PART 3 (FALL 2020)

- The most common cause of pumping failure is poor suction conditions
- <u>Cavitation</u> occurs when liquid pressure is reduced to the vapor pressure of the liquid
- For piping system with a pump, cavitation occurs when P_{abs} at the inflow falls below the vapor pressure of the water

Liquid must enter the pump eye under pressure; this pressure is called the Net Positive Suction Head available (NPSH_a).

A centrifugal pump cannot lift water unless it is primed
 the first stage impellers must be located below the static HGL in

the suction pit at pump start-up

- The manufacturer supplies a value for the minimum pressure the pump needs to operate.
- This pressure is the Net Positive Suction Head required (NPSH_r).
- For proper pump operation (w/o cavitation)
 NPSH_a > NPSH_r

Available suction is computed from

Frictional head loss in inlet piping

Absolute vapor pressure at liquid pumping temperature

$NPSH_a = H_{abs} + H_s - H_f - H_{vp}$

Absolute pressure at liquid surface in suction pit Static elevation of the liquid <u>above</u> the pump inlet eye

A 3000 GPM vertical turbine is located 4000-feet above MSL. Water temperature is 90 degrees F. The suction bell is 24-inches diameter, reducing to 12-inches diameter at the first (lowest) impeller stage. Water level is NEVER less than 8 feet above the first impeller. What is the $NPSH_a$ under the worst conditions?

1. Determine anticipated air pressure in feet of water. $\frac{\Delta p}{\Delta z} = -0.5 psi/1000 ft$; Thus $H_{abs.} = 33.9 * (12.7/14.7) * (0.85) = 24.8$ feet This result is the product of one atmpshere in feet of water, adjusted for the 4000 foot elevation, and adjusted again for a thunderstorm, which typically occurs at 85% of normal atmospheric pressure. This is a "worst case" air pressure estimate for the absolute head.

1. Determine anticipated air pressure in feet of water. $\frac{\Delta p}{\Delta z} = -0.5 psi/1000 ft$; Thus $H_{abs.} = 33.9 * (12.7/14.7) * (0.85) = 24.8$ feet This result is the product of one atmpshere in feet of water, adjusted for the 4000 foot elevation, and adjusted again for a thunderstorm, which typically occurs at 85% of normal atmospheric pressure. This is a "worst case" air pressure estimate for the absolute head.

http://atomickitty.ddns.net/ documents/mytoolbox-server/ Hydraulics/NPSHCalculatorUS/ NPSHCalculatorUS.html

Net Positive Suction Head - Available (US Customary)

Calculate NPSH Available

Habs = Absolute head at liquid surface in suction pit (feet of head) (elevation dependent) Hstat = Static elevation of pump inlet eye above liquid (feet of head) (-head if water above pump eye!) Hfric = Frictional head loss in inlet piping (feet of head)

Hvp = Absolute vapor pressure of liquid at pumping temperature (feet of head); temperature dependent

----- INPUT VALUES -----

Habs	24.8	Feet
Hstat		Feet
Hfric		Feet
Hvp		Feet
Submit Input Values		

---- COMPUTED RESULTS -----

A 3000 GPM vertical turbine is located 4000-feet above MSL. Water temperature is 90 degrees F. The suction bell is 24-inches diameter, reducing to 12-inches diameter at the first (lowest) impeller stage. Water level is NEVER less than 8 feet above the first impeller. What is the $NPSH_a$ under the worst conditions?

2. $H_s = 8$ feet. This value is given, we are told the water level is always 8 feet or more above the impeller.

2. $H_s = 8$ feet. This value is given, we are told the water level is always 8 feet or more above the impeller.

http://atomickitty.ddns.net/ documents/mytoolbox-server/ Hydraulics/NPSHCalculatorUS/ NPSHCalculatorUS.html

Not Secure – atomickitty.ddns.net/documents/myl C

 Not Secure – atomickitty.ddns.net/documents/myl C

 Channel videos - YouTube Studio
 Discharge from Rectangualr Tank

 Net Positive Suction Head - Available (US Customary)

Calculate NPSH Available

Habs = Absolute head at liquid surface in suction pit (feet of head) (elevation dependent) Hstat = Static elevation of pump inlet eye above liquid (feet of head) (-head if water above pump eye!) Hfric = Frictional head loss in inlet piping (feet of head)

Hvp = Absolute vapor pressure of liquid at pumping temperature (feet of head); temperature dependent

----- INPUT VALUES -----

Habs	24.8	Feet
Hstat	8	Feet
Hfric		Feet
Hvp		Feet
Submit Input Values		

----- COMPUTED RESULTS -----

A 3000 GPM vertical turbine is located 4000-feet above MSL. Water temperature is 90 degrees F. The suction bell is 24-inches diameter, reducing to 12-inches diameter at the first (lowest) impeller stage. Water level is NEVER less than 8 feet above the first impeller. What is the $NPSH_a$ under the worst conditions?

3. $H_f = KV^2/2g = 0.112$ feet. We obtain this from a head loss equation based on the nominal pumping rate of 3000 GPM, and the reduced inlet diameter of 1 foot. The inlet minor loss coefficient is 0.1 (we would get this value from a table). The inlet velocity is around 8.5 ft/sec from the discharge value given.

3. $H_f = KV^2/2g = 0.112$ feet. We obtain this from a head loss equation based on the nominal pumping rate of 3000 GPM, and the reduced inlet diameter of 1 foot. The inlet minor loss coefficient is 0.1 (we would get this value from a table). The inlet velocity is around 8.5 ft/sec from the discharge value given.

=

Net Positive Suction Head - Available (US Customary)

Not Secure - atomickitty.ddns.net/documents/myt

Û

Discharge from Rectangualr Tank

Ð

Calculate NPSH Available

<

http://atomickitty.ddns.net/ documents/mytoolbox-server/ Hydraulics/NPSHCalculatorUS/ NPSHCalculatorUS.html

Channel videos - YouTube Studio

Habs = Absolute head at liquid surface in suction pit (feet of head) (elevation dependent) Hstat = Static elevation of pump inlet eye above liquid (feet of head) (-head if water above pump eye!) Hfric = Frictional head loss in inlet piping (feet of head)

Hvp = Absolute vapor pressure of liquid at pumping temperature (feet of head); temperature dependent

----- INPUT VALUES -----

Habs	24.8	Feet
Hstat	8	Feet
Hfric	0.112	Feet
Hvp		Feet
Submit Input Values		

----- COMPUTED RESULTS -----

A 3000 GPM vertical turbine is located 4000-feet above MSL. Water temperature is 90 degrees F. The suction bell is 24-inches diameter, reducing to 12-inches diameter at the first (lowest) impeller stage. Water level is NEVER less than 8 feet above the first impeller. What is the $NPSH_a$ under the worst conditions?

4. $H_{vp} = 1.6$ feet. We obtain this value from a table of water properties. We need the vapor pressure in feet of water at 90F.

4. $H_{vp} = 1.6$ feet. We obtain this value from a table of water properties. We need the vapor pressure in feet of water at 90F.

				and the second second	
		Not Secure — atomickitty.ddns.	.net/documents/myte C		1 D
● ● ● < >	M	inel videos - YouTube Studio		Discharge from Rectangualr Tank	+
M Channel videos - YouTube Studio Water Propert			Auglichie		
Water Properties (US Customary)	Net Posit	ve Suction Head	- Available	(US Customary)	
adapted from Table A5 in Elger, Crowe, Roberson 2013. Engineering Fluid Mechanics. wiley					
Machine name : theodore-macbookpro.ttu.edu Run Date : Mon Aug 17 10:33:26 2020	Calculate INFSFI Available				
INPUT VALUES Temperature = 80.0 (degrees F)			-		
LOOKUP VALUES		Bing			
Density = 1.93 (slugs/ft^3) Specific Weight = 62.22 (lbf/ft^3)					
Dynamic Viscosity = $1.8e-05$ (lbf-s/ft ²) Kinematic Viscosity = $9.3e-06$ (ft ² /s)	Hs	H			
Vapor Pressure = 0.506 (lbf/in ² 2) - absolute	Ţ	L.			
Nat Saguratemiakitty ddas nat/ani. bin/Writer®		H			
Obegogi videos Verifika Studio		ABS			
M Channel Videos - Tourube Studio Water Propert		and Richard Contracts			
adapted from Table A5 in Elger, Crowe, Roberson 2013. Engineering Fluid Mechanics. Wiley		Tor			
Machine name : theodore-macbookpro.ttu.edu	TT-b- Absolute band at li		(alaustian dama		Ì
Run Date : Mon Aug 17 10:33:51 2020	Habs = Absolute head at he Hstat = Static elevation of	pump inlet eye above liquid (feet	of head) (-head if wate	ndent) er above pump eye!)	
INPUT VALUES	Hfric = Frictional head loss in inlet piping (feet of head) Hvp = Absolute vapor pressure of liquid at pumping temperature (feet of head); temperature dependent				l
Temperature = 100.0 (degrees F)					
LOOKUP VALUES Density = 1.93 (slugs/ft^3)					
Specific Weight = $62.0 (lbf/ft^3)$ Duramic Viegority = $1.42e_{-}05 (lbf_{-}s/ft^2)$					
Kinematic Viscosity = $1.422-05$ (b) s/h ² / ₂ / ₂ Kinematic Viscosity = $7.39e-06$ (ft ² / ₂ /s)	Habs	24.8	Feet		
Vapor Pressure = 0.949 (lbf/in^2) - absolute	Hstat	8	Feet		
$\frac{1}{1}$		0.112	Feet		
$H = \frac{1}{2}(0.506 \pm 0.949) nsi * \frac{33.7 Ji}{2}$	= 1 67 ft		reet		
1475 nsi		<u>_ </u>]		
<u> </u>	RESUL	.TS			

A 3000 GPM vertical turbine is located 4000-feet above MSL. Water temperature is 90 degrees F. The suction bell is 24-inches diameter, reducing to 12-inches diameter at the first (lowest) impeller stage. Water level is NEVER less than 8 feet above the first impeller. What is the $NPSH_a$ under the worst conditions?

Once the above values are determined the $NPSH_a$ is computed as $NPSH_a = 24.82 + 8 - 0.112 - 1.6 = 31.10$ feet. Using 10% as a margin of uncertainty, we would specify that the pump not require more that 28-feet of NPSH for operation. That is, if this pump has $NPHS_r > 28$ feet on its pump curve, we have a potential pumping problem and either a different pump should be used or the suction conditions must be changed (lower the pump deeper into the pit).

Once the above values are determined the $NPSH_a$ is computed as $NPSH_a = 24.82 + 8 - 0.112 - 1.6 = 31.10$ feet. Using 10% as a margin of uncertainty, we would specify that the pump not require more that 28-feet of NPSH for operation. That is, if this pump has $NPHS_r > 28$ feet on its pump curve, we have a potential pumping problem and either a different pump should be used or the suction conditions must be changed (lower the pump deeper into the pit).

http://atomickitty.ddns.net/ documents/mytoolbox-server/ Hydraulics/NPSHCalculatorUS/ NPSHCalculatorUS.html

Habs = Absolute head at liquid surface in suction pit (feet of head) (elevation dependent) Hstat = Static elevation of pump inlet eye above liquid (feet of head) (-head if water above pump eye!) Hfric = Frictional head loss in inlet piping (feet of head)

Net Positive Suction nead - Available (05 Customary)

Hvp = Absolute vapor pressure of liquid at pumping temperature (feet of head); temperature dependent

----- INPUT VALUES -----

Habs	24.8	Feet
Hstat	-8	Feet
Hfric	0.112	Feet
Hvp	1.6	Feet
Submit Input Values		

---- COMPUTED RESULTS -----

Net Positive Suction Head Available 31.088 Feet