

CE 3354 ENGINEERING HYDROLOGY

LECTURE 2: WATER BUDGET EXAMPLE; AQUIFERS

OUTLINE

- Water Budget
- Aquifers

WHAT IS HYDROLOGY?

- Study of the occurrence, circulation, storage, and distribution of surface and groundwater on the Earth.
- Engineering hydrology is the quantification of amounts of water at various locations (spatially) as a function of time (temporally) for surface water applications.

WHAT IS A WATERSHED?

- Topographic area that collects and discharges surface streamflow through one outlet or mouth (pour point)
- The area on the surface of the Earth that drains to a specific location
- In groundwater a similar concept is called a groundwater basin

 only the boundaries can move depending on relative rates of recharge and discharge

WATER BUDGET

- The water budget, or <u>hydrologic balance</u> is simply the expression of the conservation of mass in hydrologic terms for a hydrologic system.
- Generally it is expressed as a rate (or volume) balance.
- The hydrology to describe amounts of water in storage in different compartments at different scales. The equation expressed in "words" is

Rate of inflow - Rate of outflow = Rate of change of storage + Rate of internal mass generation.

SURFACE WATER SYSTEMS

SURFACE WATER BUDGET

- From the surface water system diagram, an appropriate budget would be
 - Inflows: Rainfall; Surface water from outside boundary, recharge from Groundwater.
 - Outflows: Evapotranspiration; Surface water leaving boundary; Infiltration to groundwater.
 - Storage: Water levels in lakes, rivers, ponds within the boundary; water stored on leaves and other surfaces.

GROUND WATER SYSTEMS

GROUND WATER BUDGET

- From the surface water system diagram, an appropriate budget would be
 - Inflows: Groundwater flow from outside boundary; Recharge from surface system (via infiltration)
 - Outflows: Groundwater flow out of the boundary; Discharge (pumping; springs) to surface system
 - Storage: Water levels in aquifers within the boundary

CONCEPTUAL MODEL OF A WATER BUDGET

WATER BUDGET EXAMPLE

OVER 2 MONTHS, THE AREA AROUND BETWS-Y-COED IN WALES IS EXPECTED TO RECIEVE 254mm OF RAIN, WITH EXPECTED ET OF 85 MM, AND I 20 MM. THERE IS NEGLIGIBLE STORAGE IN THE CATCHMENT. WHAT IS THE EXPECTED RAINFALL EXLESS FROM THE CATCHMENT IF THE AREA IS 65 km. EXPRESS THE ANSWER IN M3 & liters. How MANY PEOPLE CAN THE CATCHMENT SUPPLY IF THE DAILY WATER DEMAND IS 160 liters/person?

WATER BUDGET EXAMPLE

SOLUTION

WATER BUDGET EXAMPLE

```
IN M3
149mm . 65 km . 10 6 2/ = 9.685.10 6 1 1000 = 9.685.10 R
USAGE/SUPPLY
 160 L 30 day 2mo = 9600 l/person /million people : 9.685-109 / 9600 l/person = 106 people } but it better
```

AQUIFERS

- An aquifer is a geologic formation that stores and transmits water
- Storage is in the interstitial (pore) space between the solid particles that comprise the formation
- 7 Transmission is in the <u>interconnected</u> pore space

POROSITY AND WATER CONTENT

Figure 1.1 Schematic of porous medium and various compartments in the porous medium.

TYPES OF POROUS STRUCTURE

Figure 1.2 Porous materials comprised of spheres. (From Heath, R.C., 1983. Basic Ground-Water Hydrology, USGS Water Supply Paper 2220)

Figure 1.3. Porous material comprised of fractured solids (From Heath, R.C., 1983. Basic Ground-Water Hydrology, USGS Water Supply Paper 2220)

TYPES OF POROUS STRUCTURE

Figure 1.4. Voids formed at same time as geologic formation (From Heath, R.C., 1983. Basic Ground-Water Hydrology, USGS Water Supply Paper 2220)

Figure 1.5. Voids formed after geologic unit was created (From Heath, R.C., 1983. Basic Ground-Water Hydrology, USGS Water Supply Paper 2220)

MOISTURE ZONES

Figure 1.7 Diagram of different moisture zones in the subsurface. (From Heath, R.C., 1983. Basic Ground-Water Hydrology, USGS Water Supply Paper 2220)

AQUIFER TYPES

Water table (unconfined) aquifer

AQUIFER TYPES

Artesian (confined) aquifer

AQUIFER TYPES

Leaky Artesian (Gulf Coast) aquifer

NEXTTIME

- Hydrologic Data
- Watershed Delineation