CE 3354 Engineering Hydrology

Lecture 21: Groundwater Hydrology Concepts – Part 1

Outline

Porous Media Concepts

- Porosity, Yield, Average Linear Velocity
- Heads and gradients
- Storage
 - Confined and Unconfined
- Darcy's Law
 - Permeability

Groundwater Hydrology

WELL SOIL (ROOT) ZONE UNSATURATE ZONE CAPILLARY FRINGE SATURATED ZONE

Figure 1: Soil profile sketch (adapted from Heath 1989)

Groundwater hydrology is the study of water beneath the surface of the Earth

Porosity

- Groundwater usually is found in porous media (not underground rivers).
- A porous medium is comprised of solid space and void or pore space.
 - Liquids and gasses are found in the pore space, the solid matrix forms the physical structure of aquifers and other geologic formations of interest.
- The ratio of total pore volume to bulk medium volume is the porosity

POROUS MATERIAL

PRIMARY OPENINGS

WELL-SORTED SAND

POORLY-SORTED SAND

CAVERNS IN LIMESTONE

Porosity

Range in values large for geologic materials

Soil Description	Porosity Range
Volcanic, pumice	0.80-0.90
Peat	0.60-0.80
Silt	0.35-0.60
Clay	0.35-0.55
Loess	0.40-0.55
Sand, dune	0.35-0.45
Sand, fine	0.25 - 0.55
Sand, coarse	0.30-0.45
Gravel, coarse	0.25-0.35
Sand and gravel	0.20-0.35
Till	0.25-0.45
Siltstone	0.25-0.40
Sandstone	0.25-0.50
Volcanic, vesicular	0.10-0.50
Volcanic, tuff	0.10-0.40
Limestone	0.05-0.55
Schist	0.05-0.50
Basalt	0.05-0.35
Shale	0.01-0.10
Volcanic, dense	0.01-0.10
Igneous, dense	0.01-0.05
Salt bed	0.005-0.03

Specific Yield

- A concept related to porosity is the specific yield of a material
- S_y is the amount of water that will drain from a porous medium under the influence of gravity.
- S_r is the amount of water left behind in the material and is called the specific retention

The sum of the two terms is the porosity $(S_y + S_r = n)$.

Specific Yield

- The specific yield is important in water supply as it represents the amount of water that can drain to wells.
- Thus when making groundwater reservoir estimates the water in storage should be based on the specific yield and not porosity.
- Two related terms are:
 - S water content
 - and saturation

Material	$S_{\boldsymbol{y}}$	S_r
Soil	0.40	0.15
Clay	0.02	0.48
Sand	0.22	0.03
Gravel	0.19	0.01
Limestone	0.18	0.02
Sandstone	0.06	0.05
Granite	0.0009	0.0001
Basalt	0.08	0.03

$$\theta_{wc} = \frac{V_{water}}{V_{bulk}}$$

$$S_w = \frac{V_{water}}{V_{void}}$$

- Porosity is measured in the laboratory from small samples by gravimetric methods and fluid displacement methods.
- At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.
 - Resistivity logging
 - Acoustic logging
 - Neutron logging

- At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.
 - Resistivity logging
 - Acoustic logging
 - Neutron logging

$$F = \frac{R_{100}}{R_A}$$

$$F = \frac{S_w \bullet R_{100}}{R_m}$$

- At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.
 - Resistivity logging
 - Acoustic logging
 - Neutron logging

$$F = \frac{R_{100}}{R_A}$$

$$F = \frac{S_w \bullet R_{100}}{R_m}$$

At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.

- Resistivity logging
- Acoustic loggingNeutron logging

$$\Delta t_{measured} = n \frac{1}{v_{fluid}} + (1-n) \frac{1}{v_{solids}}$$

$$n = \frac{\Delta t_{measured} - \Delta t_{solid}}{\Delta t_{fluid} - \Delta t_{solid}}$$

 At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.
 Resistivity logging
 Acoustic logging

Neutron logging

Material Water Clay (saturated) Shale Sandstone Limestone Dolomite $\frac{v \text{ (feet/sec)}}{5,000-5,400}$ 5,000-6,000 6,000-16,000 15,000-18,000 19,000-21,000 21,000-24,000

$$\Delta t_{measured} = n \frac{1}{v_{fluid}} + (1-n) \frac{1}{v_{solids}}$$

$$m = \frac{\Delta t_{measured} - \Delta t_{solid}}{\Delta t_{fluid} - \Delta t_{solid}}$$

At the field scale, porosity is measured by geophysical tools calibrated to local geologic media.

Resistivity logging

Acoustic logging

Neutron logging

Neutron Survey: A neutron log is based on the principle that hydrogen is a good neutron reflector.

Since water is a dense source of hydrogen (11% by mass) it will scatter high-energy neutrons much more than a material that is a poor neutron reflector (moderator)

A neutron log measures the energy of neutrons scattered by a material.

High backscatter => mostly water; thus high porosity.

Low backscatter => mostly mostly solid; thus low porosity.

The neutron log must be calibrated against local media

Average Linear Velocity

 The discharge Q divided by cross sectional flow area
 A in a pipe or open channel is the velocity V

In groundwater, some of the area is solid, so the porosity enters the equation

$$u = \frac{Q}{A} \frac{1}{n}$$

1-liter/min 1-liter/min 7 A=1m2

Figure 3: Garbage can with and without marbles

Energy and Head

Hydraulic gradient is change in head per unit distance

Energy and Head

- Piezometric surface in the vicinity of the three wells can be approximated by a plane.
- All three wells sample the same aquifer unit.
- Wells measure vertically averaged head
- Head measurements at same time

1. Plot locations and water levels of each well as depicted on Figure 5.

- 2. Select an origin to measure **x** and **y** distances for each well location.
- 3. Solve the equation of the plane by solving the system of linear equations for all wells simultaneously you are solving for the unknown coefficients a,b, and c in:

$$h_{1} = ax_{1} + by_{1} + c$$
(13)

$$h_{2} = ax_{2} + by_{2} + c$$

$$h_{3} = ax_{3} + by_{3} + c$$

4. Once you have the values for a, b, and c, the hydraulic gradient is the vector $\overline{\nabla h} = -a_i - b_j$ where *i* and *j* are the unit vectors in the x and y directions. The magnitude of the gradient is $\sqrt{a^2 + b^2}$. This gradient is also the flow direction if the porous media is homogeneous and isotropic.

3 wells monitor water levels in a confined aquifer. Well A is 3000-feet south of well B. Well C is 2000 feet due West of well B. The land surface elevations and depth to water for each well are in Table 4. Find the hydraulic gradient (direction and magnitude).

Table 4: Well Data for Three Wells

Well ID	Top of Casing (feet)	Depth to Water (feet)	Head (feet)
Well A	480.0	40.0	
Well B	610.0	140.0	
Well C	545.0	85.0	

Figure 5: Three wells plotted on an arbritary coordinate system

3 wells monitor water levels in a confined aquifer. Well A is 3000-feet south of well B. Well C is 2000 feet due West of well B. The land surface elevations and depth to water for each well are in Table 4. Find the hydraulic gradient (direction and magnitude).

Well ID	Top of Casing (feet)	Depth to Water (feet)	Head (feet)
Well A	480.0	40.0	
Well B	610.0	140.0	
Well C	545.0	85.0	

Table 4: Well Data for Three Wells

	H	8		: 8	0	fx		
	Α	B	С	D	E	F	G	
1			TOC	DTW	HEAD	Х	Y	
2	Well	Α	480	40	440	2000	0	
3	Well	В	610	140	470	2000	3000	
4	Well	С	545	85	460	0	3000	
5								

y 2000ft B 3000ft

	100		J			and the second second								
	A B	С	D	E	F	G	Н							
1	Instructions:	Enter data	for three we	ells in sha	ded area at	ove left Sr	preadsheet solv	es linear						
2	system and co	omputes a	adient. Plo	t shows a	radient dire	ction.								
3	-,		1	J										
4		Save and	Exit											
5	-	Sure and												
6	Groundwater	Hydrology	Gradient Sp	oreadshee	t					V	1			
7	Field Data fro						У			, , , , , , , , , , , , , , , , , , ,				
8		х	v	head			-			· · · · · · · · · · · · · · · · · · ·		N.C.		
9	Well A	2000				3500 T					2000)ft		
10	Well B	2000				3000 🗖							B	
11	Well C	0				2500 - 2000 -				C				
12						1500 -			_					
13	Hydraulic	-0.005	</td <td></td> <td></td> <td>1000 +</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1000 +								
13	Gradient	-0.003				500			_					
	Gradient	-0.01	∖-].			0	1000 200	0 3000						
15						Ŭ	1000 200	0 3000	_				(.)	
16	A-Matrix			b-vector			1		_				ω	
17	2000			440	0.005		У						<u> </u>	
18 19	2000		1	470 460	0.01 430	-	1 T		_				Q	
20	A-Inverse	3000	I	400	430				_				Q	
							0.5 -		_				3000ft	
21	0							X						
22	-0.0003333					-1	7	1	_					
23	1	-1	1				-0.5							
24													₩ .	
25	Head	+	0		<-x		-1 ⊥				(0 0)			<u> </u>
26	Function	+	0	0	<-y						(0,0)			
27		+	430											
28			430	<= h(x,y)									
29														
30	This spreadsh													
31	Theodore G. (
32	Fall, 1996. Al	l rights res	erved											
33														
34	Hydraulic Gra			е										
35	Magnitude=	0.01118												
36	i=	j=												
37	0		Hydraulic											
38	-0.4472136		Direction C											
39			x-dir.=>	-0.4472										
40			y-dir.=>	-0.8944										
41														
	MODE	11 🙈 Sh	eet1 / + /											
0013														

Graphical method:

a) Plot locations and static water level (SWL) elevations of each well.

b) Identify High, Medium, and Low SWL elevations. (Shown as Hi, Med, and Lo in picture)

c) Calculate point between High and Low wells where SWL = Medium Value from :

$$460$$
 2000 100

$$DLM = \frac{Med-Lo}{Hi-Lo} * LH.$$

Hi = head value at high well Med = head value at medium well Lo = head value at low well LH = distance from High well to Low well.

d) Draw equipotential line connecting points of equal head from Medium well to DLM along segment LH.

e) Draw gradient orientation line perpendicular to this equipotential line.

f) Compute hydraulic gradient as: $\Delta h/\Delta L$ where Δh is the change in head between Medium well and Low Well, and ΔL is the distance between the medium well equipotential line and the low well equipotential line along the gradient orientation line.

$$\frac{\Delta h}{\Delta L} = \frac{460\,ft - 440\,ft}{1789\,ft} = 0.011$$

Groundwater Storage

- Storage refers to the ability of a porous medium to store water within its bulk.
- The mechanisms of storage are:
 - In the draining and filling of the pore space
 - Compression of the water, and
 - Compression of the solids.
- In an unconfined aquifer the draining and filling of the pore space is the most significant mechanism.
- In a confined aquifer, the compression and decompression of the solids structure is the primary mechanism of storage.

Unconfined Aquifer

Storage in Unconfined is by drain/fill pore space.

$$S = \frac{V_{water}}{\Delta h \ A}$$

Confined Aquifer

Storage in confined is by compression/ decompression of the aquifer and water

Specific Storage

Storage per unit thickness of aquifer is called the specific storage

$$S_s = \frac{V_{water}}{\Delta h \ A \ b}$$

$$S = \int_0^b S_s(z) \, dz$$

If the specific storage is a constant, then the result is simply $S = S_s b$.

Estimating Storage

 Estimate by making head measurements at two different times and apply the storage equation

$$S = \frac{\Delta V_{water}}{\Delta h \ \Delta x \ \Delta y}$$

Figure 3: Storage in a single aquifer block

Estimating Storage

- Same idea for multiple blocks
- Estimate each block and then average

$$S = \frac{\sum_{i=1}^{num.blocks} \Delta V_i}{\sum_{i=1}^{num.blocks} \Delta h_i \ \Delta x_i \ \Delta y_i}$$

Figure 4: Aquifer comprised of many blocks

Estimating Storage

Use of groundwater elevation maps

Figure 5: Water level map at Year 1

$$S = \frac{\Delta V_{EFGH}}{\sum_{i=1}^{num.blocks} \Delta h_i \ \Delta x_i \ \Delta y_i}$$

Darcy's Law

- Permeability refers to the ease which water can flow through a porous material under a specified gradient.
- Permeable materials offer little resistance, while impermeable materials offer a lot of resistance.

Darcy's Law

- Established experimentally 1856
- Total discharge through a filter,
 Q, was proportional to:
 - Cross sectional area of flow, A,
 - \oplus head loss h1 h2.
- Q, was inversely proportional to:
 the length of the filter column, L.

$$Q \propto A \; \frac{h_1 - h_2}{L}$$

Darcy's Law

- The constant of proportionality is called the hydraulic conductivity
 - Permeability is sometimes used interchangeably
 - In reservoir engineering the permeability is related to K, but not numerically identical.

$$Q = KA \ \left(\frac{h_1 - h_2}{L}\right)$$

$$K = \frac{k \rho g}{\mu}$$

Measuring Permeability

Permeameters
 Constant head
 Falling head

Constant Head Permeameter

- A sample is placed in the permeameter
- Constant head gradient is maintained across the sample.
- Flow rate is measured
- Darcy's law applied:

$$K = \frac{Q}{A} \frac{L}{h_1 - h_2}$$

Constant Head Permeameter

Spreadsheet model to make computations

\odot	0 0			Model2_CH	Perm.	xls					
•	🎦 🛅 📄 🔚 😹 🔓 🛍 🖉 🖾 • 🖾 • 🔍 • 🔍 •										
MS	Sans Serif 💌 10	o • B 1	U		¢Ao	\$ % ,	0. 0.⊅ .¢ 00.	8 🗲		- >>>	
	Home Lay	out Tables	Chart	s Smar	tArt	Formulas	Data		\gg \sim =	₽▼	
	124 🗧	80(-	fx							-	
_	A	В	С	D	E	F	G	H	I		
1	Constant Head Pern	neameter									
2	Temperature (oC)		20								
3	D			0.115		D'					
4	Data Area (A)	225	cm^2	Cell Formulas		Diagram					
<u> </u>	Length (L)		cm/2 cm								
7	Volume(V)		cm^3			∧⊤				- 5	
8	Time (t)	456									
9	Head Loss (dh)		cm				A >				
10		15	CITI			dh					
11	density	0.998203	a/cm^3								
12	viscosity		g/(sec cm)			¥	Ľ				
13	gravitational		cm/sec^2								
14	acceleration										
15							V				
16	Computed Values			B5/B6							
17	Flow(Q)	0.109649123	=V/t								
18				-(B15/B3)*(B4	4/B7)		↓				
19	Hydraulic (K)	8.1E-04	cm/sec			(Q				
20	Conductivity			D4 7+D4 0 (/D2							
21	lateria (L)	0.044055.00	12	B17*B10/(B9	9*B11)						
22 23	Intrinsic (k)	8.34435E-09	cm^2								
23	Permeability										
24							~	-			
25						(()	I.			
27						V =	V				
28						n = -	4 7	7	_		
29						,	$A h_1$	$\frac{L}{-h_2}$)		
30						4	- '''	.02			
31											
14.4	Model2_	CHPerm.xls +									

- The head is measured at the inlet of the sample as the height of water in the tube above the sample
- Change in this height with time is the flow rate
- Head and the flow rate vary with time.

$$Q(t) = \frac{KA \ h(t)}{L}$$

Volume balance

$$Q(t) = -a \frac{dh(t)}{dt} = \frac{KA \ h(t)}{aL}$$

Separate and integrate

$$\int \frac{dh(t)}{h} = -\frac{KA}{aL} \int dt$$

Simplify

$$ln(h(t)) = ln(h_0) - \frac{KA t}{aL}$$

 Analysis by plotting and find slope of line in log-linear space

Spreadsheet tool to help with the analysis. Use trialerror with K to get computed to fit observed

$ \mathbf{\bullet} $	0 0					_FHPerm.xls					
•	🗉 🗊 🗄 🖨	X 4	Ê 🔮	🔊 • 🕅	- Σ	• 🐉 • 🍸 •	Q	Search in S	heet		
MS	Sans Serif T 10	* B	ΙU		¢Ao	\$ % ,	0. 0.≑ .00 ≎.	0 🗧 🕹	⊞ • (<u>* A</u>	Ŧ
1	Home Layout	Tables	s Char	ts Sma	rtArt	Formulas	Data	Review	Develo	per	∨ ‡
	K16 🛟 🤅	8 🛛 (=	fx								
_1	Α	В	С	D	E	F	G	Н	1	J	К
	Tube Diameter (d)		cm								
	Sample Diameter (D)		cm								
5	Sample Length (L)		cm	-							
	Initial head (h(t=0)) Final Head (h(t))		cm	-	d —	~					
	Elapsed time (t)	528	cm	-	ч.						
9		520	Sec	-							
	density	0.999099	a/cm∆3								
	viscosity		g/(sec cm)								
12	gravitational		cm/sec^2			h(t)					
13	acceleration			1	Ľ						
14											
15	Computed Values										
	Volume(Q)	14.13717			↓						
17		0.000047		-	· · ·						
	Hydraulic (K)	0.002617	cm/sec	L							
19 20	Conductivity					D <	_				
20	Intrinsic (k)	3.05E-08	cm \ 2								
22	Permeability	3.03L-00	CHINE		-						
23	renneability				Save	and Exit					
24			Observed	[
25		t (sec)	h(t) (cm)	ln(h(t))	10						
26		0									
27		30	4.73								
28		60	4.04			Q					
29 30		90	3.70			No					
31		120 150	3.12								
32		180		0.834998		2					-
33		210	2.04								
34		240	1.91								
35		270		0.439845							
36		300		0.368842	-			200			
37		330	1.21		₽ 1			No.	0000		mputed
38		360		0.182322				N	0000		· .
39		390	1.10						MYO	O Ob	oserved
40 41		420 450	0.96								
41 42		450	0.84					+ + + + + + + + + + + + + + + + + + +			
42		510	0.78	-0.24646							
44		540	0.69	-0.37106							
45		570	0.66								
46											
47											
48											
					0.1						
49						0 100	200 3	00 400	500 60	0	
50											
							Elapsed tim	ne (seconds)			

Field Methods

Measurements - Field Methods

In principle the measurement of hydraulic conductivity in the field should simply extend concepts of the permeameter devices; however the measurement of flow rates in field applications is not trivial.

Wells and pumps are used in aquifer pumping tests, a subject of later discussion. If the flow rate is known in the field, and two wells are known to be located on the same flow line, then Darcys law can be applied directly to infer the hydraulic conductivity from head measurements at two wells, using concepts identical to the constant head permeameter.

Infiltration and auger hole tests can be used to infer hydraulic conductivity in a manner analogous to the falling head permeameter test.

Next Time

- Direct Application of Darcy's Law
- Steady flow solutions
 - Rectilinear flow
 - Flow to wells