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ture. Another example is the TTazen-Williams formula [25] for volume flux of
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3 NONDIMENSIONALIZAT ION
hod of the previous section to analyze prob-

4 We could use the power-product met
lem after problem aiter problem, finding the dimensionless parameters which
“ govern in each case. Textbooks on dimensional analysis [e.g., 7] do this. An
~lternate and very powerful technique '« to attack the basic equations of low from
ations cannot be solved in general, they will reveal
ir proper form and

- Chap. 4. Even though these equ
Reynolds number, 1n the

basic dimensionless parameters, €.g.,
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proper position, giving clues to when they are negligible. The boundary conditions
must also be nondimensionalized. -
Let us briefly apply this technique to the incompressible-flow continuity and
omentum equations with constant viscosity:

Continuity: V-V = | 5.29a
Momentum: p—= pg —Vp+u VeV . 5.29b

Typical boundary conditions for these two equations are

Fixed solid surface: ' V=0

Inlet or outlet: Known V, p ' '5.-30.-_
an (p -1 ~1

Free surtace, z = n: =7 p=p,— (R + R,

We omit the energy equation (4.75 and assign its dimensionless form 1n the
problems (Probs. 5.31 and 5.32). '
Equations (5.29, 5.30) contain the three basic dimensions MLT. All vanables p,
g density and two reference

V. x, y, z, and t can be nondimensionalized usi
constants which might be characteristic of the particular fluid flow:

Reference velocity = reference length = L

For example, U may be the inlet or upstream velocity and L the diameter of a
ody immersed in the stream.

Now define all relevant dimensionless variables, denoting them by an asterisk: <o
X .
| U
X LV 7 . N
: L ' ' RN

L

T e

P———y X1
P £

All these are fairly obvious except for p*, where we have slyly introduced the

gravity effect, assuming that z i1s “up.” This is a hindsight idea suggested by

Bernoulli’s equation (3.63). S . | .
Since p, U, and L are all constants, the derivatives in Egs. (5.29) can all be

handled in dimensionless form with dimensional coefficients. For example,

o N S = T i

"R
» (H
W

- e N T A
» .

@__., ,*. B U ou* S 17
Ox  O(Ix*) L Ox* ’
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Substitute the variables from Egs. (5.32) into Egs. (5.29) and (5.30) and divide
through by the leading dimensional coefficient, in the same way we handled Eq.
5.12). The resulting dimensionless equations of motion are

Continuity: ¥ V* = 5.34a

dV* 7.
Momentum: — _V*p* | k2 (VX |

The dimensionless boundary conditions are

Fixed solid surface: | V* =0
Inlet or outlet: Known V*, p*
d K
Free surface, z* = 1™ ¥ = dz* 5.3
) gL
X — a = :* % R*"‘ 1 R*"‘l
oU? U’ pU? * ¢

tese equations reveal a total of four dimensionless parameters, one in the
momentum equation and three in the free-surface-pressure boundary condition.

Dimensionless Parameters
In the continuity equation there are no parameters. The momentum equation

ontains one, generally accepted as the most important parameter in fluid
mechanics:

. UL
Reynolds number Re = 5.36)

It is named after Osborne Reynolds ’42-1912), a British engineer who first
proposed it in 188 Ref. 4 of Chap. 6). The Reynolds number is always important,
with or without a free surface, and can be neglected only in flow regions away
from high velocity gradients, ¢.g., away from solid surfaces, jets, or wakes.

e no-slip and inlet-exit boundary conditions contain no parameters. The
free-surface-pressure condition contains three:

P
pU*

Fuler number (pressure coefficient) Eu = 5.37

Jis is named after Leonhard Euler 1707-1783) and is rarely important unless
the pressure drops low enough to cause vapor formation (cavitation)1n a liquid.
The Euler number is often written 1n terms of pressure differences, Eu = Ap/pU?.

f Ap involves vapor pressure  p,, it is called the cavitation number

Ca= a — Do pU2 :
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The second pressure parameter is much more important:

U2

Froude number Fr = — . (5.38)'

gL

It is named after William Froude (1810-1879), a British naval architect who, with
his son Robert, developed the ship-model towing-tank concept and proposed
similarity rules for free-surface flows (ship resistance, suriace waves, open chan-
nels). The Froude number is the dominant effect in free-surface flows and 1s totally
unimportant if there is no free surface. Chapter 10 investigates Froude-number
effects in detail.

The final free-surface parameter 1s

2
Weber number We = p% = (5.39)

It is named after Moritz Weber (1871-1951) of the Polytechnic Institute of Berlin,
who developed the laws of similitude in their modern form. It was Weber who
named Re and Fr after Reynolds and Froude. The Weber number 1s important
only if it is of order unity or less, which typically occurs when the surface curva-
ture is comparable in size to the liquid depth, e.g, in droplets, capillary flows,

ripple waves, and very small hydraulic models. If We 1s large, its effect may be
neglected.

If there is no free surface, Fr, Eu, and We drop out entirely, except for the

possibility of cavitation of a liquid at very small Eu. Thus, in low-speed viscous
fows with no free surface, the Reynolds number is the only important dimen-
sionless parameter.

et

Compressibility Parameters
In high-speed flow of a gas there are significant changes in pressure, density, and
temperature which must be related by an equation of state such as the periect-gas
law, Eq. (1.29). These thermodynamic changes introduce two additional dimen-
sionless parameters mentioned briefly in earlier chapters:

Mach number Ma = —
a

Specific-heat ratio y = % (5.40)

The Mach number is named after Ernst Mach (1838-1916), an Austrian physicist.
The effect of » is only slight to moderate, but Ma exerts a strong effect on

compressible-flow properties if it is greater than about 0.3. These effects are
studied 1n Chap. 9. '
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Oscillating Flows
If the flow pattern is oscillating, a seventh parameter enters through the inlet
boundary condition. For example, suppose that the inlet stream is of the form

- u= U cos wt 541

Nondimensionalization of this relation results in

L
%: u* = cos ©= t* 542

The argument of the cosine contains the new parameter

Strouhal number St = oL 5.43)

The dimensionless forces and moments, friction, and heat transfer, etc., of such an
oscillating flow would be a function of both Reynolds and Strouhal number. This
parameter is named after V. Strouhal, a German physicist who experimented 1n
1878 with wires singing in the wind.

Some flows which you might guess to be perfectly steady actually have an
oscillatory pattern which is dependent on the Reynolds number. An example 1s the
periodic vortex shedding behind a blunt body immersed in a steady stream of
velocity U. Figure 5.2a shows an array of alternating vortices shed from a circular
cylinder immersed in a steady crossflow. This regular, periodic shedding is called a
K armén vortex street, after T. von Karman, who explained it theoretically in 1912.
The shedding occurs in the range 10* <Re < 107, with an average Strouhal

umber wd/2nU ~ 0.21. Figure 5.2b shows measured shedding frequencies.

Resonance can occur if a vortex shedding frequency is near a body structural-
vibration frequency. Electric transmission wires sing in the wind, undersea moor-
ing lines gallop at certain current speeds, and slender structures flutter at critica
wind or vehicle speeds. A striking example 1s the disastrous failure of the Tacoma
Narrows suspension bridge in 1940, when wind-excited vortex shedding caused
resonance with the natural torsional oscillations of the bridge.

ther Dimensionless Parameters
We have discussed seven important parameters in fluid mechanics, and there are

others. Four additional parameters arise {rom nondimensionalization of the
energy equation (4.75) and its boundary conditions. These four Prandtl number,

Eckert number, Grashof number, and wall-temperature ratio) are listed in Table
5.2 just in case you fail to solve Prob. 5.31. Another important and rather sneaky

parameter is the wall-roughness ratio ¢/L (in Table 5.2).* Slight changes in surface
roughness have a striking etlect i1 the turbulent flow or high-Reynolds-number
range, as we shall see in Chap. .

L Roughness is easy to overlook because it is a slight geometric effect which does not appear in the
equations of motion.
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Fig. 5.2 Vortex shedding from a circular cylinder. (a) Vortex street behind a circular
cylinder (from Ref. 28, courtesy of U.SS. Naval Research Laboratory); experimental
shedding frequencies (data from Refs. 26 and 27).
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This book is primarily concerned with Reynolds-, Mach-, and Froude-number
effects, which dominate most flows. Note that we discovered all these parameters
(except ¢/L) simply by nondimensionalizing the basic equations without actually
solving them. _ '

If the reader is not satiated with the 12 parameters given in Table 5.2, Ref. 29
contains a list of over 300 dimensionless parameters in use In engineering.
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Table 5.2
DIMENSIONLESS GROUPS IN FLUID MECHANICS

Qualitative ratio

Parameter Definition of effects Importance
UL Inertia
Reynolds number e ="F . . lways
| 1SCOS1ty
U Flow speed ,
Mach number = — P ompressible flow
a ound speed
U* nertia
Froude number = . | ree-surface flow
gl - ravity
U?L Inertia
Weber number g ux _ : ree-surface flow
rface tension
Cavitation number P — p, ressure L
a = 5 : avitation
Euler number oU nertia
C 1ss1pation .
Prandtl number P per eat convection
onduction
- U? inetic ener .
Eckert number = 5 1ssipation
¢, o Enthalpy
. . C Enthal .
Specific heat ratio = —= £ ompressible tlow
| y Internal energy
W scillation .
Strouhal number = —— Oscillating flow
U ean speed

all roughness
Body length

- p ATgL’p® Buoyancy

Roughness ratio Turbulent, rough walls

~1

Grashof number = : —— Natural convection
Viscosity
. all temperature
Temperature ratio . P Heat transfer
0 tream temperature

M

5.4 THE PI THEOREM'

The power-product method outlined in Sec. 5.2 is sufficient to derive the dimen-
sionless groups involved in any dimensional-analysis problem, but if the equations
are few and the variables many, the algebra of finding the free exponents 1s
laborious and the results rather arbitrary (see, for example, Example 5.5). In 1914
E. Buckingham [24] gave an alternate procedure now called the Buckingham pi
theorem. The term pi comes from the mathematical notation Il, meaning a prod-

! This section may be omitted without loss of continuity.
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uct of variables. The dimensionless groups found from the theorem are power

roducts denoted by I1,, TI,, I3, etc. The method allows the pis to be found 1n
equential order without resorting to frec exponents.

The first part of the pi theorem explains what reduction in variables to expect:

If a physical process satisfies the PDH and involves n dimensional variables, it can be
reduced to a relation between only k dimensionless variables or [T’s. The reduction
i=n — k equals the maximum number of variables which do not form a p1 among

themselves and is always less than or equal to the number of dimensions describing the
variables.

Take the specific case of torce on an immersed body: Eq. (5.1) contains five
variables F, L, U, p, and u described by three dimensions (MLT). Thusn = 5and
j < 3. Therefore 1t 1s a sood guess that we can reduce the problem to k pis, with
—n—j>5-3=2 And this1s exactly what we obtained: two dimensionless
variables, IT, = Cr and I1, = Re. Onrare occasions it may take more pis than this
minimum (see Example 5.4)
The second part of the theorem shows how to find the pis one at a time:

A
o
g»a
=4 s
el ey

Find the reduction j, then select j variables which do not form a pt among themselves.'
Fach desired pi group will be a power product of these j variables plus one additiona
variable which is assigned any convenient nonzero exponent. Each pi group thus found
is independent.

o be specific, suppose that the process involves five variables

Ul — 029 1)3, U4> US, 544

Suppose that there are three dimensions (MLT) and we search around and find
that indeed j =3. Thenk=5—-3=12 and we expect, from the theorem, two and
only two pi groups. Pick out three convenient variables which do not form a pl
and suppose these turn out to be v,, U3, and v,. Then the two p1 groups are formed

by power products of these three plus one additional variable

L
..
o
24
'
N
‘-

B R

|

1, = (0,)%(v3)(vs) vy = M°L TO  TI, = (0,)°(vs )P (va)vs = MPLT® 5.45)

B B
s omarS i

3. swer

Here we have arbitrarily chosen v, and vs, the added variables, to have unit

exponents. Equating exponents of the various dimensions is guaranteed by the

theorem to give unique values of a, b, and ¢ for each pi. And they are independent

because only I, contains v, and only 11, contains vs. [t 1s a very neat system Once

you get used to the procedure. Wwe shall illustrate 1t with several examples.
Typically, there are six steps involved: . '

-

A, . P~

,<,..
vy

- A
i lm Ay A art ey 2D

meap——
-~

ﬂ'-.

e — ey b,

-y CLIwe s = e te

z
SO RS

1. List and count the n variables involved in the problem. If any important
variables are missing, dimensional analysis will fail.

List the dimensions of each variable according to MLT® or FLTO®. A list 18

given in Table 5.1. '

1 Make a clever choice here because all pis will contain these i variables in various groupings.

iy
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. Find j. Initially guess j equal to the number of different dimensions present and
look for j variables which do not form a pi product. If no luck, reduce j by 1 and

ap
look again. With practice, you will find j rapidly.

4. Select j variables which do not form a pi product. Make sure they please you
and have some generality if possible, because they will then appear in every one
of your pi groups. Pick density or velocity or length. Do not pick surface
tension, for example, or you will form six different independent Weber-number
parameters and thoroughly annoy your colleagues.

5. Add one additional variable to your j variables and form a power product.
Algebraically find the exponents which make the product dimensionless. Try to
arrange for your output or dependent variables (force, pressure drop, torque,
power) to appear in the numerator and your plots will look better. Do this
sequentially, adding one new variable each time, and you will find alln — j = k
desired pi products.

. Write the final dimensionless function and check your work to make sure all p1
groups are dimensionless.

EXAMPLE 5.6 Repeat the development of Eg. (5.2) from Eq. (5.1), using the p1 theorem.
solution Step 1. Write the function and count variables:
F=f(L,U,p, u) there are five variables (n =

Step 2. List dimensions of each variable. From Table 5.1

(MLT™* (LT} (ML} (ML T~}

tep 3. Find j. No variable contains the dimension ®, and so j is less than or equal to 3
MLT). We inspect the list and see that L,U, and p cannot form a pi group because only p
contains mass and only contains time. Therefore j does equal 3, and n —j=5 —
3 =2 =k The pi theorem guarantees for this problem that there will be exactly two
independent dimensionless groups. _

Step 4. Select j variables. The group L, U, p we found to prove that j = 3 will do fine.

Step 5. Combine L, U, p with one additional variable, in sequence, to find the two p
products. .

First add force to find I1,. You may select any exponent on this additional term as you
please, to place it in the numerator or denominator to any power. Since F 1s the output, Or
dependent, variable, we select it to appear to the first power in the numerator

I1, = [PUp°F = (L(LT ™ }P(ML?f(MLT %) = MOT?®
Equate exponents:
Length: a+b—3c+1=
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Mass: c+ 1=

Time: — —_ 2 =

We can solve explicitly for

herefore

e —.ZU—Z —lF__,_. — P ns.

This is exactly the right p1 group as in Ea. (5.2). By varying the exponent on F, we could
ave found other equivalent groups such as ULpl/?/F'2.
Finally, add viscosity to L, U, and p to find IT,. Select any power you like for viscosity.
y hindsight and custom, we¢ select the power — 1 to place 1t 1n the denominator:

Ut = (LT WML ML T = MOLTS

Equate exponents:

Length: 1+b—3c+ 1=
Mass: — 1=
Time: — + 1=

from which we find

UL
Therefore , = LUy ' = P> = ns.

We know we are finished; this is the second and last p1 group. The theorem guarantees that
the functional relationship must be of the equivalent form

UL
:::gp 1JS.

U2I?
which is exactly what we found by the power-product method 1n Example 5.5.

A Successful Application |

Dimensional analysis is fun, but does it work? Yes; if all important variables are
included in the proposed function, the dimensionless function found by dimen-
sional analysis will collapse all the data onto a single curve or set of curves.

n example of the success of dimensional analysis is given in Fig. 5.3 for the
measured drag on smooth cylinders and spheres. The flow is normal to the axis of
the cylinder, which is extremely long, L/d — o0. The data are from many sources,
for both liquids and gases, and include bodies {rom several meters in diameter
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down to fine wires and balls less than 1 mm in size. Both curves in Fig. 5.3a are
entirely experimental; the analysis of immersed body drag 1s one of the weakest
areas of modern fluid-mechanics theory. Except for some isolated digital-
computer calculations, there is no theory for cylinder and sphere drag except

creeping flow, Re < 1.
e Reynolds number of both bodies is based upon diameter, hence the nota-

‘tion Re,. But the drag coefficients are defined differently

drag
- de
B U2 L cylinder »
D :
drag
enf 21g > sphere
spU~amnd

o
i

&

They both have a factor s asa traditional tribute to Bernoulli and Euler, and both
are based on the projected area, i.e., the arca one Sees when looking toward the
body from upstream. The usual definition of Cp 1s thus

= S 5.47
P 1oU?(projected are |

Jowever, one should carefully check the definitions of Cp, Re, etc., before using

data in the hiterature.
Figure 5.3a is for long, smooth cylinders. If wall roughness and cylinder length

are included as variables, we obtain t-om dimensional analysis a complex three-

parameter function

€
¢ = 4
d’ d? d 5 8

>
|

To describe this function completely would require 1000 or morc experiments.
Therefore it is customary to explore the length and roughness effects separately to
establish trends.

The table with Fig. 5.3a shows the ength effect with zero wall roughness. As

length decreases, the drag decreases by up to 50 percent. Physically, the pressure 1S
«relieved” at the ends as the flow 1s llowed to skirt around the tips instead of

deflecting over and under the body.
Figure 5.3b shows the effect of wall roughness for an infinitely long cylinder.

The sharp drop in drag occurs at lower Re, as roughness causes all earlier transi-
~ tiontoa turbulent boundary layer on the surface of the body. Roughness has the
<ame effect on sphere drag, a fact which is exploited m sports by deliberate
dimpling of golf balls to give them less drag at their flight Re, = 10°.

Figure 53 1s a typical experimental study of a Auid-mechanics problem, aided
by dimensional analysis. As time and money and demand allow, the complete
hree-parameter relation 5 48) could be filled out by further experiments.
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Cylinder *
ransition to turbulent length eftect
boundary layer (10* <Re< 10°
| | L/ Cp ,
0 1.20
40 0.98 )
: 20 0.91
10 0.82
74
ylinder (twO dimensional) 3 g?]z
2 0.68
L 0.64
| Sphere
- A _ |
2 10° 10% T
o = pUd
a
— - - . Cylinder: ,; N . _.
. : 8:: 02-—":’# - i L[—J:oo : S ' - S
7L 0.009 ‘ d |
— 0.007
S 0.004 _ |
- 0.002 — - _
0.0005 — Smooth
| 104 10° 10
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(D)

Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: rag coefficient of a smooth cylinder and sphere (data from many SOurces);

(b) increased roughness causes earlier transition to a turbulent boundary layer.

Y AMPLE 5.7 The capillary rise h of a liquid in a tube varies with tube diameter 4,
gravity g, fluid density p, surface tension Y, and the contact angle 0. (a) Find a dimen-

‘onless statement of this relation. )Ifh=3cmina given expertment, what willhbein a
similar case 1f diameter and surface tension are half as much, density 18 twice as much, and

the contact angle is the same”’
solution Step 1. Write down the function and count variables

h=fd, g p, 1,0) n = 6 variables

3
."'
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L | (LT™? (FT*L"* {(FL ™' one

Step 3. Find j. Several groups of three form no pi: Y, p, and g or p, g, and 4. Theretore
j =13, and we expect n — ] = 6 — 3 = 3 dimensionless groups. One of these 1s obviously 0,

which is already dimensioniess:
— Ans.

Ve Te

If we chose carelessly to search for it using steps 4 and 5, we would still find Il = 0.

Step 4. Select j variables which do not form a p1 group: p, g, 4.
5. Add one additional variable in sequence to lorm the pis:

Step 5.
Add h: 1, = pPghdch = (FT*L*y*(LT™ *)(L)(L) = Ferore
olve for
Therefore = p°g°d"th = - Ans. {(a

Finally add Y, again selecting its exponent to be

M, = p°gbdY = (FT*L *y(LT >P(LY(FL") = FrT®

solve tor

Therefore [, =p g ld™*Y = Ans.

Step 6. The complete dimens:

Ans. (a

L

pgd*’

oes. Theory, however, establishes that h 1s propor-

This is as far as dimensional analysis
ond parameter, we can slip it outside

tional to Y. Since Y occurs only in the sec

actual

Exam-plé-'lfl?a showed theoretically that F(0) = 4 cos 0. ‘ |
We are given h for certain conditions dy, Y1, P 1, and 6. If hy = 3 cm, what1s h, for

L, =3d, Yo =31, P25 2p4,and 0, = 0,7 We know the functional relation, Eq. (1), must

ND SIMILARITY
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still hold at condition 2

2 Y
_; B Pzgd%’ i
u
Y, 30y 1 ~
ngd%“2p1g%d1 ‘ Pigd%
Therefore, functionally,
hy 1§ _ hy
d, \pigd?’ '] d,

We are given a condition 2 which is exactly similar to condition 1, and therefore a scaling
law holds

d >d
-Zzl- = (3 ¢m Zd—f = 1.5 ¢cm Ans.

2“-}11

If the pi groups had not been exactly the same for both conditions, we would have to know
more about the functional relation F to calculate hy.

5 MODELING AND ITS PITFALLS

So far we have learned about dimensional homogeneity and two methods, the
power product and the p1 theorem, for converting a homogeneous physical rela-
) tion into dimensionless form. This is straightforward mathematically, but there
are certain engineering difficulties which need to be discussed.

First, we have more or less taken for granted that the variables which affect the
process can be listed and analyzed. Actually, selection of the important variables
requires considerable judgment and experience. The engineer must decide for
example whether viscosity can be neglected. Are there significant temperature
offects? Is surface tension important? What about wall roughness? Each p1 group
which is retained increases the expense and effort required. J udgment in selecting

variables will come through practice and maturity; this book should provide some
of the necessary experience.

Once the variables are selected and the dimensional analysis performed, the

experimenter seeks to achieve similarity between the model tested and the pro-

otype to be designed. With sufficient testing, the model data will reveal the
desired dimensionless function between variables

i. . oy

1, = f(IL,, I, ..., [T, (5.49)

With Eq. (5.49) available in chart, graphical, or analytical form, we are then 1n a

position to ensure complete similarity between model and prototype. A formal
statement would be as follows:

Flow conditions for a model test are completely similar if all relevant dimensionless
parameters have the same corresponding values for model and prototype.
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