# CE 3372 WATER SYSTEMS DESIGN

PIPE HYDRAULICS PART 2 (FALL 2020)

### ENERGY EQUATION

$$\frac{p_1}{\rho g} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\rho g} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_l$$

- The energy equation relates the total dynamic head at two points in a system, accounting for frictional losses and any added head from a pump.
  - $h_L =$  head lost to friction
  - $h_p$  = head supplied by a pump
  - $h_t$  = head recovered by a turbine

# ENERGY EQUATION APPLICATION

Estimate discharge between two reservoirs:

•

• Head Loss is given as 
$$h_L = 0.136 \cdot L rac{Q^2}{\pi^2 g D^5}$$



Figure 1: Two reservoirs connected by a cast iron pipe

# HEAD LOSS MODELS

### Head Loss Models (for losses in pipes)

- Darcy-Weisbach
  - Moody Chart
  - Jain Equations
- Hazen-Williams
- Chezy-Manning

### • Fitting (Minor) Losses

# PIPELINE SYSTEM

#### Head Loss Model

$$\frac{p_1}{\rho g} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p \neq \frac{p_2}{\rho g} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_l$$

Pump Curve

### DARCY-WEISBACH LOSS MODEL FOR PIPE LOSS

Frictional loss proportional to

Length, Velocity\*\*2

Inversely proportional to

Cross sectional area

 $h_f = f \frac{L}{D} \frac{V^2}{2g}$ 

Loss coefficient (f) depends on

Reynolds number (fluid and flow properties)

Roughness height (pipe material properties)

### MOODY CHART

| Material                         | e (ft)     | <u>e (mm)</u> |
|----------------------------------|------------|---------------|
| Riveted steel                    | 0.003-0.03 | 0.9-9.0       |
| Concrete                         | 0.001-0.01 | 0.3 - 3.0     |
| Cast iron                        | 0.00085    | 0.25          |
| Galvanized iron                  | 0.0005     | 0.15          |
| Commercial steel or wrought iron | 0.00015    | 0.046         |
| Drawn tubing                     | 0.000005   | 0.0015        |



Figure 2: Moody-Stanton Diagram (from CITE NCEES).

- Moody-Stanton chart is a tool to estimate the friction factor in the DW head loss model
- Used for the pipe loss component of friction

• Three "classical" examples using Moody Chart

- Head loss for given discharge, diameter, material
- Discharge given head loss, diameter, material
- Diameter given discharge, head loss, material

#### • Head loss for given discharge, diameter, material

Find  $h_f$  given Q, D,  $\epsilon$  This kind of problem is relatively straightforward. The engineer computes  $Re_d$  from the discharge Q and the pipe diameter D. Then computes the roughness ratio from the tabulated  $\epsilon$  for the pipe material. The friction factor, f, is then recovered directly from the Moody chart.

**Example** Oil with specific gravity 0.9, viscosity 0.00003 ft<sup>2</sup>/sec flows in a 2000-foot long, 6-inch diameter, cast-iron pipe at a flow rate of 1.0 cubic-feet-per-second. The pipe slopes upward at an angle of 5° in the direction of flow. Estimate the head loss in the pipe. Estimate the pressure drop in the pipe.

Solution Figure 15 is a sketch of the situation.



Figure 15: Sketch for Example

#### Head loss for given discharge, diameter, material

Equation 11 is the energy equation for the situation. The velocity terms are absent because they are equal, the added pump head and removed turbine head are absent because these devices are absent. All that remains is the pressure, elevation, and head loss terms.

$$\frac{p_1}{\rho g} + z_1 = \frac{p_2}{\rho g} + z_2 + h_l \tag{10}$$

Rearranging equation to isolate the head loss will be of value when we try to find the pressure drop.

$$\left(\frac{p_1}{\rho g} - \frac{p_2}{\rho g}\right) + (z_1 - z_2) = h_l \tag{11}$$

The first term in parenthesis is the pressure drop (rise), and the second term is the elevation drop (rise).

The head loss is evaluated using the Darcy-Weisbach head loss model. First we compute  ${\cal R}e_d$ 

$$Re_d = \frac{V D}{\nu} = \frac{4 (1cfs) (0.5ft)}{\pi (0.5ft)^2 (0.00003 \ sq.ft/sec)} \approx 84,822$$
(12)

The Reynolds number is greater than 10,000 therefore we conclude the flow is turbulent.



#### • Head loss for given discharge, diameter, material

The roughness height is  $\epsilon$ =0.00085 from the table on the Moody chart (in this document), so the roughness ratio is

$$\frac{\epsilon}{D} = \frac{0.00085}{0.5} \approx 0.0017$$
 (13)

| Material                         | <u>e (ft)</u> | <u>e (mm)</u> |
|----------------------------------|---------------|---------------|
| Riveted steel                    | 0.003-0.03    | 0.9-9.0       |
| Concrete                         | 0.001-0.01    | 0.3-3.0       |
| Cast iron                        | 0.00085       | 0.25          |
| Galvanized iron                  | 0.0005        | 0.15          |
| Commercial steel or wrought iron | 0.00015       | 0.046         |
| Drawn tubing                     | 0.000005      | 0.0015        |
|                                  |               |               |

#### • Head loss for given discharge, diameter, material



Figure 16: Moody-Stanton Diagram annotated with Example 1 components. Figure 16 is the Moody chart with the roughness ratio shown as the light blue (cyan) curve,

#### Head loss for given discharge, diameter, material

the reynolds number as the black line, and the recovered friction factor (f=0.024) from the magenta line.

To complete the analysis, we then use the Darcy-Weisbach equation for estimate the head loss as

$$h_l = 8fL \frac{Q^2}{\pi^2 g D^5} = 8(0.024)(2000ft) \frac{(1cfs)^2}{\pi^2 (32.2ft/s^2)(0.5ft)^5} \approx 38.6ft$$
(14)

Now to compute the pressure drop, we simply account for the elevation change and what remains must be pressure. First the change in elevation is about  $2000sin5^{\circ} \approx 175 ft$ . The change in pressure is therefore

$$\Delta p = \rho g(h_l + (z_2 - z_1)) = (38.6ft + 175ft)(62.4)(0.9) \approx 11,999lb/ft^2 = 83psi \quad (15)$$

Thus the oil pressure must be at least 83 psi greater at the lower elevation than the upper elevation for the oil to flow up the pipe.

#### Discharge given head loss, diameter, material

**Example** An 80-foot horizontal, 1/2-inch diameter wrought iron pipe has an observed head loss of 40 feet. Estimate the discharge in the pipe.

Solution Apply Darcy-Weisbach directly — the pipe is horizontal so the energy equation is quite boring,

$$h_l = \frac{\Delta p}{\rho g} = 40 ft \tag{16}$$

First compute the roughness height ratio — it will be needed to look up friction factors.

$$\frac{\epsilon}{D} = \frac{0.00015ft}{0.5i/12ft} \approx 0.0036 \tag{17}$$

Then construct a table of computations as shown in Table 2. Increase (decrease) the flow rate until the computed head loss is about the same as the required head loss. The moody chart is used the same way as in the previous example. The engineer will need to exercise some judgement of when to stop, because as one gets close to the specified head loss, the ability to read changes in f diminishes.

#### • Discharge given head loss, diameter, material

Table 1: Computation table for Estimating Q from head loss and material properties.

| $Q_{guess}$ | $Re_d$               | f     | $h_{l \ guess}$ |
|-------------|----------------------|-------|-----------------|
| 0.001       | $2.83 \times 10^{3}$ | 0.036 | $\approx 0.57$  |
| 0.005       | $1.41 \times 10^{4}$ | 0.032 | $\approx 12.7$  |
| 0.008       | $2.26 \times 10^{4}$ | 0.031 | $\approx 31.6$  |
| 0.009       | $2.25 \times 10^{4}$ | 0.030 | $\approx 37.9$  |

The result in this example is that the pipe discharge is about 0.009 cfs.

#### Diameter given discharge, head loss, material

**Example** An 600 foot wrought-iron pipe is to carry water at 20°C at a discharge of 3 CFS. The pipe drops 60 feet in the direction of flow and the desired pressure drop is 6 feet of head. What diameter pipe will function under these conditions?

Solution Figure 17 is a sketch of the situation.



Figure 17: Sketch for Example

The energy equation for this situation is

$$\left(\frac{p_1}{\rho g} - \frac{p_2}{\rho g}\right) + (z_1 - z_2) = h_l \tag{18}$$

(The elevation change is given as 60 feet and the pressure drop is given as 6 feet (that is the pressure is greater at location 1 by 6 feet than location 2). Thus the Darcy-Weisbach head

#### Diameter given discharge, head loss, material

loss equation is

$$h_l = 8fL \frac{Q^2}{\pi^2 g D^5} \approx 66ft \tag{19}$$

As in the prior example, a computation table is useful. The sixth column is a computational trick to make a hand calculations faster. The term  $\frac{h_l}{f}$  is evaluated by taking the Darcy-Weisbach equation and dividing out the friction factor (i.e.  $\frac{h_l}{f} = 8L\frac{Q^2}{\pi^2 gD^5}$ )

Table 2: Computation table for Estimating D from head loss, discharge and material properties.

| $D_{guess}$ | $Re_d$               | $\frac{\epsilon}{D}$ | f     | $\frac{h_l}{f}$      | $h_l$          |
|-------------|----------------------|----------------------|-------|----------------------|----------------|
| 0.25        | $1.41 \times 10^{6}$ | 0.0006               | 0.018 | $1.39 \times 10^{5}$ | $\approx 2500$ |
| 0.50        | $7.06 \times 10^{5}$ | 0.0003               | 0.016 | $4.35 \times 10^{3}$ | $\approx 69.6$ |
| 0.51        | $6.92 \times 10^{5}$ | 0.00029              | 0.016 | $3.94 \times 10^{3}$ | $\approx 63.0$ |

The result after three tries is that the diameter is between 6-7 inches, commercially available 7 inch iron pipe exists<sup>8</sup>, so this size could be specified in such a situation.

### **DIRECT (JAIN) EQUATIONS**

 An alternative to the Moody chart are regression equations that allow direct computation of discharge, diameter, or friction factor.

$$Q = -2.22D^{5/2} \times \sqrt{gh_f/L} \times \left[ log_{10} \left( \frac{\epsilon}{3.7D} + \frac{1.78\nu}{D^{3/2}\sqrt{gh_f/L}} \right) \right]$$

$$D = 0.66 [\epsilon^{1.25} \times (\frac{LQ^2}{gh_f})^{4.75} + \nu Q^{9.4} \times (\frac{L}{gh_f})^{5.2}]^{0.04}$$

### JAIN EQUATIONS - COMPUTATIONAL THINKING/DATA SCIENCE APPLICATION

- Build a Computational Tool (e.g JupyterLab as in ENGR 1330)
  - 1. State the programming problem
  - 2. Known (Inputs)
  - 3. Unknown (Outputs)
  - 4. Governing Equation(s)
  - 5. Test the tool

### JAIN EQUATIONS

• Link to On-Line Tool

 A similar tool (to the Jupyter Notebook just developed) is available online at:

 <u>http://atomickitty.ddns.net/documents/</u> <u>mytoolbox-server/Hydraulics/QGivenHeadLoss/</u> <u>QGivenHeadLoss.html</u>

 $\bigcirc$ 

HAZEN-WILLIAMS Frictional loss proportional to Length, Velocity<sup>^</sup>(1.8) Inversely proportional to Cross section area (as hydraulic radius) Loss coefficient (Ch) depends on Pipe material and finish • Turbulent flow only (Re>4000) WATER ONLY

$$h_f = 3.02 \ L \ D^{-1.167} (\frac{V}{C_h})^{1.85}$$

# HAZEN-WILLIAMS

### • HW Head Loss

$$h_f = 3.02 \ L \ D^{-1.167} (\frac{V}{C_h})^{1.85}$$

### Discharge Form

$$h_f = 3.02 \ L \ D^{-1.167} (\frac{4Q}{\pi D^2 C_h})^{1.85}$$

# HAZEN-WILLIAMS

#### • Hazen-Williams C-factor

| Table 3: Hazen-Williams Coefficients for Different Materials. |           |                                               |           |
|---------------------------------------------------------------|-----------|-----------------------------------------------|-----------|
| Material                                                      | $C_h$     | Material                                      | $C_h$     |
| ABS - Acrylonite Butadiene Styrene                            | 130       | Aluminum                                      | 130 - 150 |
| Asbestos Cement                                               | 140       | Asphalt Lining                                | 130 - 140 |
| Brass                                                         | 130 - 140 | Brick sewer                                   | 90 - 100  |
| Cast-Iron - new unlined (CIP)                                 | 130       | Cast-Iron 10 years old                        | 107 - 113 |
| Cast-Iron 20 years old                                        | 89 - 100  | Cast-Iron 30 years old                        | 75 - 90   |
| Cast-Iron 40 years old                                        | 64-83     | Cast-Iron, asphalt coated                     | 100       |
| Cast-Iron, cement lined                                       | 140       | Cast-Iron, bituminous lined                   | 140       |
| Cast-Iron, wrought plain                                      | 100       | Cast-Iron, seal-coated                        | 120       |
| Cement lining                                                 | 130 - 140 | Concrete                                      | 100 - 140 |
| Concrete lined, steel forms                                   | 140       | Concrete lined, wooden forms                  | 120       |
| Concrete, old                                                 | 100 - 110 | Copper                                        | 130 - 140 |
| Corrugated Metal                                              | 60        | Ductile Iron Pipe (DIP)                       | 140       |
| Ductile Iron, cement lined                                    | 120       | Fiber                                         | 140       |
| Fiber Glass Pipe - FRP                                        | 150       | Galvanized iron                               | 120       |
| Glass                                                         | 130       | Lead                                          | 130 - 140 |
| Metal Pipes - Very to extremely smooth                        | 130 - 140 | Plastic                                       | 130 - 150 |
| Polyethylene, PE, PEH                                         | 140       | Polyvinyl chloride, PVC, CPVC                 | 150       |
| Smooth Pipes                                                  | 140       | Steel new unlined                             | 140 - 150 |
| Steel, corrugated                                             | 60        | Steel, welded and seamless                    | 100       |
| Steel, interior riveted, no projecting rivets                 | 110       | Steel, projecting girth and horizontal rivets | 100       |
| Steel, vitrified, spiral-riveted                              | 90 - 110  | Steel, welded and seamless                    | 100       |
| Tin                                                           | 130       | Vitrified Clay                                | 110       |
| Wrought iron, plain                                           | 100       | Wooden or Masonry Pipe - Smooth               | 120       |
| Wood Stave                                                    | 110 - 120 |                                               |           |

Adapted from http://www.engineeringtoolbox.com/hazen-williams-coefficients-d\_798.html.

## EXAMPLE USING HAZEN-WILLIAMS FORMULA

**Example** Estimate the head loss in a 72-inch, 10,000-foot steel pipe carrying water at 200 CFS using the Hazen-Williams formula.

Solution Using Table 3 an estimate of the  $C_h$  is 100. Next substitute into the HW formula as

$$h_f = 3.02 \ (10,000ft) \ (6ft)^{-1.167} (\frac{4(200cfs)}{\pi(6ft)^2 100})^{1.85} \approx 28ft$$
 (23)

### HYDRAULIC RADIUS

 HW is often presented as a velocity equation using the hydraulic radius

 $V = 1.381 \ C_h \ R^{0.63} \ S^{0.54}$ 

### HYDRAULIC RADIUS

 The hydraulic radius is the ratio of cross section flow area to wetted perimeter

$$R_h = \frac{A}{P_w}$$

# HYDRAULIC RADIUS

For circular pipe, full flow (no free surface)



**CHEZY-MANNING**  Frictional loss proportional to Length, Velocity<sup>A</sup>2 Inversely proportional to Cross section area (as hydraulic radius) • Loss coefficient depends on • Material, finish

 $h_f = L \frac{n^2 V^2}{2.22 D^{4/3}}$ 

# FITTING (MINOR) LOSSES

- Fittings, joints, elbows, inlets, outlets cause additional head loss.
- Called "minor" loss not because of magnitude, but because they occur over short distances.
- Typical loss model is

$$h_{minor} = K \frac{V^2}{2g}$$

# FITTING (MINOR) LOSSES

The loss coefficients are tabulated for different kinds of fittings

| Table 4: Minor Loss Coefficients fo        | or Different Fittings |
|--------------------------------------------|-----------------------|
| Fitting Type                               | K                     |
| Tee, Flanged, Line Flow                    | 0.2                   |
| Tee, Threaded, Line Flow                   | 0.9                   |
| Tee, Flanged, Branched Flow                | 1.0                   |
| Tee, Threaded, Branch Flow                 | 2.0                   |
| Union, Threaded                            | 0.08                  |
| Elbow, Flanged Regular $90^{\circ}$        | 0.3                   |
| Elbow, Threaded Regular $90^{\circ}$       | 1.5                   |
| Elbow, Threaded Regular $45^{\circ}$       | 0.4                   |
| Elbow, Flanged Long Radius 90 <sup>o</sup> | 0.2                   |
| Elbow. Threaded Long Radius $90^{\circ}$   | 0.7                   |

### EXAMPLE – FITTING (MINOR) LOSSES

**Example** What is the pressure drop across a valve with nominal diameter of 8 cm, a loss coefficient of 3.2, and a flow rate of  $0.04 \ m^3/sec$ ?

Solution First write the minor loss equation, solve for head loss.

$$h_l = K \frac{V^2}{2g} = (3.2) \frac{\left(\frac{4*0.04}{\pi(0.08)^2}\right)^2}{2(9.8)} \approx 10.3m$$
<sup>(29)</sup>

Then convert the head loss into a pressure drop from

 $\rho g * h_l = \Delta p = 9800 N/m^3 * 10.3m = 101, 321 Pa \approx 101 kPa$  (3)

(30)

