CE 3354 Engineering Hydrology Exercise Set 5

Exercises

1. a 50-acre single-family residential subdivision receives a rainfall intensity of 3 inches per hour for one hour. The average runoff coefficient is 0.50. Using a rational triangular hydrograph 1

- a) Maximum (peak) discharge rate for the watershed.
- b) A plot of the discharge hydrograph in 6-minute intervals.
- c) The total volume of runoff from the subdivision for the entire storm.

¹Essentially apply the Modified Rational Method with t_{c} equal to the storm duration

2. a 50-acre single-family residential subdivision receives a rainfall intensity of 3 inches per hour for one hour. The average runoff coefficient is 0.50. Using the NRCS triangular hydrograph 2

- a) Maximum (peak) discharge rate for the watershed.
- b) A plot of the discharge hydrograph in 6-minute intervals.
- c) The total volume of runoff from the subdivision for the entire storm.

 $^{^{2}}t_{c}$ is set equal to the storm duration

CE 3354 – Engineering Hydrology

3. A watershed is comprised of sandy soil with a 500 foot path to an outlet. The slope on that path is 5-percent. The soil has a high water table limiting the potential watershed storage to 0.5 inches. Using the NRCS Lag Equation method³

$$T_c = L^{0.8} \frac{(S_r + 1)^{0.7}}{1140Y^{0.5}} \tag{1}$$

where:

$$\begin{split} T_c &= \text{time of concentration, hr} \\ L &= \text{flow length, ft} \\ S_r &= \text{Potential storage (in.); } S_r = \frac{1000}{CN} - 10 \\ CN &= \text{NRCS runoff curve number} \\ Y &= \text{average watershed slope, \%} \end{split}$$

Determine:

a) Time of concentration (T_c) .

³https://directives.nrcs.usda.gov/sites/default/files2/1712930818/31754.pdf

4. The runoff hydrograph below was produced by a 100 acre watershed.

Time (hours)	Runoff (CFS)	
0.0	0.0	
1.0	70.0	
2.0	160.	
3.0	110.	
4.0	80.0	
5.0	60.0	
6.0	45.0	
7.0	30.0	
8.0	20.0	
9.0	12.0	
10.	5.0	
11.	0.0	

Table 1: Somewhere	e USA Runoff Data
--------------------	-------------------

- a) Excess precipitation in watershed inches for the hydrograph.
- b) A unit hydrograph for the watershed.
- c) A plot of the unit hydrograph.

Before urbanization, the average loss rate was 0.30 in/hr.

Figure 1 is the unit hydrograph that has a peak discharge of 400 cfs/in occurring at 3 hours, and a base time of 9 hours.

Figure 1: Pre-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

After urbanization the loss rate was reduced to 0.15 in/hr and the peak discharge of the unit hydrograph increased to 600 cfs/in occurring at 1 hour, and the base time reduced to 6 hours. Figure 2 is the unit hydrograph with a peak discharge of 600 cfs occurring at 1 hours, and a time base of 6 hours.

Figure 2: Post-Urbanization unit hydrograph for excess rainfall of 1 in/hr for 1 hour.

For a two hour storm in which 1 inch of rain fell in the first hour and 0.5 inch in the second hour, determine the direct runoff hydrographs before and after urbanization.⁴

 $^{^{4}}$ This exercise is the same as problem 7.5.7, pg. 238 in Chow, Maidment, Mays

6. A storm on April 16, 1977, on the Shoal Creek watershed at Northwest Park in Austin, Texas, resulted in the rainfall-runoff values in Figure 3.

Use the linear regression method to determine the half-hour unit hydrograph for the watershed. The watershed drainage area is 7.03 mi^2 . Assume that a uniform loss rate (constant loss model) is valid.⁵

TIME (HRS)	RAIN (IN)	DIRECT RUNOFF (CFS)
0.5	0.28	32.0
1.0	0.12	67.0
1.5	0.13	121.0
2.0	0.14	189.0
2.5	0.18	279.0
3.0	0.14	290.0
3.5	0.07	237.0
4.0		160.0
4.5		108.0
5.0		72.0
5.5		54.0
6.0		44.0
6.5		33.0
7.0		28.0
7.5		22.0
8.0		20.0
8.5		18.0
9.0		16.0

Figure 3: Observed storm rainfall incremental depths and observed direct runoff hydrograph

 $^{^{5}}$ This exercise is a hybrid of problems 7.6.2 and 7.6.5, pg 239 in Chow, Maidment, and Mays.

7. Table 2 is a 15-minute unit hydrograph for Somewhere Else USA. Table 3 is a precipitation input time-series for the watershed

Time (hours)	Runoff (CFS)
0.00	0
0.25	70
0.50	182
0.75	137
1.00	68
1.25	33
1.50	16
1.75	9
2.00	5
2.25	2
2.50	1
2.75	0.0

Table 2: Somewhere Else USA Unit Hydrograph Tabulation

Table 3:	Somewhere	Else	USA	Excess	Rain	Input
----------	-----------	-----------------------	-----	--------	------	-------

Time (hours)	Rainfall Excess (inches)
0.00	0
0.25	0.50
0.50	1.25
0.75	0.75

- a) The design (direct runoff hydrograph) for the excess rainfall input time series.
- b) A plot of the design hydrograph.