# CE 3354 Engineering Hydrology

Lecture 18: Channel Routing

## Outline

- Level Pool Routing applied to a stream reach
  - Example
- Muskingum Routing Background
  - CMM pp. 257-260
- Muskingum-Cunge Routing applied to a stream reach
  - CMM pp. 302-304

# Routing

- Routing simulates movement of a discharge signal (flood wave) through reaches
  - Accounts for storage in the reach and flow resistance.
  - Allows modeling of a basin comprised of interconnected sub-basins
  - Hydraulic routing uses continuity and momentum (St. Venant Equations)
  - Hydrologic routing uses continuity equation

# Hydrologic Routing

- Hydrologic routing techniques use the equation of continuity and some linear or curvilinear relation between storage and discharge within the river.
- Methods include:
  - Lag Routing (no attenuation)
  - Modified Puls (level pool routing)
  - Muskingum-Cunge (almost a hydraulic model)



- Technique to approximate the outflow hydrograph passing through a reach with the pool (water surface) assumed always level.
- Uses a reach (reservoir) mass balance equation, and

$$Q_{\rm in} - Q_{\rm out} = \frac{\Delta S}{\Delta t}$$

• a storage-outflow relationship.

$$Q_{\rm out} = f(S)$$

• Variable names are typically changed:

$$Q_{\rm in} => I_t$$

$$Q_{out} \Rightarrow O_t$$

• So the reach mass balance is

$$\overline{I} - \overline{O} = \frac{\Delta S}{\Delta t}$$

- The time averaged values are taken at the beginning and end of the time interval, and the first-order difference quotient is used to approximate the rate of change in storage.
- The reach mass balance is then

$$\frac{I_t + I_{t-\Delta t}}{2} - \frac{O_t + O_{t-\Delta t}}{2} = \frac{S_t - S_{t-\Delta t}}{\Delta t}$$

 Use stream-reach hydraulics, and depth-areastorage to build a storage-outflow function

O = f(S)

 Once we have that function, then build an auxiliary function (tabulation) called the storage-indication curve (function)

$$O = g(\frac{2S}{\Delta t} + O)$$

 Once have the storage-indication curve then can use the reach mass balance to estimate the numerical value of :

 $\frac{2S_t}{\Delta t} + O_t$ 

 Then use the storage-indication curve to find the value of outflow, subtract than from the result above, and now have both the end-ofinterval outflow and storage.

• Terminology: In Level Pool, X=0



# **Channel Routing**

• The storage in a reach can be estimated as the product of the average cross sectional area for a given discharge rate and the reach length.



# **Channel Routing**

• A rating equation is used at each cross section to determine the cross section areas.



# **Approximating Ratings**

Assume normal flow at each channel end section

$$Q = \frac{1.49}{n} A R^{2/3} S_0^{1/2}$$

- Use geometry to find values for A, and R.
- Engineered cross sections almost exclusively use just a handful of convenient geometry (rectangular, trapezoidal, triangular, and circular).
- Natural cross sections are handled in similar fashion as engineered, except numerical integration is used for the depth-area, topwidth-area, and perimeter-area computations.

• Rectangular Channel

• Depth-Area A(y) = By

• Depth-Topwidth T(y) = B

• Depth-Perimeter

 $P_w(y) = B + 2y$ 



• Trapezoidal Channel

Depth-Area A(y) = y(B + my)

• Depth-Topwidth T(y) = B + 2my



• Depth-Perimeter  $P_{w}(y) = B + 2y\sqrt{1 + m^{2}}$ 

- Triangular Channels
  - Special cases of trapezoidal channel

- V-shape; set B=0
- J-shape; set B=0, use <sup>1</sup>/<sub>2</sub> area, topwidth, and perimeter



• Circular Channel (Conduit with Free-Surface)

• Contact Angle:

$$\alpha(y) = 2\cos^{-1}(1 - \frac{2y}{D})$$

• Depth-Area: 
$$A(y) = \frac{D^2}{4} \left( \frac{\alpha}{2} - \sin(\frac{\alpha}{2}) \cos(\frac{\alpha}{2}) \right)$$

• Depth-Topwidth:

 $T(y) = D\sin(\frac{\alpha}{2})$ 

• Depth-Perimeter:

$$P_w(y) = \frac{D\alpha}{2}$$



- Irregular Cross Section
  - Use tabulations for the hydraulic calculations



#### • Irregular Cross Section – Depth-Area



#### • Irregular Cross Section – Depth-Area



#### • Irregular Cross Section – Depth-Perimeter



# Flow Direction/ Cross Section Geometry

- Convention is to express station along a section with respect to "looking downstream"
  - Left bank is left side of stream looking downstream (into the diagram)
  - Right bank is right side of stream looking downstream (into the diagram)



## Channel Routing

- A known inflow hydrograph and initial storage condition can be propagated forward in time to estimate the outflow hydrograph.
- The choice of Dt value should be made so that it is smaller than the travel time in the reach at the largest likely flow and smaller than about 1/5 the time to peak of the inflow hydrograph
- HMS is supposed to manage this issue internally, if we roll-ourown, need to be cognizant of this important issue

# Channel Routing Example

• Consider a channel that is 2500 feet long, with slope of 0.09%, clean sides with straight banks and no rifts or deep pools. Manning's n is 0.030.



## **Channel Routing Example**

 The inflow hydrograph is triangular with a time base of 3 hours, and time-to-peak of 1 hour. The peak inflow rate is 360 cfs.



#### Channel Routing Example Configuration:



#### • Tasks:

- Build a depth-storage table
- Build a depth-outflow table
  - From 0 -6 feet deep use Manning's equation in variable-geometry conduit
- Build the input hydrograph (make the picture into numb3rs).
- Build the routing table (apply the reach mass balance)



#### • Input hydrograph



|    | Α      | В       |  |
|----|--------|---------|--|
|    |        |         |  |
|    |        |         |  |
| L  | t(min) | l (cfs) |  |
| -  | 0      | 0       |  |
| 5  | 10     | 60      |  |
| ŀ  | 20     | 120     |  |
|    | 30     | 180     |  |
| )  | 40     | 240     |  |
|    | 50     | 300     |  |
| 5  | 60     | 360     |  |
| 1  | 70     | 330     |  |
| )  | 80     | 300     |  |
| L  | 90     | 270     |  |
| -  | 100    | 240     |  |
| 5  | 110    | 210     |  |
| ŀ. | 120    | 180     |  |
|    | 130    | 150     |  |
| )  | 140    | 120     |  |
|    | 150    | 90      |  |
| 5  | 160    | 60      |  |
| 1  | 170    | 30      |  |
| )  | 180    | 0       |  |
| L  | 190    | 0       |  |

# Level Pool RoutingDEPTH-STORAGE-OUTFLOW

|   |    |         |                   | ayour i        | abies        | Offailts       | omartart         | i ormulas             | Pata             |       |
|---|----|---------|-------------------|----------------|--------------|----------------|------------------|-----------------------|------------------|-------|
|   |    | H1      | 8                 | : 😣 📀          | (• <i>fx</i> |                |                  |                       |                  |       |
|   |    | Α       | В                 | C              | D            | E              |                  | F                     |                  | G     |
|   | 3  | 1-acre  | , vertical wa     | alls           |              |                |                  |                       |                  |       |
|   | 4  | 5-foot  | <b>RCP</b> outlet | (assume shor   | rt)          |                |                  |                       |                  |       |
|   | 5  | 10-foo  | t max dept        | h              |              |                |                  |                       |                  |       |
|   | 6  |         |                   |                |              |                |                  |                       |                  |       |
|   | 7  | Metho   | ods:              |                |              |                |                  |                       |                  |       |
|   | 8  | Use M   | anning's eq       | uation in a ci | rcular chanr | nel for estima | ate Q vs Depth   | for 0 to 5 feet)      |                  |       |
|   | 9  | Use Or  | rifice equati     | ion (e.g. FHW  | A, TxDOT) fo | or estimate C  | ) vs Depth for 5 | 5 to 10 feet          |                  |       |
| 1 | .0 | Use De  | epth*Area t       | o estimate st  | orage in cut | oic feet       |                  |                       |                  |       |
| 1 | 1  |         |                   |                |              | DELTA T        |                  |                       | 10               | D MIN |
| 1 | .2 |         |                   |                |              |                |                  |                       |                  |       |
| 1 | .3 |         |                   |                |              |                |                  |                       |                  |       |
|   |    | РТН(ЕТ) | ITFLOW(CFS)       | NE-HOW         | ORAGE(FT^3)  | /bt + 0 (CFS)  |                  |                       | MARKS            |       |
| 1 | .4 | В       | OC                | 8              | STC          | 25,            |                  |                       | RE               |       |
| 1 | .5 | 0       | 0                 | Mannings       | 0            | 0              |                  |                       |                  |       |
| 1 | .6 | 0.5     | 2.986243          | Mannings       | 21780        | 75.586243      | = 2*[            | D16/(\$F\$11*6        | 0)+B16           |       |
| 1 | .7 | 1       | 12.5257           | Mannings       | 43560        | 157.7257       |                  |                       |                  |       |
| 1 | 8  | 1.5     | 28.01057          | Mannings       | 65340        | 245.81057      |                  |                       |                  |       |
| 1 | .9 | 2       | 48.2008           | Mannings       | 87120        | 338.6008       |                  |                       |                  |       |
| 2 | 20 | 2.5     | 71.51714          | Mannings       | 108900       | 434.51714      |                  |                       |                  |       |
| 2 | 21 | 3       | 96.09617          | Mannings       | 130680       | 531.69617      |                  |                       |                  |       |
| 2 | 2  | 3.5     | 119.7537          | Mannings       | 152460       | 627.95368      |                  |                       |                  |       |
| 2 | 23 | 4       | 139.8113          | Mannings       | 174240       | 720.61126      |                  |                       |                  |       |
| 2 | 24 | 4.5     | 152.4455          | Mannings       | 196020       | 805.84555      | Recall max flow  | w in circular is at 8 | 5-95% fill depth | 1     |
| 2 | 25 | 5       | 143.0343          | Mannings       | 217800       | 869.03427      |                  |                       |                  |       |
| 2 | 26 | 5       | 143.0343          | Orifice        | 217800       | 869.03427      | Adjust Cd to m   | atch flow at 5ft de   | ер               |       |
| 2 | 27 | 5.5     | 156.6862          | Orifice        | 239580       | 955.28619      |                  |                       |                  |       |
| 2 | 28 | 6       | 169.2404          | Orifice        | 261360       | 1040.4404      |                  |                       |                  |       |
| 2 | 29 | 6.5     | 180.9256          | Orifice        | 283140       | 1124.7256      |                  |                       |                  |       |
| 3 | 80 | 7       | 191.9006          | Orifice        | 304920       | 1208.3006      |                  |                       |                  |       |
| 3 | 1  | 7.5     | 202.281           | Orifice        | 326700       | 1291.281       |                  |                       |                  |       |

# Level Pool Routing - Routing Table

|    | Α           | B            | С            | D           | E       | F      | G          | H       |         | J       | K       | L       | M      | N              | 0       | Р           | Q             | R       |
|----|-------------|--------------|--------------|-------------|---------|--------|------------|---------|---------|---------|---------|---------|--------|----------------|---------|-------------|---------------|---------|
| το |             |              |              | travel time | 865.052 |        |            |         |         |         |         |         |        |                |         |             |               |         |
| 1/ |             |              |              | tp/5        | 720     |        |            |         |         |         |         |         |        |                |         |             |               |         |
| 10 |             |              |              |             |         |        |            |         |         |         |         |         |        |                |         |             |               |         |
| 19 | Table 2: Ro | outing Table |              |             |         |        |            |         |         |         |         |         |        |                |         |             |               |         |
|    |             |              |              |             |         |        |            |         |         | e       |         |         |        |                |         |             |               |         |
|    |             |              |              |             |         |        |            |         | ate     | alan    |         |         |        |                | ate     |             |               | Ite     |
|    |             |              |              |             |         |        |            |         | 80      | B       |         |         |        |                | ola     |             |               | 80      |
|    |             |              |              |             |         |        |            |         | ferp    | ass     |         |         |        |                | terp    |             |               | tie     |
| 20 |             |              |              |             |         | Table_ | Lookup     |         | Ē       | Σ̈́     |         | Table_  | _ookup |                | Ē       | Table Looku | ıp            | 2       |
|    |             |              | )2           |             |         |        | <u>o</u> , | ïE,     |         |         | 의       | Έ       |        |                |         |             |               |         |
|    |             |              | <u>2</u>     |             |         |        | 2          | 2       | 2       | ť2      | ţ2      | Ę       |        |                |         |             | Ę             |         |
|    | l ii        | fs)          | (1           | (Ħ)         | 0       | ·=     | t d        | đđ      | đ       | ро      | B       | PO      | 0      | ïE             | (H)     | <u>o</u>    | hig           | cfs)    |
| 21 | 클           | 5            | đ            | Z           | ۲_<br>۲ | ~      | ې<br>م     | ς.      | ې<br>بې | ά       | τ       | Ŷ       | ~      | <mark>۲</mark> | Ž       | o'          | o'            | ŏ       |
| 22 | 0           | 0            | 0            | 0           |         |        |            |         | -       |         |         |         |        |                |         |             |               |         |
| 23 | 10          | 60           | 18000        | 0           | 0       | 1      | 0          | 17011.6 | 0       | 18000   | 0       | 22988.4 | 0      | 1              | 0.783   | 0           | 9.96122       | 7.79969 |
| 24 | 20          | 120          | 54000        | 0.783       | 0       | 1      | 0          | 17011.6 | 13320.2 | 67320.2 | 60856.9 | 123173  | 2      | 3              | 2.10372 | 36.1898     | 77.2447       | 40.4479 |
| 20 | 30          | 180          | 90000        | 2.10372     | 2       | 3      | 39143.1    | 76826.6 | 43051.5 | 133051  | 123173  | 228208  | 3      | 4              | 3.09405 | 77.2447     | 160.692       | 85.0926 |
| 20 | 40          | 240          | 126000       | 3.09405     | 3       | 4      | 76826.6    | 131792  | 81995.9 | 207996  | 123173  | 228208  | 3      | 4              | 3.80757 | 77.2447     | 160.692       | 144.634 |
| 21 | 50          | 300          | 162000       | 3.80757     | 3       | 4      | 76826.6    | 131792  | 121215  | 283215  | 228208  | 379166  | 4      | 5              | 4.36439 | 160.692     | 297.22        | 210.441 |
| 20 | 60          | 360          | 198000       | 4.36439     | 4       | 5      | 131792     | 200834  | 156951  | 354951  | 228208  | 379166  | 4      | 5              | 4.83959 | 160.692     | 297.22        | 275.319 |
| 29 | 70          | 330          | 207000       | 4.83959     | 4       | 5      | 131792     | 200834  | 189759  | 396759  | 379166  | 579229  | 5      | 6              | 5.08794 | 297.22      | 497.431       | 314.826 |
| 50 | 80          | 300          | 189000       | 5.08794     | 5       | 0      | 200834     | 280771  | 207864  | 390804  | 379100  | 370466  | 5      | 0              | 0.08840 | 297.22      | 497.431       | 314.93  |
| 51 | 90          | 2/0          | 171000       | 3.00040     | 5       | 5      | 131702     | 200834  | 207905  | 370900  | 220200  | 379100  | 4      | 5              | 4.99027 | 160.692     | 297.22        | 290.904 |
| 33 | 110         | 240          | 135000       | 4.99027     | 4       | 5      | 131792     | 200834  | 180104  | 324104  | 228208  | 379100  | 4      | 5              | 4.0314  | 160.692     | 297.22        | 2/4.202 |
| 34 | 120         | 180          | 117000       | 4 63585     | 4       | 5      | 131792     | 200834  | 175692  | 292692  | 228208  | 379166  | 4      | 5              | 4.03303 | 160.692     | 297.22        | 219 012 |
| 50 | 130         | 150          | 99000        | 4 42717     | 4       | 5      | 131792     | 200834  | 161285  | 260285  | 228208  | 379166  | 4      | 5              | 4 21249 | 160.692     | 297.22        | 189 703 |
| 30 | 140         | 120          | 81000        | 4.21249     | 4       | 5      | 131792     | 200834  | 146463  | 227463  | 123173  | 228208  | 3      | 4              | 3,99291 | 77.2447     | 160.692       | 160,101 |
| 51 | 150         | 90           | 63000        | 3.99291     | 3       | 4      | 76826.6    | 131792  | 131403  | 194403  | 123173  | 228208  | 3      | 4              | 3.67816 | 77.2447     | 160.692       | 133.835 |
| 58 | 160         | 60           | 45000        | 3.67816     | 3       | 4      | 76826.6    | 131792  | 114102  | 159102  | 123173  | 228208  | 3      | 4              | 3.34207 | 77.2447     | 160.692       | 105.789 |
| 39 | 170         | 30           | 27000        | 3.34207     | 3       | 4      | 76826.6    | 131792  | 95628.5 | 122629  | 60856.9 | 123173  | 2      | 3              | 2.99126 | 36.1898     | 77.2447       | 76.8857 |
| 4U | 180         | 0            | 9000         | 2.99126     | 2       | 3      | 39143.1    | 76826.6 | 76497.1 | 85497.1 | 60856.9 | 123173  | 2      | 3              | 2.3954  | 36.1898     | 77.2447       | 52.4231 |
| 41 | 190         | 0            | 0            | 2.3954      | 2       | 3      | 39143.1    | 76826.6 | 54043.2 | 54043.2 | 22988.4 | 60856.9 | 1      | 2              | 1.82007 | 9.96122     | 36.1898       | 31.4705 |
| 42 | 200         | 0            | 0            | 1.82007     | 1       | 2      | 17011.6    | 39143.1 | 35160.9 | 35160.9 | 22988.4 | 60856.9 | 1      | 2              | 1.32144 | 9.96122     | 36.1898       | 18.3922 |
| 43 | 210         | 0            | 0            | 1.32144     | 1       | 2      | 17011.6    | 39143.1 | 24125.6 | 24125.6 | 22988.4 | 60856.9 | 1      | 2              | 1.03003 | 9.96122     | 36.1898       | 10.7489 |
| 44 | 220         | 0            | 0            | 1.03003     | 1       | 2      | 17011.6    | 39143.1 | 17676.3 | 17676.3 | 0       | 22988.4 | 0      | 1              | 0.76892 | 0           | 9.96122       | 7.65941 |
| 45 | 230         | 0            | 0            | 0.76892     | 0       | 1      | 0          | 17011.6 | 13080.6 | 13080.6 | 0       | 22988.4 | 0      | 1              | 0.56901 | 0           | 9.96122       | 5.66804 |
| 40 | 240         | 0            | 0            | 0.56901     | 0       | 1      | 0          | 17011.6 | 9679.8  | 9679.8  | 0       | 22988.4 | 0      | 1              | 0.42107 | 0           | 9.96122       | 4.19441 |
| 47 | 250         | 0            | 0            | 0.42107     | 0       | 1      | 0          | 17011.6 | 7163.15 | 7163.15 | 0       | 22988.4 | 0      | 1              | 0.3116  | 0           | 9.96122       | 3.10391 |
| 40 | 260         | 0            | 0            | 0.3116      | 0       | 1      | 0          | 17011.6 | 5300.81 | 5300.81 | 0       | 22988.4 | 0      | 1              | 0.23059 | 0           | 9.96122       | 2.29692 |
| 49 | 270         | 0            | 0            | 0.23059     | 0       | 1      | 0          | 17011.6 | 3922.65 | 3922.65 | 0       | 22988.4 | 0      | 1              | 0.17064 | 0           | 9.96122       | 1.69975 |
| 50 | 280         | 0            | 0            | 0.17064     | 0       | 1      | 0          | 17011.6 | 2902.8  | 2902.8  | 0       | 22988.4 | 0      | 1              | 0.12627 | 0           | 9.96122       | 1.25783 |
| 21 | 290         | 0            | 0            | 0.00244     | 0       | 1      | 0          | 17011.6 | 2148.11 | 2140.11 | 0       | 22988.4 | 0      | 1              | 0.09344 | 0           | 9.90122       | 0.93081 |
| 22 | 310         | 0            | 0            | 0.09344     | 0       | 1      | 0          | 17011.6 | 1176.34 | 1176 34 | 0       | 22900.4 | 0      | 1              | 0.00915 | 0           | 9.90122       | 0.00001 |
| 24 | 320         | 0            | 0            | 0.00915     | 0       | 1      | 0          | 17011.6 | 870 501 | 870 501 | 0       | 22900.4 | 0      | 1              | 0.03787 | 0           | 9.90122       | 0.30973 |
| 22 | 520         | 0            | 0            | 0.00117     | J       |        |            | 11011.0 | 010.001 | 070.001 | J       | 22300.4 | 0      | 1              | 0.00707 | J           | 5.50122       | 0.0112  |
| 20 |             | 3240         | $\leftarrow$ |             |         | - Che  | eck S      | ums:    | sho     | uid d   | e nea   | ariv e  | qual   |                |         |             | $\rightarrow$ | 3238.93 |
|    |             | UL-TU        | -            |             |         |        |            |         |         |         |         |         | -1     |                |         |             |               | 0200.00 |

- Plot Results and Examine
  - Notice the reduction in peak, and the lag is the lag time sensible?

• Lag ~ 20 min

- 2500 ft/20min =125 ft/min =2.08 ft/sec
- Check against depth-discharge, Velocities in 0-3 ft/sec - thus reasonable result



# Same example, HEC-HMS

• Create a generic model, use as many null elements as practical (to isolate the routing component)



#### Storage-Discharge Table (from the spreadsheet) Rec-HMS 3.5 [C:\...Wy Documents\DES\_606\_EX11\DES\_606\_EX11.hms] Eile Edit View Components Parameters Compute Results Tools Help

🗄 💋 Basin 1 😑 🗁 Meteorologic Models ill 🔅 Met 1 Control Specifications 🗄 🚞 Time-Series Data 😑 🗀 Paired Data

in Contractions Storage Discharge Functions

🗡 Table 1

Components Compute Results 🔀 Paired Data 🛛 Table 🛛 Graph

Storage (AC-FT)

0.00000

0.45914

1.14780 2.29570

4.13220 6.65750

9.87140

F٩. - 🚔 I 🖃 🗁 Basin Models





#### Meterological Model (HMS needs, but won't use this module)

Null meterological model

| HEC-HMS 3.5 [C:\ Wy Documents WES_606_EX11 WES_60                                                                                        | 6_EX11.hms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| file <u>E</u> dit <u>V</u> iew Components <u>P</u> arameters Compute <u>R</u> esults <u>T</u> ools <u>H</u> e                            | alp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 🗅 🚘 🖬 🎒 💽 🕂 🗘 🤐 🖦 🖬 🍑 🐡 😴 🏜                                                                                                              | 彩 😅 🔤 🖤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DES-606-EX11  Basin Models  Control Specifications  Components Compute Results  Meteorology Model Basins                                 | Basin Model [Basin 1] Current Run [Run 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Met Name: Met 1<br>Description:<br>Precipitation:<br>Evapotranspration:<br>-None<br>unowmelt:<br>-None<br>Unit System:<br>U.S. Customary | Reach-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                          | NOTE 10604: 112 missing or invalid values for gage "Gage 1".<br>NOTE 10181: Opened control specifications "Control 1" at time 10Aug2011, 14:36:10.<br>ERROR 10204: Meteorologic model "Met 1" is not set up to work with basin model "Basin 1".<br>NOTE 10184: Began computing simulation run "Run 1" at time 10Aug2011, 14:37:21.<br>NOTE 40049: Found no parameter problems in basin model "Basin 1".<br>NOTE 10185: Finished computing simulation run "Run 1" at time 10Aug2011, 14:37:21. |

#### Set control specifications, time windows, run manager - simulate response

Observe the lag from input to output and the attenuated peak from in-channel storage



#### Set control specifications, time windows, run manager - simulate response

Lag about 20 minutes

Attenuation (of the peak) is about 45 cfs

Average speed of flow about 2 ft/sec

Observe the lag from input to output and the attenuated peak from in-channel storage



- Muskingum routing is a storage-routing technique that is used to:
  - translate and attenuate hydrographs in natural and engineered channels
  - avoids the added complexity of hydraulic routing.
- The method is appropriate for a stream reach that has approximately constant geometric properties.

 At the upstream end, the inflow and storage are assumed to be related to depth by powerlaw models

 $I = a y_u^n$  $S_I = b y_u^m$ 

 At the downstream end, the outflow and storage are also assumed to be related to depth by power-law models

$$O = a y_d^n$$

$$S_O = by_d^m$$

 Next the depths at each end are rewritten in terms of the power law constants and the inflows

$$S_I = \frac{bI^{m/n}}{a^{m/n}} \qquad S_O = \frac{bO^{m/n}}{a^{m/n}}$$

 Then one conjectures that the storage within the reach is some weighted combination of the section storage at each end (weighted average)

$$S = wS_I + (1 - w)S_O$$

• The weight, w, ranges between 0 and 0.5.

- When w = 0, the storage in the reach is entirely explained at the outlet end (like a level pool)
- When w = 0.5, the storage is an arithmetic mean of the section storage at each end.

• Generally the variables from the power law models are substituted

$$K = \frac{b}{a^{m/n}}$$
 and  $z = m/n$ 

And the routing model is expressed as

$$S = K[wI^z + (1-w)O^z]$$

• z is usually assumed to be unity resulting in the usual form

$$S = K[wI + (1 - w)O]$$

- For most natural channels w ranges between 0.1 and 0.3 and are usually determined by calibration studies
- Muskingum-Cunge further refines the model to account to relate the values of the weights to channel geometry, slope, and resistance features
- At this level of abstraction (M-C) the model is nearly a hydraulic model (Kinematic wave)

- Use same example conditions
- From hydrologic literature (Haan, Barfield, Hayes) a rule of thumb for estimating w and K is
  - Estimate celerity from bankful discharge (or deepest discharge value)
  - Estimate K as ratio of reach length to celerity (units of time, essentially a reach travel time)
  - Estimate weight (w) as

$$w = \frac{1}{2} \left( 1 - \frac{q_0}{S_0 cL} \right)$$

#### • Use same example conditions

| <b>N 1</b>                        | Microsoft Excel - MuskingumEstimator.xls                     |                                                               |                                                   |                                                                                                         |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               |                                                                            |                                                                                            |          |   |
|-----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|---|
| 8                                 | <u>E</u> ile <u>E</u> dit                                    | ⊻iew <u>I</u> r                                               | nsert F <u>o</u> rm                               | nat <u>T</u> ools                                                                                       | <u>D</u> ata <u>W</u> ir                                            | ndow <u>H</u> elp                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               | Type a que                                                                 | stion for help                                                                             | 8        | × |
|                                   | 🖻 🖪 é                                                        | 8 🔁 🖪                                                         | 0 🐧 💖                                             | X 🖻 🖬                                                                                                   | 🛷 🔽                                                                 | - ci - 1                                                           | 🔒 Σ 🗕 🏚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | <b>4</b> 100%                                                                 | - ? .                                                                      | 10 🗸 🖂                                                                                     | - 🕭 -    | » |
| -                                 | D12                                                          | -<br>-                                                        | f <sub>x</sub>                                    | ··                                                                                                      |                                                                     |                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |                                                                               |                                                                            |                                                                                            |          |   |
|                                   | A                                                            | В                                                             | C                                                 | D                                                                                                       | E                                                                   | F                                                                  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                        |                                                                               | J                                                                          | K                                                                                          | L        | Ξ |
| 1                                 | Muskingu                                                     | m Weight                                                      | Estimator                                         |                                                                                                         |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               |                                                                            |                                                                                            |          | - |
| 2                                 | Use when                                                     | calibratio                                                    | n studies u                                       | ınavailable                                                                                             |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               |                                                                            |                                                                                            |          |   |
| 3                                 | Adapted f                                                    | rom pg 18                                                     | 5 Design H                                        | lydrology a                                                                                             | and Sedime                                                          | entology for                                                       | Small Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ersheds, A                                               | cademic Pr                                                                    | ess, 1994,                                                                 | ISBN 0-12-3                                                                                | 312340-2 | _ |
| 4                                 | L                                                            | Qb                                                            | Ab                                                | Qb/Ab                                                                                                   | С                                                                   | K                                                                  | So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rh                                                       | Width                                                                         | Q/Width                                                                    | W                                                                                          |          | - |
| 5<br>6<br>7<br>8<br>9<br>10<br>11 | 4500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500 | 9.96122<br>36.1898<br>77.2447<br>160.692<br>297.22<br>497.431 | Bankful Area<br>8<br>20<br>40<br>72<br>116<br>172 | All Cection Celocity<br>Bankful Cection Celocity<br>1.24515<br>1.25224<br>2.25224<br>2.85224<br>2.85224 | 2.075255<br>3.015818<br>3.21853<br>3.719719<br>4.270397<br>4.820072 | ×<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>±<br>± | 0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000000 | 1.338305<br>1.475481<br>1.833212<br>2.255017<br>2.704132 | 世<br>名<br>10.47214<br>14.94427<br>27.1098<br>39.27532<br>51.44085<br>63.60637 | 4<br>4<br>2.42<br>2.421652<br>2.849328<br>4.091421<br>5.777892<br>7.820466 | * unbui<br>vissing<br>0.398142<br>0.321559<br>0.303269<br>0.255572<br>0.199331<br>0.139449 |          |   |
| 12                                |                                                              |                                                               |                                                   |                                                                                                         |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               |                                                                            |                                                                                            |          | _ |
| 13                                |                                                              |                                                               |                                                   |                                                                                                         | Average                                                             | 764.4283                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               | Average                                                                    | 0.269554                                                                                   |          |   |
| 14                                |                                                              |                                                               |                                                   |                                                                                                         |                                                                     | 0.212341                                                           | <=Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                                               |                                                                            |                                                                                            |          | - |
| H 4                               | → ×\\S                                                       | neet1 / Sh                                                    | neet2 / Sh                                        | eet3 /                                                                                                  |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                        |                                                                               |                                                                            |                                                                                            |          |   |
| Dra                               | w - 🗟 A                                                      | <u>u</u> toShapes •                                           | · 🔨 🗙 E                                           |                                                                                                         | 4 🗘 🛛                                                               | I 🔜 🤌 ·                                                            | • 🔟 • A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - = = ;                                                  | 🗄 🗖 🕤                                                                         | •                                                                          |                                                                                            |          |   |
| Read                              | ly                                                           |                                                               |                                                   |                                                                                                         |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                               |                                                                            | NUM                                                                                        |          |   |





#### • Change w to 0.5, K=20 minutes, NReach=2



- CMM pp. 302-304
- Data needs are
  - Cross section geometry (as paired-data)
  - Manning's n in channel, left and right overbank
  - Slope
  - Reach length
  - Number of reaches (the program divides the reaches into sub-reaches for computation)

#### Cross section geometry

"Glass walls"



# Associate the section with the routing element Other data included

| 🔀 HEC-HMS 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [C:\Wy Documents\DES_606_EX11\DES_606_EX11.hms]                                                                                                    |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <u>File E</u> dit <u>V</u> iew C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Components <u>P</u> arameters Compute <u>R</u> esults <u>I</u> ools <u>H</u> elp                                                                   |        |
| 0 🚅 🖬 🖨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ▶ ◆ < ♣ ७ ■ 章 ♥ ♥ ₩ 器 圖 圖 图                                                                                                                        |        |
| Source     Source | ce-1 th-1 Muskingum-Cunge Vo Channel Loss Models ifications Data Data Data Data Data Data Data Dat                                                 |        |
| Basin Name:<br>Element Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Options Basin 1 Reach-1                                                                                                                            |        |
| Time Step Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Automatic Fixed Interval                                                                                                                           |        |
| *Length (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2500                                                                                                                                               |        |
| *Slope (FT/FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0009                                                                                                                                             |        |
| *Manning's n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30                                                                                                                                               |        |
| Invert (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | 5      |
| Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eight Point                                                                                                                                        | N      |
| *Left Manning's n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30 Simulation Run: Run 1 Reach: Reach-1                                                                                                          |        |
| *Right Manning's n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30 Start of Run: 01 Jan2000, 00:00 Basin Model: Basin<br>End of Run: 01 Jan2000, 05:20 Meteorologic Model: Met 1                                 | 1      |
| *Cross Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 1 Compute Time: DATA CHANGED, RECOMPUTE Control Specifications: Control                                                                      | ol 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOTE 10104: began comparing simulation run Run 1 at time 10Aug2011, 17:07:19.<br>NOTE 40049: Found no parameter problems in basin model "Basin 1". | A<br>V |

#### Run the simulation

#### • Result comparable to level-pool.



# Summary

#### • Examined routing using:

- Lag
- Level pool routing (Puls)
- Muskingum
- Muskingum-Cunge

• All require external data preparation

## Summary

#### • Which method to consider

- Lag use to get connectivity to agree with the conceptualization of the system. Also can use in practice for short elements that don't overflow and don't have much storage capacity relative to the discharges.
- Level pool routing (Puls) use for reservoirs, detention basins, LID/GI practices where the flow out of the practice is weir or underdrain controlled.

## Summary

Which method to consider

Muskingum - use for streams

 Muskingum-Cunge - use for streams and engineered channels

None will work well in backwater conditions
 that's the realm of HEC-RAS or SWMM.

## Next Time

- HEC HMS workshop
- Lecture YBX
  - Review for Exam 2

• You will be expected to be able to build and run a HEC-HMS model.