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still hold at condition 2
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Therefore, functionally,
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We are given a condition 2 which is exactly similar to condition 1, and therefore a scaling
law holds

d 5d
o h, = hy -(-i—?— = (3 cm) - = 15cm Ans.
fa N 1 1 \

If the pi groups had not been exactly the same for both conditions, we would have to know
ore about the functional relation F to calculate ;.
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5 MODELING AND ITS PITFALLS i

So far we have learned about dimensional homogeneity and two methods, the
power product and the pi theorem, for converting a homogeneous physical rela-
tion into dimensionless form. This is straightforward mathematically, but there
are certain engineering difficulties which need to be discussed.

First, we have more or less taken for granted that the variables which affect the
process can be listed and analyzed. Actually, selection of the important variables
requires considerable judgment and experience. The engineer must decide for
example whether viscosity can be neglected. Are there significant temperature
effects? Is surface tension important? What about wall roughness? Each p1 group
which is retained increases the expense and effort required. Judgment 1n selecting
variables will come through practice and maturity; this book should provide some
of the necessary experience.

Once the variables are selected and the dimensional analysis performed, the
experimenter seeks to achieve similarity between the model tested and the pro-
totype to be designed. With sufficient testing, the model data will reveal the
desired dimensionless function between variables
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With Eq. (5.49) available in chart, graphical, or analytical form, we are then 1n a
position to ensure complete similarity between model and prototype. A formal
statement would be as tollows:

Flow conditions for a model test are completely similar if all relevant dimensionless
parameters have the same corresponding vajues for model and prototype.
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This_follows mathematically from Eq. (5.49). If I1,,, = I1,,, 113, = I, » etc., Eq.
(5.49) guarantees that the desired output I1,,, will equal I'T; . But this 1s easier said
than done, as we now discuss.

Instead of complete similarity, the engineering literature speaks ot particular

types of similarity, the most common being geometric, kinematic, dynamic, and
thermal. Let us consider each separately.

‘Geometric Similarity
Geometric similarity concerns the length dimension {L} and must be assured
before any sensible model testing can proceed. A formal definition 1s as follows:
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A model and prototype are geometrically similar if and only 1t all body dimensions in all

. 1.-

three coordinates have the same linear-scale ratio.

Note that all length scales must be the same. It is as if you took a photograph of
the prototype and reduced it or enlarged it until it fitted the size of the model. 1f
the model is to be made one-tenth the prototype size, its length, width, and height
must each be one-tenth as large. Not only that, but its entire shape must be
one-tenth as large, and technically we speak of homologous points, which are
points which have the same relative location. For example the nose of the pro-
totype is homologous to the nose of the model. The left wingtip of the prototype is
homologous to the left wingtip of the model. Then geometric similarity requires
that all homologous points be related by the same linear-scale ratio. This apphes
to the fluid geometry as well as the model geometry:

All angles are preserved in geometric similarity. All flow directions are preserved. The
orientation of model and prototype with respect to the surroundings must be identical.

Figure 5.4 illustrates a prototype wing and a one-tenth-scale model. The model
lengths are all one-tenth as large, but 1ts angle of attack with respect to the free

stream is the same: 10° not 1°. All physical details on the model must be scaled,
~and some of them are rather subtle and sometimes overlooked:

Homologous
points

ITl

8 m

d

Fig. 5.4 Geometric similarity in model testing: (a) prototype; (b) a one-tenth scale model.
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Fig. 5.5 Geometric similarity and dissimilarity of flows: simular;
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ength-scale equivalence simply implies geometric similarity, but time-scale
equivalence may require additional dynamic considerations such as equivalence
of the Reynolds and Mach numbers.

‘One special case is incompressible frictionless flow with no free surface, as
sketched in Fig. 5.6a. These perfect-fluid flows are kinematically similar with
independent length and time scales, and no additional parameters are necessary
see Chap. 8 for further details).

Frictionless flows with a free surface, as in Fig. 5.6b, are kinematically similar 1if
their Froude numbers are equal

2 2
- V”.‘ = Ve = 5.50
S .ng gL P

I

" Note that Froude number contains only length and time dimensions and hence 18
a purely kinematic parameter which fixes the relation between length and time.
From Eq. (5.50), if the length scale 1s

| o = 5.51

where o is a dimensionless ratio, the velocity scale 1s

2

%z'l :f 5.52

and the time scale 1s .

T L,V Ja
m_m Tm 5.53
o/ Vo |

These Froude-scaling kinematic relations are illustrated 1n Fig. 5.6b tor wave-
otion modeling. If the waves are related by the length scale a, the wave period,

- propagation speed, and particle velocities are related by f .

If viscosity, surface tension, or compressibility is important, kinematic similar-

ity is dependent upon the achievement of dynamic similarity.

. - Dynamic Similarity

. Dynamic similarity exists when model and prototype have the same length-scale
. m ratio, time-scale ratio, and force-scale (or mass-scale) ratio. Again geometric sim-
- ilarity is a first requirement; otherwise proceed no further. Then dynamic similar-
ity exists, simultaneous with kinematic similarity, if model and prototype torces
are in a constant ratio. This is assured if:

1. Compressible flow: model and prototype Reynolds number and Mach number
“and specific-heat ratio are correspondingly equal
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Prototype

Prototype | - P
waves: - | p

m p X
waves: —— — =
eriod T, =T, /& m = 'p VO
Fig. 5.6 Frictionless low-speed flows are kinematically similar: flows with no free
surface are kinematically similar with independent length- and time-scale ratios; free-

urface flows are kinematically similar with length and time scales related by the Froude
number

. Incompressible tlow
a. With no free surface: model and prototype Reynolds number are equal
b, With a free surface: model and pretotype Reynolds number, Froude

umber, and (if necessary) Weber number and cavitation number are corre-

spondingly equal.

Mathematically, Newton’s law for any fluid particle requires that the sum of the
pressure force, gravity force, and friction force equal the acceleration term, or

inertia force,
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. Fig. 5.7 Dynamic similarity in sluice-gate flow. Model and prototype yield identical hom-
; ologous force polygons if the Reynolds and Froude numbers are the same corresponding
values: (a) prototype; model.

The dynamic-similarity laws listed above ensure that cach of these forces will be 1n
"~ the same ratio and have equivalent directions between model and prototype.
igure 5.7 shows an example for flow through a sluice gate. The force polygons at
homologous points have exactly the same shape if the Reynolds and Froude
3 numbers are equal (neglecting surface tension and cavitation, of course). Kinemat-
- ic similarity is also assured by these model laws.

Discrepancies in Water and Air Testing |

The perfect dynamic similarity shown in Fig. 5.7 1s more of a dream than a reality
because true equivalence of Reynolds and Froude numbers can be achieved only
by dramatic changes in fluid properties, whereas in fact most model testing 1s
simply done with water or air, the cheapest fluids available.

First consider hydraulic model testing with a free surtace. Dynamic similarity
requires equivalent Froude numbers, Eq. 5.50), and equivalent Reynolds numbers

_ VL,

3.935

m p

But both velocity and length are constrained by the Froude number, Egs. (5.51
“and (5.52). Therefore, for a given length-scale ratio «, Eq. (5.55) 1s true only 1if

- V

LV

For example, for a one-tenth-scale model, o = 0.1, and «>/? = 0.032. Since v, 18
_ undoubtably water, we need a fluid with only 0.032 times the kinematic viscosity
of water to achieve dynamic similarity. Referring back to Table 1.3, we see that
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this 1s impossible: even mercury has only one-ninth the kinematic viscosity of
water, and a mercury hydraulic model would be expensive and bad for your
health. In practice, water is used for both model and prototype, and the Reynolds-
number similarity (5.55) is unavoidably violated. The Froude number is held
constant since 1t 1s the dominant parameter in free-surface flows. Typically the
Reynolds number of the model flow is too small by a factor of 10 to 1000. As
shown in Fig. 5.8, the low-Reynolds-number model data are used to estimate by
extrapolation the desired high-Reynolds-number prototype data. As the figure
indicates, there is obviously considerable uncertainty in using such an extrapola-
tion, but there is no other practical alternative in hydraulic model testing.

Second, consider acrodynamic model testing in air with no free surface. The
important parameters are the Reynolds number and the Mach number. Equation
5.55) should be satisfied, plus the compressibility criterion

i
m__ D 5.57

| - a, |

Elimination of V, /V, between (5.55) and (5.57) gives

5.58

Vm _ L 4,
L, a,

o,

Since the prototype is no doubt an air operation, we need a wind-tunnel fluid of
low viscosity and high speed of sound. Hydrogen is the only practical example,
but clearly it is too expensive and dangerous. Therefore wind tunnels normally
operate with air as the working fluid. Cooling and pressurizing the air will bring
Eq. (5.58) into better agreement but not enough to satisfy a length-scale reduction
of, say, one-tenth. Therefore Reynolds-number scaling is also commonly violated
in aerodynamic testing, and an extrapolation like Fig. 5.8 is required here also.
In fact, as aerodynamic vehicle speeds and sizes increase, the Reynolds-number

Range Range
of Re,, of Re,
- - <
Power-law
- .
extrapolation
log Cp, Uncertainty
| Model B in prototype |
data: -~ | data estimate
O O
_lo©®°
- - - - > log Re

7 &

Fig. 3.8 Reynolds-number extrapolation, or scaling, of hydraulic data with equal Froude
numbers.
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- gap between prototype and model is actually increasing, as shown in Fig. 5.9.

Lukasiewicz [30] uses Fig. 5.9 to argue the need for new wind tunnels of higher-

Reynolds-number capability. '

| ~ Finally, a serious discrepancy of another type occurs in hydraulic models of
natural flow systems such as rivers, harbors, estuaries, and embayments. Such
flows have large horizontal dimensions and small relative vertical dimensions. If
we were to scale an estuary model by a uniform linear length ratio of, say, 1:1000,
the resulting model would be only a few millimeters deep and dominated by
entirely spurious surface-tension or Weber-number effects. Therefore such
hydraulic models commonly violate geometric similarity by “distorting” the verti-
cal scale by a factor of 10 or more. Figure 5.10 shows a hydraulic model of a
barrier-beach inlet in South Carolina. The horizontal scale reduction is 1: 300, but
the vertical scale is only 1:60. Since a deeper channel flows more efficiently, the
model channel bottom is deliberately roughened more than the natural channel to
correct for the geometric discrepancy. Thus the friction effect of the discrepancy

can be corrected, but its effect on say dispersion of heat and mass is less well

S known.
1.2 x 107 — '
o : Large
.. prototype
rockets |
y 8 |
G L
ot
8 '8 6 —
>
3
= | |
/ Large
/ rototype
. a4 aircraft
Best available
: wind tunnels
S ’ ,' 940 1950 1960 197 1980

Year

Fig. 5.9 The growing Reynolds-number gap in wind-tunnel testing. (Adapted from Ref. 30,
ff' with additional data, by permission of the American Institute of Aeronautics and Astronautics.
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\\ Fig. 5.10 Hydraulic model of a barrier-beach inlet at Little River, South Carolina. Such

models of necessity violate geometric similarity and do not model the Reynolds number

of the prototype inlet. (Courtesy of U.S. Ar
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my Engineer Waterways Experiment Station.

3.6 INVENTIVE USE OF THE DATA

necessarily the best parameters for a giv

The methods of dimensional analysis discussed here allow one to organize both
theory and experiment efficiently. The parameters arrived at are customary and
traditional: Reynolds number, Froude number, drag coefficient, etc. They are not

en task, and sometimes they do not give a

clear indication of what is happening physically in an experiment. The remedy for

this 1s to regroup the parameters until the particular problem under investigation

1s most clearly revealed.

As an example of a regrouping procedure, consider Fig. 5.3a for the drag

coefficient of a sphere in a uniform stream. This figure is a classic and is re-
produced in nearly every textbook on fluid mechanics, but it is a drag-oriented

figure. One is supposed to be given the
hence compute the Reynolds number, r

fluid, the diameter, and the velocity, and
ead the drag coefficient, and compute the

sphere drag. Suppose instead that the drag is known but the fluid velocity 1s not.

Then, since V is contained in both C

and Re, one must iterate back and forth on

the chart in Fig. 5.3a¢ until the proper velocity is found. With luck the iteration
procedure converges. Consider the following numerical example.
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