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CE 5333 — Special Studies in Water Resources
Essay 2.1 Dimensional Analysis and Similitude

Theodore G. Cleveland, Ph.D., P.E.

1 Introduction

Engineering problems involving fluid mechanics rely upon data acquired by experiment.
In most cases the empirical datal apply to general enough situations that engineers need
them [the data] in normal design practice. These data are made available by publication in
journals, textbooks, and handbooks. Examples of such data are friction loss coefficients for
pipes, valves, and other closed conduit fittings; drag coefficients for simple geometric shapes;
frictional loss terms for open conduits, etc.

However, many practical problems have unusual geometry or such unusual flow conditions
that studies on a replica of the of the situation at a different scale are required to predict flow
patterns, pressure variation, and frictional loss behavior. When such tests are conducted,
the replica is called the model and the full-scale situation is called the prototype. The model
is usually smaller than the prototype for economic reasons — a model operated at full scale
is called a testbed.

Testbeds are common in in aeronautical engineering. There are usually several scale models
to answer specific questions, then the first prototype (aircraft) is built. The first one is called
a testbed, and usually uses proven engines and other features in a effort to guarantee flight
— as experience is gained the testbed is converted into a true prototype.

1.1 Need for Dimensional Analysis

Engineering of fluid systems is more heavily dependent on empirical results that is struc-
tural engineering, chemical engineering, machine design, or electrical engineering because
the analytical tools are not capable of yielding exact solutions to many problems in fluid
systems?.

Exact solutions are available for all hydrostatic problems and many laminar-flow problems,
but the most general equations solved on supercomputers only yield fair approximations for

!'Empirical and experimental are used as synonyms in this sentence.

2Many important aspects of these other fields are indeed more amenable to analysis, but important questions
in these other fields are also addressed by dimensional analysis. The sentence is not meant to imply that
any field is better understood than any other.
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turbulent-flow problems — hence a continued need for experimental methods, if for no other

reason that to verify the computer solutions?®.

For comparison of model studies and for correlating results into design generalizations re-
searchers should employ dimensionless parameters. To appreciate the advantage of us-
ing dimensionless parameters, and example using flow through an inverted nozzle is pre-
sented.

Figure 1 is a sketch of a relatively unusual orifice plate in a pipe that is flowing full. In the
sketch a nozzle type device constricts the flow, but notice the direction of flow depicted in
the sketch is opposite to the direction we would usually associate a nozzle. In this example
consider that in practice we may have flow the “correct way” most of the time and the
“wrong way” (depicted in this sketch) part of the time — hence there is some practical need
for the knowledge of how a device performs when the flow is the “wrong” direction.

Figure 1: Flow through an inverted and submerged nozzle.

A test procedure would involve testing several orifices, each with a different throat diameter
dy. The pressure difference p; — po is the value of interest for different velocities V4, liquid
density p, and different throat diameters d.

A reasonable inclination would be to make various measurements at different values of V7,
dy, and p. The goal would be to plot results in a design chart, something similar to Figure
2

It would not take very long to realize that such measurements would involve a tremendous
amount of work — so we need a better scheme?. A reasonable guess is that the Bernoulli

3The Boeing 757 and the Boeing Joint Strike Fighter entry were both entirely computer designed and
tested. The testbeds for both these vehicles functioned, but not to the extent anticipated by the computer
programs. The 757 testbed had engine failure at a certain angle of attack — had the machine gone into
production before the testbed experiment, many would have crashed.

4The same issue is true if we are only compiling published data, there would be a huge amount of work to
collapse the data into such dimensional charts.
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Figure 2: Relationship of Pressure Drop, Velocity, and Orifice Diameter for a particular
liquid density.

equation might apply® — the conditions for use of the Bernoulli equation are that the liquid
has low viscosity (like water), the streamlines converge in the direction of flow, and the flow
is steady. These conditions certainly prevail in the region of interest in the example. If
we knew the velocity in the nozzle we could solve directly for the pressure drop, but it is
reasonable to assume separation will occur downstream of the throat, so we have no idea of
the flow section diameter in the throat®. Thus one might determine the relationship between
dp and the other variables experimentally”

If we analyze the Bernoulli equation and convert into dimensionless form (ratios where the
dimensions cancel) we can insert coefficients for the unknowns and use these to guide our
efforts. Equation 1 is the Bernoulli equation written for sections 1 and 2.

V2 V2
p1+p71=p2+p72 (1)

Sor the energy equation variant.

5We do know that the throat section is smaller that the orifice diameter, but not how much.

7Oddly enough, it would be kind of hard to get a pressure measurement without disturbing the flow in the
orifice, but V5 could be measured by acoustic interferometery directly.
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First isolate the pressure drop term.

L22 L12
iy — g2 L1 2
P1—P2=p 9 Y 9 ( )

Now divide both sides by the upstream velocity head.

\%; V2

Pr—pP2  Pm P
V12 - V12 - V12 (3>
P P2 P

Simplify the right hand side

— V.

p
We know from continuity that % = ﬁ—; but we don’t know A;. We want to express the
equation in terms of A, anyway, because we can control the size of the orifice. Instead we
invent a coefficient based on the following functional logic: %’ = f( ﬁ—é) = fi( (3—3)2). In words
we are stating that the velocity ratio is equal to a function of the area ratio. The area ratio is
equal to a function of diameter ratio squared — this last statement is a known consequence

of geometry.

From this statement Equation 4 is rewritten as

c, =2 G- (5)

V2

iy

The right hand side is solely a function of the diameter ratio (the left side is renamed the
pressure coefficient C,), so the equation is yet again rewritten as

Cp = [fo( -] (6)

At this point in the analysis, we have no idea the exact form of the function but we now
have related the diameter ratio — a thing we can measure, to the pressure coefficient, also
comprised of measurable terms. If one plots the pressure coefficient versus the diameter ratio
the many different curves collapse into a single curve, as in Figure 3.

Figure 3 contains the same information as Figure 2, but all existing on a single curve. If
we work in the dimensionless relationship we have achieved a considerable savings in work.
To collect data for Figure 2 would take about 20 experiments per curve for a total of 60
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Figure 3: Relationship of Pressure Coefficient and Diameter Ratio.

experiments®. To collect data for Figure 3 would only require 20 experiments — after
some kind of analysis to generate the interpolation between the points we have the same
information from 20 experiments as we would have had for 60. Naturally we would want
to vary the approach velocities in the experiments to make full use of the vertical range of
the pressure coefficient graph (all the points clustered in three locations would be kind of
pointless). The process of non-dimensionalizing the equation reduces the parameters from
five (pl — P2, P, ‘/17 dludQ) to two ( %7 zll_(lj )
2

In this example we had some idea about the governing equation, in many practical cases
such knowledge is not available a-priori and we seek the structure by means of dimensional
analysis.

8Typically 20 points are required to define an experimental curve. In many Civil Engineering studies we
get by with far fewer, but for the sake of illustration assume we adhere to this common rule of thumb. The
need for 20 experiments is not arbitrary; there is sound statistical reasoning behind the rule of thumb.
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1.2 Dimensions and Equations

Variables in engineering are expressed in terms of a limited number of basic dimensions. For
most engineering problems these dimensions are: mass, length, time, and temperature. The
units of all other dimensional variables can be expressed in terms of these units. For example,
force is the product of mass and acceleration, thus the units of force can be expressed in
terms of M,L, and T as

L
(F] = M (7
In this expression the brackets mean “dimension of.” Recall from chemistry the bracket is
also used to express activities and concentrations. In most instances the meaning will be
obvious from context. In words Equation 7 is read as: “ The dimensions of F' are the product
of mass and length divided by time squared.”

Some other common terms are viscosity which has units of newton seconds per square meter
(N % s/m?), so the dimensions of viscosity are:

_FT M

M_F_ﬁ (8)

Pressure (normal stress) is by definition the ratio of force to area so the dimensions of
pressure are:

[p]zgz% (9)

All equations must balance in magnitude (be in correctly scaled units). In addition all
rational equations? must also be dimensionally homogeneous. The left hand side of the
equation must have the same dimensions as the right hand side.

1.3 The Buckingham II Theorem

The number of independent dimensionless groups of variables needed to correlate the vari-
ables in a given process is equal to n — m, where n is the number of variables involved and
m is the number of basic dimensions included in the variables. This relationship is called
the Buckingham II theorem (Buckingham, 1915).

9Those from the laws of physics — not the same meaning as in the rational equation of hydrology
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The dimensionless parameters are called II, and they are collected into groups called 7
groups. If an equation describing a physical system has n dimensional variables and is
expressed as

= f(Y2, Y3, Yn) (10)

then it can be rearranged and expressed in terms of n — m dimensionless groups as

w1 = ®(m2, T3y, ) (11)
Thus if the drag force F' of a liquid flowing past a sphere is known to be a function of velocity
V', density p, viscosity u, and diameter d, then these five variables and three fundamental

dimensions (M, L, T') are involved. We will have 5 — 3 = 2 basic groupings of variables that
can be used to correlate experimental results in the form of

T = (I)(ﬂ'z) (12)
Subsequent essays will illustrate two methods to identify these groups: a step-by-step method

and a matrix solution method. The two methods are equivalent in end result.

2 Readings

1. Read pages 260 — 267 in White (1979). A copy of the necessary pages is on the server.

2. Read pages 325 — 335 in Hwang and Hita (1987). A copy of the necessary pages is on
the server.

3 Exercises

1. Determine which of the following equations are dimensionally homogeneous.

(a)
Q= §OL\/@H3/2 (13)

where @ is discharge, C' is a pure number (scaling coefficient, no dimension), L is
length, g is gravitational acceleration, and H is head.
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(b)
_ L9

n

1% R2/351/2 (14)

where V' is velocity, n is a roughness term (length to the one-sixth power), R is the
hydraulic radius (length), and S is slope.

(c)
LV?

hf:fﬁg (15)

where hy is is head loss, f is a dimensionless friction coefficient, L is length, D is
diameter, V' is velocity, and ¢ is gravitational acceleration.

(@ 2
D 0.074 BxpV

"~ Re"2 2 (16)

where D is drag force, Re is a Reynolds number (Vz/v), B is width, z is length, p is
mass density, and V' is velocity.

2. Determine the dimensions of the following variables and combinations of variables in
terms of length, mass, and time. (Use Newton’s second law to convert force into mass.)

(a) T torque

(b) pV?2/2, where p is mass density and V is velocity.
(c) \/7/p, where T is shear stress.
(

d) Q/N D3, where Q is discharge, D is diameter, and N is angular speed of a pump.
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