CE 3305 - Fluid Mechanics Exam 1

Purpose

Demonstrate ability to apply fluid mechanics and problem solving principles covering topics such as: Fluid properties, viscosity, vapor pressure, fluid statics and pressure.

Instructions

1. Put your name on each sheet you submit.
2. Begin each problem on a separate page.
3. Use the problem solving protocol in the class notes.
4. Label answers, be sure to include units.

Allowed Resources

1. Your notes
2. The textbook
3. The mighty Internet
4. You may not communicate with other people during the exam

$$
2 \text { Cot-problem } 1
$$

CE 3305 - Fluid Mechanics - SPRING 2024
Name: NAME AT P. Ola

1. Argon gas is used as a sheilding gas for welding for fabrication of metal objects. A 200-liter tank has an empty weight of 50 kg .
mass
Determine:
(a) The total weight of the 200 -liter tank of argon at a pressure of $3,500 \mathrm{psia}$ at a temperature of $313^{\circ} \mathrm{K}$.
(b) The argon pressure if the tank is submersed in the North Sea to repair an underwater pipeline, where the ambient water temperature is $6^{\circ} \mathrm{C}$
(c) The additional ballast (weight) required for the tank to be neutrally bouyant in seawater $\left(\rho_{s w}=1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

SKETCH

$$
\begin{aligned}
& m_{g}=\text { ? } \\
& \text { KNown } \\
& \begin{array}{l}
\text { (43) For "known" section } \\
+2 \text { known vases }
\end{array} \\
& \begin{array}{l}
\forall=200 \mathrm{~L} \\
m_{T}=50 \mathrm{~kg} \text { (given) }
\end{array} \\
& \text { UNKnOWNS } \\
& \text { (44) FOR "unknown" section } \\
& m_{g}=\text { ? } \quad m_{B}=\text { ? } 50 . \quad w_{T}+w_{G}+w_{B}=F_{B} \\
& \text { PreT } \left.=6^{\circ} \mathrm{C}\right)
\end{aligned}
$$

GOVERNING EqUATIUNS +4 "GOVERN..." SETT

$$
\begin{aligned}
& p \forall=\frac{m g R T}{M} \quad \text { AND IP NEEDED } \\
& M_{\text {argan }}=39.96 \quad \text { PALUS } \\
& R=0.0821 \frac{\mathrm{Latm}}{\mathrm{~K} \cdot \mathrm{~mol}}
\end{aligned}
$$

SOLTION t
(a)

$$
\begin{aligned}
& \text { a) } V=200 \mathrm{~L} \\
& T=313 \mathrm{~K} \\
& p=3500 \mathrm{psia} * \frac{1 \mathrm{~atm}}{14.75 \mathrm{psia}}=237.28 \mathrm{~atm}
\end{aligned}
$$

$$
M=39.96
$$

solve for m
(t) Formcla talgebra

$$
\begin{aligned}
m_{g} & =\frac{p \forall M}{R T}=\frac{(237.28 \mathrm{~atm})(200 \mathrm{k})(29.96 \mathrm{~g})}{0.082 / \frac{\mathrm{k} \cdot a \mathrm{~km}}{\mathrm{~K} \cdot \mathrm{~mol}} 313 \mathrm{~K}} \\
m_{g} & =73,797.9 \mathrm{~g} \\
& =73.8 \mathrm{~kg} \\
W_{\text {TOTAC }} & =m_{g} g+m_{T} g=(73.8 \mathrm{~kg}+50 \mathrm{~kg}) 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& =(123.797 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=12 / 3.22 \mathrm{~N}
\end{aligned}
$$

(2) value UNits
b) T reduced to $6^{\circ} \mathrm{C}=279 \mathrm{~K}$ P.O.B

$$
\begin{aligned}
p & =\frac{73.8 .10^{3}}{39.96}\left(0.0821 \frac{\mathrm{Latm}}{\mathrm{k} \cdot \mathrm{~mol}}\right)(279 \mathrm{~K}) / 200 \mathrm{~L} \\
& =211.52 \mathrm{ctm} \frac{14.75 \mathrm{psia}}{l \mathrm{etm}}=3119.81 \mathrm{psia}
\end{aligned}
$$

+3 value burt, must blontry y y absolute
c) Neitral Boryont Mears
(t) Formula

$$
\begin{aligned}
& F_{B}=W_{\text {TorAC }}=W_{\text {TANK }}+W_{\text {BALHST }} \\
& F_{B}=\left(1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(200 \mathrm{~L})\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right) \\
& F_{B}=2009 \mathrm{~N} \\
& W_{T}=1213.22 \mathrm{~N}
\end{aligned}
$$

\therefore NEED 795.78 N of bellast

$$
m_{\text {BAuss }}=\frac{795.78 \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=81.2 \mathrm{~kg}+\begin{gathered}
+2 \\
\text { value } \\
\text { vnit }
\end{gathered}
$$

DISCUSSION +1 "AMY Discussion" even Application of IGL and detition of bosyunt terce.
~ 26 pts

CE 3305 - Fluid Mechanics - SPRING 2024
rime. Alar Bear
2. The figure below is a schematic of a sliding plate viscometer used to measure the viscosity of a fluid. The top plate is moving to the right with a constant velocity in response to a force of 3 Newtons.

Figure 1:
Determine:
(a) The speed of the plate if the viscosity is $\mu=5 \times 10^{-2} \frac{N \cdot s}{m^{2}}$
(b) The speed of the plate if the viscosity is $\mu=7 \times 10^{-2} \frac{N \cdot s}{m^{2}}$
(c) The viscosity if the speed of the plate is $10.001 \frac{\mathrm{~m}}{\mathrm{~s}}$

KNown

$$
\begin{aligned}
& N=5 \cdot 10^{-2} \frac{N s}{m^{2}} ; 7 \cdot 10^{-2} \frac{U_{S}}{\mathrm{~m}^{2}} \text { (giver) } \\
& y=0.001 \mathrm{~m} \text { (gives); } F=3 N \text { (given) } \\
& A=50 \times 100 \mathrm{~mm}^{2} \cdot \frac{1 \mathrm{~m}^{2}}{(1000 \mathrm{~m})^{2}+8}=\begin{array}{c}
0.005 \mathrm{~m}^{2} \\
\text { known }+5 \\
\text { values }
\end{array}
\end{aligned}
$$

UNKNowns
dV (Topplate unlority)
$+2)^{\prime \prime}$ onknown +1 velaits seek

Governinc Equations
(43)-Defn T tace Defn \uparrow slope du/dy Defn. viscosity $\tau=N \frac{d V}{d y} \quad \tau=F / A$
solution

$$
\begin{aligned}
& \tau=\frac{F}{A}=\frac{3 N}{0.005 \mathrm{~m}^{2}}=600 \mathrm{~N} / \mathrm{m}^{2}+2+\begin{array}{l}
\text { TuNalte } \\
\tau=N \frac{d V}{d y} ; \quad d V=\frac{r d y}{N}
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \text { a) } \\
& d v=\frac{\left(600 \mathrm{~N} / \mathrm{m}^{2}\right)(0.001 \mathrm{~m})+\text { Darithetic }}{5.10^{-2} \frac{1 \times .3}{2}} \\
& =6.2 .10^{\prime} \mathrm{m} / \mathrm{s}^{n^{2}}=12 \mathrm{~m} / \mathrm{s} \\
& \text { 先nit } \\
& \text { b) } d v=\frac{\left(600 \mathrm{~N} / \mathrm{m}^{2}\right)(0.001 \mathrm{~m})}{7: 10^{-2} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}+D \text { Darithretac } \\
& =8.57 \mathrm{~m} / \mathrm{s} \\
& \text { (-2) value \& unit }
\end{align*}
$$

c)
c) VIscosity to produce

$$
\begin{aligned}
d v & =10.00 / \mathrm{m} / \mathrm{s} \\
N & =7 \frac{d y}{d V} \\
N & =\left(\frac{600 \mathrm{~N}}{\mathrm{~m}^{2}}\right) \frac{(0.00 / \mathrm{m})}{(10.00 / \mathrm{m} / \mathrm{s})} \\
& =5.99 \cdot 10^{-2} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{aligned}
$$

(t) arith metic
+2 value $\frac{4}{4}$

Piscusson:

- VARIOUS APPLCHTON DEFN. VISCOSITY. NEED SHEARSTRESS AND IMPLCTT ASSME UNEAR VELDCITY PPOFILE N Fッハ
+1 word "discussion" ANy discusbion us EC, but rest needs to be rult.

3. A large atmospheric tank used for quenching rocket motors is filled with a Class A auto-foaming fire supressant liquid (specific weight $7595 \mathrm{~N} / \mathrm{m}^{3}$). The supressant is restrained by a circular gate as shown. ${ }^{1}$

Figure 2:
The dimensions of interest are: $\mathrm{R}=1.5 \mathrm{~m}, \mathrm{H}=6 \mathrm{~m}$, Gate width (into the plane of the image) $\mathrm{b}=3 \mathrm{~m}$.

Determine:
(a) The liquid pressure at the hinge.
(b) The liquid pressure at the bottom of the gate
(c) The horizontal and vertical force of the liquid actins on the Prcular gate

[^0]Knonn

$$
\begin{aligned}
& H=6 \mathrm{~m} \\
& R=1.5 \mathrm{~m} \\
& \gamma=7595 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}
\end{aligned}
$$

UNKNOWN
Patinge, R_{x}, R_{y} (and line of actun) +3 "UnKNoUn"t

"Mnown" t it knowns. 3 songut valus Dramine OPTlunal

GOVERNING EQUATION
$p=p_{0}+\varphi g h$ (hyorostatic Equation)

$$
\begin{aligned}
& F_{r}=\varphi_{H} \forall_{\text {above sutace }} \\
& F_{H}=\int_{z_{1}} p(z) w(z) d z
\end{aligned}
$$

+4)" governing.... '"
and THREE PRINCIPLES, NARRATIVE OK; DRAUING ORTIONAL
goLution

$$
\begin{aligned}
p_{\text {inge }} & =p_{0}+\varphi g h_{1} \\
p_{\text {hine }} & =p_{0}+7595 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \cdot 6 \mathrm{~m} \\
p_{\text {hinge }} & =0+45570 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

~ 45.5 kPa valve Unt +2

$$
\begin{align*}
& P_{\text {botom }}=p_{\text {hinge }}+\varphi g R \\
&=45570 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+7595(1.5) \\
&=45570+11392.5 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { ARP } \\
& \text { Applied Prosure }=56962.5 \mathrm{~Pa}_{Q}
\end{align*}
$$ ARTAMETC $\sim 56.9 \mathrm{kPa}$

 VALUE 末UUIT $+2$ 45.5 kPa .11 .39 kPa

Applied Pressure

45.5 kPa 11.39 kPa

$$
F_{H}=p A=45570(1.5)(3)+
$$

OK IE USE

$$
F=\gamma \bar{h} A=
$$

Tancele peesure

$$
+25633.125 \mathrm{~N}
$$

$$
=230698.13 \mathrm{~N}
$$

$\sim 230.7 \mathrm{kN}$
$F_{v}=$ wersht of waler ones gate

$$
\begin{aligned}
& H=(3)(1.5)(6) \\
& +(3)\left(\frac{\pi}{4}\right)(1.5)^{2} \xrightarrow{\text { ADED }} \text { Skith } \\
& \text { Formela } \\
& =32.301 \mathrm{~m}^{3} \\
& F_{V}=759 \frac{5 \mathrm{~N}}{\mathrm{~m}^{3}} 32.30 \mathrm{~m}^{3}= \\
& 245,329.42 \mathrm{~N} \\
& \text { ~ } 245 \mathrm{kN} \\
& +2 \text { VACNE +UNIT }
\end{aligned}
$$

SOLUTION SUMMARY
a) Pressure at hinge

$$
P_{H}=45.5 \mathrm{kPa}
$$

b) PRESSURE F BOTION

$$
p_{B}=56.9 \mathrm{kPa}
$$

$$
\begin{aligned}
& \text { c) } F_{H}=230.7 \mathrm{kN} \\
& \text { d) } F_{V}=245 \mathrm{kN}
\end{aligned}
$$

Discussion
i) Applied hydrostatic on. ter pressure; detn of fere as $p * A^{\prime}$ fer terces
ii) LINE OF ACTION NOT Explicitly Requested!'

[^0]: ${ }^{1}$ When a rocket motor quench is needed, the gate is lifted and the suppressant rapidly flows over the test area.

