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51 INTRODUCTION

This chapter treats the third and final method 1n our trio of techniques for study-

ing fluid flows, dimensional analysis. The emphasis here is on the use of dimen-
sional analysis to plan experiments and present data compactly, but many
workers also use it in theoretical studies.

Basically, dimensional analysis 1s a method for reducing the number and com-
plexity of experimental variables which affect a given physical phenomenon, using
a sort of compacting technique. If a phenomenon depends upon n dimensional
variables, dimensional analysis will reduce the problem to only k dimensionless
variables, where the reduction n — k =1, 2, 3, or 4, depending upon the problem
complexity. - Generally n —k equals the number of different dimensions
sometimes called basic or primary or fundamental dimensions) which govern the
problem. In fluid mechanics, the four basic dimensions are usually taken to be
mass M, length L, time T, and temperature ®, or an MLT® system for short.

ometimes one uses an FLT® system, with force F replacing mass.

Although its purpose is to reduce variables and group them in dimensionless
form, dimensional analysis has several side benefits. The first 1s an enormous
saving in time and money. Suppose one knew that the force F on a particular body
mersed in a stream of fluid depended only on the body length L, the stream

velocity V, the fluid density p, and the fluid viscosity u; that 1s,

, V., p, 5.1

Suppose further that the geometry and flow conditions are so complicated that
our integral theories (Chap. 3) and differential equations (Chap. 4) fail to yield
the solution for the force. Then we must find the function f(L, V, p,
experimentally.

Generally speaking, it takes about 10 experimental points to define a curve. To
find the effect of body length in Eq. 5.1} we shall have to run the experiment for 10
lengths L. For each L we shall need 10 values of V, 10 values of p, 10 values of 4,
making a grand total of 10%, or 10,000, experiments. At $5 per experiment—well,




you see what we are getting into. However, with dimensional analysis, we can
immediately reduce Eq. (5.1) to the equivalent form

pV L

VI

or Cr Re 5.2
that is, the dimensionless force coefficient F/pV*I* is a function only of the dimen- .
sionless Reynolds number pVL/u. We shall learn exactly how to make this reduc- |
tion 1n Secs. 5.2 and 54.

The function g is different mathematically from the original function f, but 1t
contains all the same information. Nothing is lost in a dimensional analysis. And
think of the saving: we can establish g by running the experiment for only 10
values of the single variable called the Reynolds number. We do not have to vary
L, V, p, or u separately but only the grouping pV L/u. This we do merely by varying
velocity V in, say, a wind tunnel or drop test or water channel, and there 1s no
need to build 10 different bodies or find 100 different fluids with 10 densities and

10 viscosities. The cost 1s now about $50, maybe less.

second side benefit of dimensional analysis is that it helps our thinking and
planning for an experiment or theory. It suggests dimensionless ways of writing
equations before we waste money on computer time to find solutions. It suggests
variables which can be discarded: sometimes dimensional analysis will im-
mediately reject variables, and sometimes it groups them off to the side, where a
few simple tests will show them to be unimportant. Finally, dimensional analysis
will often give a great deal of insight into the form of the physical relationship we
are trying to study.

third benefit is that dimensional analysis provides scaling laws which can
convert data from a cheap, small model into design information for an expensive,
large prototype. We do not build a million-dollar airplane and see whether it has |
enough lift force. We measure the lift on a small model and use a scaling law to
predict the lift on the full-scale prototype airplane. There are rules we shall explain
for finding scaling laws. When the scaling law is valid, we say that a condition of
similarity exists between model and prototype. In the simple case of Eq. (5.2),
similarity is achieved if the Reynolds number is the same for the model and
prototype because the function g then requires the force coetficient to be the same
also
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If Re,, =Re, then  Cp, = Cp, 5.3

where subscripts m and p mean model and prototype, respectively. From the
definition of force coefficient, this means that
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for data taken where p,V, L, /iy = Pm V. L, /i, Equation (5.4 is a scaling law: 1f
‘ eynolds number, the prototype force

you measure the model force at the model

at the same Reynolds number equals the model force times the density ratio times
the velocity ratio squared times the length ratio squared. We shall give more
examples later.

Do you understand these introductory explanations? Be careful, learning
dimensional analysis is like learmng to play tennis: there are levels of the game.
We can establish some ground rules and do some fairly good work in this brief
chapter, but dimensional analysis in the broad view has many subtleties and
nuances which only time and practice and maturity enable one to master.
Although dimensional analysis has a firm physical and mathematical foundation,

onsiderable art and skill are-needed to use it effectively.

EXAMPLE 5.1 A copepod 1s a water crustacean approximately 1 mm in diameter. We

ant to know the drag force on the copepod when it moves slowly in fresh water. A scale
. s model 100 times larger is made and tested in glycerin at V' = 30 cm/s. The measured drag
- . on the model is 1.3 N. For similar conditions, what are the velocity and drag of the actual
copepod in water? Assume that Eq. (5.1) applies and the temperature is 20°C.

solution From Table 1.3 the fluid properties are:

Water (prototype): u, = 0.001 kg/(m - s — 999 kg/m°
Glycerin (model): i, = 1.5 kg/(m - s — 1263 kg/m’

The length scales are L, = 100 mm and L, = 1 mm. We are given enou h model data to
compute the Reynolds number and force coefficient

' p VL _ (1263 kg/m®)(0.3 m/s)O.L m) _ »q 3

em—— -

Hm 1.5 kg/(m - s)

 Fu  _ 1.3 N
Fm = VILZ (1263 kg/m>)(0.3 m/s)*(0.1 m)*

oth these numbers are dimensionless, as you can check. For conditions of similarity, the
prototype Reynolds number must be the same, and Eq. 5.2) then requires the prototype
force coefficient to be the sam -

Cmea 999V,(0.001
, = Re, =253 = 0.001
, = 0.0253 m/s = 2.53 cm/s ns.
_ _ _ p
Crp = Crn = LS 999(0.0253)%(0.001)*
— 731 x 107" N Ans.

+ would obviously be difficult to measure such a tiny drag force.
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Historically, the first person to write extensively about units and dimensional
reasoning in physical relations was Euler in 1765. Euler’s ideas were far ahead of
his time, as were those of Joseph Fourier, whose 1822 book, “Analytical Theory of
Heat,” outlined what is now called the principle of dimensional homogeneity and
even developed some similarity rules for heat flow. There were no further
significant advances until Lord Rayleigh’s book in 1877, “Theory of Sound,”
which proposed a “method of dimensions” and gave several examples of dimen-
sional analysis. The final breakthrough which established the method as we know
it today is generally credited to E. Buckingham in 1914 [24], whose paper outlined
what is now called the Buckingham pi theorem for describing dimensionless pa-

rameters (see Sec. 5.4). However, it is now known that a Frenchman, A. Vaschy 1
1892, and a Russian, D. Riabouchinsky in 1911, had independently published
papers reporting results equivalent to the pi theorem. Following Buckingham’s
paper, P. W. Bridgman published a classic book in 1922 [1] outlining the general
theory of dimensional analysis. The subject continues to be controversial because
there is so much art and subtlety in using dimensional analysis. Thus, since
Bridgman there have been at least 20 books published on the subject [1-20]. There
will probably be more, but seecing the whole list might make some fledghng
authors think twice. Nor is dimensional analysis limited to fluid mechanics or
even engineering. Specialized books have been written on the application of
dimensional analysis to metrology [21], astrophysics [22], and even economics
[23]. The most recent book listed [20] is one of the most interesting and will
intrigue even the most experienced user of dimensional analysis.

5.2 THE PRINCIPLE OF DIMENSIONAL HOMOGENEITY .

In making the remarkable jump from the five-variable Eq. (5.1) to the two-
variable Eq. (5.2), we were exploiting a rule which is almost a self-evident axiom in

physics. This rule, the principle of dimensional homogeneity, can be stated as
follows:

Vo —e——_ b}

If an equation truly expresses a proper relationship between variables in a physical

process, it will be dimensionally homogeneous; i.e., each of its additive terms will have the
same dimensions.

All the equations which are derived from the theory of mechanics are of this form.

For example, consider the relation which expresses the displacement of a falling
body

S=2S8, + Vot + 1gt? 5.5
Each term in this equation is a displacement, or length, and has dimensions {L}.

The equation is dimensionally homogeneous. Note also that any consistent set of
units can be used to calculate a result.

Consider Bernoulli’s equation for incompressible flow

— + 3V? + gz = const ' (5.6)
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ach term, including the constant, has dimensions of velocity squared, or {LZT" 1
The equation is dimensionally homogencous and gives proper results for any
consistent set of units.

Students count on dimensional homogeneity and use it to check themselves

when they cannot quite remember an equation during an exam. kFor example,
which 1s 1t: '

S=1gt2?  or  S=139"17 (5.7

By checking the dimensions, we reject the second form and back up our faulty
memory. We are exploiting the principle of dimensional homogeneity (PDH), and
this chapter simply exploits it further.

Equations (5.5) and (5.6) also illustrate some other factors that often enter nto

. dimensional analysis: dimensional variables, dimensional constants, and pure
. - constants. ' .
- Dimensional variables are the quantities which actually vary during a given
. s case and would be plotted against cach other to show the data. In Eq. 5.5), they
are S and t, in Eq. (5.6) they are p, V, and z. All have dimensions, and all can be
sondimensionalized as a dimensional-analysis technique.

Dimensional constants may vary from case to case but are held constant during
a given run. In Eq. (5.5) they are S, Vo, and g, and in Eq. (5.6) they are p, g, and C.
They all have dimensions and conceivably could be nondimensionalized, but they
are normally used to help nondimensionalize the variables in the problem.

ure constants have no dimensions and never did. They arise from mathemat-

ical manipulations. In both Egs. (5.5) and (5.6) they are 1 and the exponent 2, both
of which came from an integration: | t dt = 112, { V dV = 3V*. Other common
dimensionless constants are © and e.

ote that integration and differentiation of an equation may change the dimen-

sions but not the homogeneity of the equation. For example, integrate or differen-
tiate Eq. (5.5):

| 'S dr =St +1Vot? + gt 5.8a
dS
=V t 58b
—=V +g .

In the integrated form (5.8a) every term has dimensions of {LT}, while in the
derivative form (5.8b) every term 1s a velocity {LT™'}.

Finally, there are some physical variables that are naturally dimensionless Dy
virtue of their definition as ratios of dimensional quantities. Some examples are
strain (change in length per unit length), Poisson’s ratio ratio of transverse strain

o longitudinal strain), and specific gravity (ratio of density to standard water
lensity). All angles are dimensionless (ratio of arc length to radius and should be
~taken in radians for this reason. ' o

The motive behind dimensional analysis 1s that any dimensionally homoge-

neous equation can be written in an entirely equivalent nondimensional form which
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is more compact. The exact details are spelled out in Sec. 5.4 as the pi theorem.
For example, Eq. (5.5) is handled by defining dimensionless variables

V,
¥ = — * = 0 5.9a

So So

: S j
grer = 90w 8 5.9b

Notice that there were two ways to nondimensionalize the variables. This 1s quite

commion: sometimes there are three or more ways. Which way is best? Usually
neither, it is a matter of taste, custom, and the user’s choice. You must accept the
fact that there are several equivalent formulations of most dimensional analysis

problems, all of which are correct.

ere are two don’ts involved in operations like Eq. (5.9). First, don’t non-
dimensionalize variables upside down: |

kS0 4 _ S0 , 5.10

O

These are dimensionless, no question about it. But with the constants 1n the top

L

and the variables in the bottom, there will be singularities where S and ¢ = 0, the
plots will look funny, users of your data will be confused, and the supervisor will

be angry. It is not a good idea. Put your most important variable in the numerator

.

and use parametric constants in the denominator.

Second, don’t—repeat, don’t—mix your variables (S,t) together in one
definition:

* = Vo ~- 5.11

This is beautiful and intriguing, but you will have mathematical problems and
vexing presentation problems also. This idea sometimes works in an advanced
technique called similarity theory (see, for example, Ref. 11 ), but it should not be
used in dimensional analysis.

Now try our definitions (5.9) 1n Eq. (5.5):

 Set* Sot*\?
S S* =S, + V, 20 +1g(=0 5.12a
O O
/2 Ok ok (1. p%% \2 _
0 = SO + Vo 2 %g 0 | (512b

These still have dimensions of length, but if we divide through and 1solate a
dimensionless variable, for example, S* or $**, the PDH guarantees that all terms
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hus divide (5.12a) by S, and divide (5.12b) by VZilg

' _ 1 gS
S*=1+t*+2gV2° * 13a)
SQELJ 9 -
S** = A T A 13b
lent

s, equivalent to each other and equiv
form

These are both dimensionless equation
in every respect to the original Eq. (5.5). They are plotted 1n Fig. 5.1. Which
do you feel is better and more offective? You are asked to explain your choice in

Prob. 5.1.
Whereas Eq. (5.5) was of the form
—— L, SO’ VO’ d | (514)
and involved five dimensional quantities, EQs. (5.13) are each of the form
e gS

three dimensionless quantities. The parameter o commonly

and involve only _
flected by gravity and 1s a form of the Froude number (see€

OCCUrs 1n processes a
Table 5.2).
g5 | 850 =
5020 _ 2
2
_ 50 NE
I
e e
*
{ %
]
* = _I{E_._ (*F = -g{-
S
(a) | (b)
Fie. 5.1 Two entirely equivalent dimensionless forms of the falling-body equation (3.9):
5 13p). Which form is more effective’

18
Eq. (5.13a) and Eq.




This example checks with our earlier statements about the dimensional-analysis
technique. The original function of five variables 18 reduced to a dimensionless
function of three variables. The reduction 5 —3 =12 should equal the number of

imensions (MLT®) involved 1n the problem. Check our variables:

5, S} =1L {={1 )= LTty gy ={LT7  (516)

s expected, there are only two dimensions involved, (L} and (T}. This idea
iminates in the pi theorem (Sec. 5.4).

he Power-Product Method

ke a last look at this example. Suppose that we were ignorant of the theory of
ynamics and had to experiment to find the functional relationship Eq. 15).
ince S is a length, the PDH tells us that the function f must be a length, so that ¢,
0, Vo, and g must all combine in such a way as to eliminate time and leave only a
ength dimension. As Buckingham showed [24], the only way this can happen 1s

or each term in f to be a grouping of products of powers of the quantities:

- = (const)(t)*(So)’ (Vo) d 5.17

3

here the proportionality constant is dimensionless and a, b, ¢, and d are constan
powers to be determined. Dimensionally, Eq. 5.17) must be length = length

L4

(L) = (TPLMLT LT -

Equating powers of len: th and time, we obtain two algebraic relations:

ength: - l=b+c+d - (5.19a
Time: =a—c—2d (5.19D)

Since we have two equations n four unknowns, a, b, ¢, and d, any two can be

written in terms of the other two. For example, let us solve for c and d in terms of a
nd b

=2 —qa-—2b —a+b—1 5.20
Equation (5.17) becomes
V2‘ a S b
. = (const) — 920 5.21)
Vo

Now, since f; is a “typical” term in f, while a and b are entirely arbitrary, EqQ. 5.21)
is trying to tell us that { can vary in an arbitrary fashion with the two parameters
gt/Vyand gSo / V2. Both parameters are dimensionless, and that is no accident; 1t 18

consequence of the power-product method of grouping. We conclude that Eq.
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5.14) is equivalent to the dimensionless functional relation

44N » ) ., '.' .
: AT . BERSREE
N . vl . .
;‘3 P . ML
by iy .. ’ 3
3 R raei,
£ AN .

gt ‘S 0 S

We have just made a complete dimensional analysis of the physical process repre-
sented by Eq. (5.14). The dimensional-analysis technique does not tell us the form -
of the function F, which we would have to find by experiment or by theory, as in
Eq. (5.13b). . | '

This power-product method of solving for undetermined exponents illustrates
the arbitrariness of the final groups obtained. Had we decided instead to solve tor,
say, b and c in terms of a and d, we-would have obtained

h=1—a+d c=a—2d 23)

Substitution into Eq. (5.17) would give

Vot (950 )’
= (const)(S
| MEIPRANE
| which we may interpret as suggesting the new dimensionless functional
relationship

Vi S
S— _..g..,gzo ¥ — t*,a 524
SO SO VO

Thus a perfectly legitimate alternate solution for the exponents gives the second,
or alternate. form for the relationship. You must learn to accept the alternate
choices which dimensional analysis gives to a typical analysis.

A list of dimensions in fluid mechanics is given in Table 5.1.

EXAMPLE 5.2 At low velocities (laminar flow), the volume flux ¢ through a small-bore

tube is a function only of the pipe radius r, the fluid viscosity u, and the pressure drop per
unit pipe length dp/dx. Using the power-product method, rewrite the suggested relationship

O = f(r, u, dp/dx) 1n dimensionless form.

solution First list the dimensions of the variables (Table 5.1):

pr-n r={l} u={ML'T g{% = (ML 2T~

|

Since Q is a volume Aux and we assume dimensional homogeneity, the function fmust be a
volume flux. Assume a power product

| ) dp \°
= (const)(r)*(y)° -
Or {L3T-1} — {L}a{ML—lT*I}b{ML—2T—2}c
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Table 5.1 | S | - '
DIMENSIONS OF FLUID-MECHANICS QUANTITIES

Dimensions
Quantity Symbol LT®; FLTO
Length L
Area A z 2
Volume U > >
Velocity V LT ! -1
Speed of sound a LT ! -
Volume flux 0, T ! ST
Mass flux m MT™! TL
ressure, stress p, o ML 1T *? [
train rate é T 1 -1
ngle v, None one
ngular velocity w T 1 -1
iscosity T, it TL ?
inematic viscosity V rrt 2T 1
urface tension | Y MT™*? -1
orce F MLT™*
oment, torque M MIZT™? FL
Ower P MI?T™> FLT™!
ensity p ML FT?L*
emperature T ~
pecific heat Cps Cy I’rT 0! T %071
hermal conductivity k MLT O™ FT '™
Expansion coefficient f -1 -1
Equating respective exponents, we have:
Length: - 3=a-b—12c
Mass: 0=>b+cC
Time: —1=—b—2c

N
.

With three equations in three unknowns, the solution 1s

T e

a = = — C =.k
There is no arbitrariness: only one power product can be formed

r* dp
dx

= {const ns.

The constant is dimensionless. The laminar-flow theory of Chap. 6 shows the value of the
onstant to be 7/8.
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EXAMPLE 5.3 The propagati‘on speed C of a water wave 1s assumed to be a function of
water density p, depth h, wave length 4, and the acceleration of gravity g:

C=f(p, h, 4, 9g)

Rewrite Eq. in dimensionless form, using the power-product method. Did we make a
false assumption? |

solution List the dimensions of the quantities

— (LT} =(ML3  h={L) ={L} g={LT"7

cae Ty
A

The function f must be a speed, and the power product 1s
£, = (const)(p)Y(h)’(A) (g
(LT~} = (ML P{LP{L{LT )

Equate exponents:

|

Length: —3a+b+c+d

Mass

Time: —1 = —

re are three equations in four unknowns. The solution 1s

|
|

a C =

quation (2) becomes

b

0 b —b+1/2

. = (const 1/2 = (const)(gA)'? | 5

s discussed in Eq. (5.21), this implies that f may vary arbitrarily with h/A, so that Eq. 1S
equivalent to

| | 1/2——F - ns.

We falsely assumed the density to be important, but dimensional analysis shows it to
disappear on dimensional grounds. Surface-wave theory shows the function F to be

Yreh \ 14
— | — tanh ks
2m

but this of course cannot be determined by dimensional analysis alone.
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XAMPLE 5.4 Assume that the tip deflection & of a solid circular cantilever beam 1S a
function of the tip load P, beam radius r and length L, and material modulus of elasticity E:
6 =f(P,r, L, E). Express this relation in dimensionless form using the power-produc
method. Is there something peculiar about the reduction in variables?

solution List the dimensions of the quantities in terms of mass, length, and time:
10} = Py = (MLT™2} {={L} (=0 {(E}={ML'T7

The function f must be a deflection or ength, and the suggested power product 18

b ¢ d

const (P ){r

(MLT- 2L LML T

1

or {L}

[

Equate exponents:

Length: —a+b+c—d
Mass: =a+d
Time: . = —2a— 2d

The solution is given in terms of a and c:

= —q b=1-—c¢— 2a

quation (2) becomes

a C

— | af.\L=c—=2a(TY(E) 8 — o -
, = (const r LY const )(r) =3 |7

By analogy with Eq. (5.21), the arbitrary exponents a and ¢ imply a general function of two
variables. We can now rewrite the original function o =f(P,r, L, E)as

This is as far as raw dimensional analysis takes us, and it seems peculiar; there were five

original variables and three different dimensions (MLT), so we expected 5 — 3 =2 dimen-
sionless variables and we got three instead. This is because mass and time each affected Eq.
2) in the same manner, giving a = —d. The MLT dimensions were not independent, as we
could see by expressing the variables in the F LT system:

Gl= P =F W= B=FrY

This shows that there are really only two difterent dimensions, force and length, which 1s
characteristic of static structural problems.

We can “improve” Eq. (4) by taking advantage of a little physics, as Langhaar points out
(8, p. 91]. For small elastic deflections, & is proportional to the load P. Since P occurs in
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only one variable in Eq. (4), we can slip that variable outside to satisfy this proportionality
i
Er? -

0
r

oEr

T

For a given “geometry” L/r, 0 o /Er «c P/EL. Beam-bending theory indicates that the

unction G(L/r) = Gr)(L/r)>.

XAMPLE 5.5 Try to develop Eq. 5.2) from Eq. (5.1) via the power-product method.

Explain your curious “force coefficients.”

solution Our basic function 18 F = f(L, U, p, u). The list of dimensions can be made for

these five variables:
LTy =L (U=LT} y=Mr = MEET

We expect no fewer than 5 — 3 — 2 dimensionless variables. The suggested power product

is for f equal to a force

£, = (const)(LY(U Y (p) (1)
MLT 2} — {L}a{LT- 1}b{ML— 3}C{ML‘— lT—- l}d

3

Length: —a+b—3c—d
Mass: =c+d
Time: 2= -b—d

wns in terms of the fourth. A variety of formulations will occur,

Solve for three unkno
hoose to be the “free” exponent. If we choose d, then

depending upon which we C

— — C-‘—_-].““d

uation (1) becomes

UL\ “
- - (const) 2 U2~ 4p! ~pt = (const)(pUL) p
s usual, the arbitrariness of d implies an arbitrary function of its argument. The original
function can now be rewritten as
pUL = (G(Re ns.

U2L2=G £




This is exactly Eq. (5.2). Since the theory of fluid forces on 1mmersec bodies 1s still rather
weak and qualitative, the function G(Re is generally determined by experiment.

If we choose another free exponent, two different but related force coefficients will arise.
For example, if we solve for a. b, and d in terms of ¢, the solution 18

a=1+¢c b=1+4c =1-—c
or fy = (const)(LU u pULY \
Or = lpUL.-—-,lRe,
The new force coefficient is not unique, but
pUL = (Cr Re

LUy pU*L’

The “correct” force coefficient 1s thus a matter of taste and custom. This particular choice
F/LUpy is uncommon but very useful in highly viscous, “creeping” motion. for which 1t
equals a pure constant (Chap. /).

Further, if we had solved for q, c, and d in terms of b, we would have obtained

a = c=b — d=2—0b

U
or L =G, i P

This force coefficient is not unique either

UL\’
) — U2L2 p — CF R62

Do you like it? This writer has never seen it used. It has some merit in nondimensionalizing
F strictly with fluid physical properties, leaving the effect of velocity and size entirely on the
right-hand side of Eq. (6). We shall suggest a use for it in Sec. J.6.

1f 4 dimensional analysis results 1n two Oor more dimensionless products, we always have
this freedom to choose from a variety of algebraically related groups.

Some Peculiar Engineering Equations
The foundation of the dimensional-analysis method rests on two assumptions:

that the proposed physical relation is dimensionally homogeneous and (2) that all
the relevant variables have been included in the proposed relation.

-

If a relevant variable is missing, dimensional analysis will fail, giving either
algebraic difficulties or, worse, yielding a dimensionless formulation which does

not resolve the process. A typical case 1s Manning’s open-channel formula, dis-
cussed in Example 1.4:

_ 1.49 R2/3G112 ( 5)

1
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Since V is velocity, R is a radius, and nand 5 are dimensio
dimensionally homogeneous. This shoul be a warning that (1) the formula

W\"‘f"'—'"“’""»f‘”‘=w**-x- e or T o X #ﬁ.\w,jhww:; .w,'_s*ﬁ).‘ - .-51"'5"'3##‘_“2!;“ et

es.if the wnits of V and R change and (2) if valid, 1t represe nts a very speclal &
case, Equation (1.5) predates the dimensional-analysis technique and 1s valid only
for water in rough channels at moderate velocities and large radii in English units.
Such dimensionally inhomogeneous, formulas abound in the hydraulics liter-
ature. Another example is the Hazen-Williams formula [25] for volume flux of

water through a straight smooth pipe

ess, the formula 1s not

d 0.54
_ 61.9D%53 |- 595
dx

¢ -

- . " /

where D is diameter and dp/dx the pressure gradient. Some of these formulas arise
because numbers have been inserted for fluid properties and other physical data
into perfectly legitimate homogeneous formulas. We shall not give the units of Eq.
5.25) to avoid encouraging 1ts use.

On the other hand, some formulas are “sonstructs” which cannot be made
dimensionally homogeneous. The «yariables” they relate cannot be analyzed by
the dimensional-analysis technique. Most of these formulas are raw_empiricisms
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convenient to a small group of specialists. Here are three examples:
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0, =— 5.27)
An 130 + API
3.74 172
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Equation (5.26) relates the Brinell hardness B of a metal to 1ts Rockwell hardness
R. Equation (5.27) relates the specific gravity S of an oil to its density in degrees
API. Equation (5.28) relates the viscosity of a liquid in D, o1 degrees Engler, to I1tS
viscosity fp in Saybolt seconds. Such formulas have -a—efetai usefulness when
communicated between fellow specialists, but we cannot handle them here. Vari-
ables like Brinell hardness and Saybolt viscosity are not suited to an MLTO®
_dimensional system. '
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3 NONDIMENSIONALIZATION OF THE BASIC EQUATIONS

.

We could use the power-product method of the previous section to analyze prob-
lem after problem after problem, finding the dimensionless parameters which
overn in each case. Textbooks on dimensional analysis [e.g, 7] do this. An
alternate and very powerful technique is to attack the basic equations of flow from

Chap. 4. Even though these equations cannot be solved in general, they will reveal
basic dimensionless parameters, €., Reynolds number, 1n their proper torm an
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