MOMENTUM
EQUATION

Chapter Road Map

This chapter presents (a) the linear momentum
equation and the (b} angular momentum equation.
Both equations are derived from Newton’s second
law of motion.

Learning Objectives

STUDENTS WILL BE ABLE TO

o Define a force, a body force, and a surface force. (§6.°

o Explain Newlon's second law (particle or system of
parficles). {§6.1)

o Solve a vecior equation with the VSM {Visual Solution

Method). (§6.1)
o List the steps to derive the linear momentum equation.
(86.2)

¢ Describe or calculate (a) momentum flow and
{b) momentum accumulation. {§6.2)

EIOURES: e Skeich a force diagram. Skeich a momentum diagram.
Engineers design systems by using a small set of : (§6.3]
F;ﬂd?memcl equ?tiNozssiJch as the momentum equation. o Describe the physics of the momentum equation and the
(Phofo courtesy o ] meaning of the variables that appear in the equation.
{8§6.2, §6.3)
e Describe the process for applying the momentum equati
(§6.3)

« Apply the linear momentum equation to problems involv
jets, vanes, pipe bends, nozzles, and other stationary
objects. (§6.4)

« Apply the linear momentum equations to moving object:
such as carts and rockets. {§6.5)

« Apply the angular momentum equation to analyze rotati
machinery such as pumps and turbines. (§6.6)
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6.1 Understanding Newton’s Second Law of Motion

Because Newton's second law is the theoretical foundation of the momentum equation, this
section reviews relevant concepts.

Body and Surface Forces

A force is an interaction between two bodies that can be idealized as a push or pull of one body
on other body. A push/pull interaction is one that can cause acceleration.

Newton's third law tells us that forces must involve the interaction of two bodies and that
Jforces occur in pairs. The two forces are equal in magnitude, opposite in direction, and colinear.

: EXAMPLE. To give examples of force, consider an airplane that is flying in a straight path at
: constant speed (Fig. 6.2). Select the airplane as the system for analysis. Idealize the airplane
i asa particle. Newton’s first law (i.e., force equilibrium) tells us that the sum of forces must
: balance. There are four forces on the airplane.

» The lift force is the net upward push of the air (body 1) on the airplane (body 2).

i o The weight is the pull of the earth (body 1) on the airplane (body 2) through the action
i of gravity.

i The drag force is the net resistive force of the air (body 1) on the airplane (body 2).

The thrust force is the net horizontal push of the air (body 1) on the surfaces of the propeller
(body 2).

Notice that each of the four interactions just described can be classified as a force because:
(a) they involve a push or pull, and (b) they involve the interaction of two bodies of matter.

Forces can be classified into two categories: body force and surface force. A surface force
(also known as a contact force) is a force that requires physical contact or touching between the
two interacting bodies. The lift force (Fig, 6.2) is a surface force because the air (body 1) must
touch the wing (body 2) to create the lift force. Similarly, the thrust and drag forces are surface
forces.

A body force is a force that can act without physical contact. For example, the weight force
is a body force because the airplane (body 1) does not need to touch the earth (body 2) for the
weight force to act.

A body force acts on every particle within a system. In contrast, a surface force acts only
on the particles that are in physical contact with the other interacting body. For example, con-
sider a system comprised of a glass of water sitting on a table. The weight force is pulling on
every particle within the system, and we represent this force as a vector that passes through the

FIGURE 6.2

When an airplane is fly
in straight and level flig
the forces sum to zero.
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FIGURE 6.3

Forces can be classified
as body forces or surface
forces.

center of gravity of the system. In contrast, the normal force on the bottom of the cup acts on
on the particles of glass that are touching the table.

Summary Forces can be classified in two categories: body forces and surface forces (s
Fig. 6.3). Most forces are surface forces.

Force
l l
Body force: A force that does Surface force: A force that
not require physical contact requires physical contact
between the interacting bodies between the mteracting bodies
€8 I__—l—l
Magnetic force . .
Electric force Fluids Solids
Gravity force
eg., e.g.,
Pressure force Frictional force
Shear force Tension
Buoyant force Applied force
Lift force Spring force
Drag force Support force
Surface tension force
Thrust force

Newton’s Second Law of Motion

In words, Newtons’ second law is: The sum of forces on a particle is proportional to the acceler
tion, and the constant of proportionality is the mass of the particle. Notice that this law appli
only to a particle. The second law asserts that acceleration and unbalanced forces are propc
tional. This means, for example, that

o If a particle is accelerating, then the sum of forces on the particle is nonzero.
e If the sum of forces on a particle is nonzero, then the particle will be accelerating.

Newton’s second law can be written as an equation:

(2 F)ext = ma {6.

where the subscript “ext” is a reminder to sum only external forces.

EXAMPLE. To illustrate the relationship between unbalanced forces and acceleration, co
sider an airplane that is turning left while flying at a constant speed in a horizontal pla
(Fig. 6.4a). Select the airplane as a system. Idealize the airplane as a particle. Because t
airplane is traveling in a circular path at constant speed, the acceleration vector must poi
inward. Fig. 6.4b shows the vectors that appear in Newton's second law. For Newton’s seco:
law of motion to be satisfied, the sum of the force vectors (Fig. 6.4c) must be equal to the 7
vector.

The airplane example illustrates a method for visualizing and solving a vector equati
called the Visual Solution Method (VSM). This method was adapted from Hibbler (1). Tl
method is presented in the next subsection. Checkpoint Problem 6.1 gives you a chance to t
your understanding of Newton’s second law.



FIGURE 6.4

An airplane flying with a steady speed on curved path in a horizontal plane (a) Top view, {b) Front
view, {c) Sketch showing how thé =F vectors balance the ma vector.

Top View Front View » Sum of Forces
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(normal to path)

W Sum of forces

\ (must equal ma,)
\ v
(@ (b) (c}
v CHECKPOINT PROBLEM 6.1 Rotvalls
Rotating disk
A disk in a horizontal plane is rotating in a counterclock- (top view)
wise direction and the speed of rotation is decreasing. A
penny stays in place on the disk due to friction. Which let- RV gl
ter (a to h) best represents the direction of acceleration of g %c
the penny? Which letter best represents the direction of Penny f d

the sum of forces vector?

Solving a Vector Equation with the Visual Solution Method (VSM)

The VSM is an approach for solving a vector equation that reveals the physics while also show-
ing visually how the equation can be solved. Thus, the VSM simplifies problem solving. The
VSM has three steps.

Step 1: Identify the vector equation in its general form.

Step 2: Draw a diagram that shows the vectors that appear in the left side of the equation.
Then, draw a second diagram that shows the vectors that appear on the right side of the
equation. Add the equal sign between the diagrams.

Step 3: From the diagrams, apply the general equation and simplify the results to create
the reduced equation(s). The reduced equation(s) can be written as a vector equation or as
one or more scaler equations.

i EXAMPLE. This example shows how to apply the VSM to the airplane problem (see Fig. 6.4).
Step 1: The general equation is Newton's second law ( 2F)eq = ma.
Step 2: The two diagrams separated by an equal sign are shown in Fig. 6.4b.
Step 3: By looking at the diagrams, one can write the reduced equation using scalar equations:
(x-direction) Figsin 8 = ma,
(y-direction) —W + Figcos 8 =0

. Alternatively, one can look at the diagrams and then write the reduced equation using a
: vector equation.

Fui(sin 8i + cos 8j) — Wj = (ma,)i



: EXAMPLE. This example shows how to apply the VSM to a generic vector equation.

Step 1. Suppose the general equationis Sx =y, — y,.
© Step 2. Suppose the vectors are known. Then, one can sketch the diagrams (Fig. 6.5).

Step 3. By looking at the diagrams, write the reduced equations. To get the signs corr
: notice that the general equation shows that vector Y: is subtracted. The reduced equati
i are

(x-direction) X2 + %3 — x4c0830° = y,c0830° — y,

(y-direction) x; + x,48in30° = —y,sin30°

FIGURE 6.5
Vectors used to illustate how to solve a vector equation.

Newton’s Second Law (System of Particles)

Newton’s second law (Eq. 6.1) applies to one particle. Because a flowing fluid involves ma
particles, the next step is to modify the second law so that it applies to a system of particles.

begin the derivation, note that the mass of a particle must be constant, Then, modify Eq. (6.
to give

" d(mv)

(=F), = (6.

Where mv is the momentum of one particle.

To extend Eq. (6.2) to multiple particles, apply Newton’s second law to each particle, a1
then add the equations together. Internal forces, which are defined as forces between t]
particles of the system, cancel out, and the result is

(2 F),:xt = '5; 2 (m;v) {6.

where m;v; is the momentum of the ith particle, and (3 F).y, are forces that are external to t}
system. Next, let

N
(Total momentum of the system) = M = > (mv;) (6.
i=1

Combine Eqs. (6.3) and (6.4).
_ M)

(2 F)ext dt

The subscript “closed system” reminds us that Eq. (6.5) is for a closed system.

closed system
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6.2 The Linear Momentum Equation: Theory
This section shows how to derive the linear momentum equation and explains the physics.

Derivation

Start with Newtor’s second law for a system of particles (Eq. 6.5). Next, apply the Reynolds
transport theorem (Eq. 5.23) to the right side of the equation. The extensive property is mo-
mentum, and the corresponding intensive property is the momentum per unit mass which
ends up being the velocity. Thus, Reynolds transport theorem gives

dM
dt

= E—J vpd¥ + J vpV - dA (6.6)

closed system d

Combining Egs. (6.5) and (6.6) gives the general form of the momentum equation.

(3F).. = %J vpd¥ + J pv(V - dA) 6.7)

where (3F). is the sum of external forces acting on the matter in the control volume, v is fluid
velocity relative to an inertial reference frame, and V is velocity relative to the control surface.

Eq. (6.7) can be simplified. To begin, assume that each particle inside the CV has the same
velocity. Thus, the first term on the right side of Eq. (6.7) can be written as

d d _ d(mave)
it vad¥ = [vad!l} i (6.8)

Next, assume that velocity is uniformly distributed as it crosses the control surface. Then, the
last term in Eq. (6.7) can be written as

JVpV dA—vJ pV - dA = Emovo Erh,-vi (6.9)

cs cs

Combining Egs. (6.7) to (6.9) gives the final resuit:

(EF) mwvcv) +2movo va, (6.10)

where m_, is the mass of the matter that is inside the control volume. The subscripts o and i
refer to the outlet and inlet ports, respectively. Eq. (6.10) is the simplified form of the momen-
tum equation.

Physical Interpretation of the Momentum Equation

The momentum equation asserts that the sum of forces is exactly balanced by the momentum
terms; see Fig. 6.6.

Momentum Flow (Physical Interpretation)

To understand what momentum flow means, select a cylindrical fluid particle passing across a
CS (see Fig. 6.7). Let the particle be long enough so that it travels across the CS during a time
interval At. Then, the particle’s length is

= (length) = ( r;glt >(t1me) (speed)(time) = vAt
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FIGURE 6.6
The conceptual meaning

of the momentum equation.

FIGURE 6.7

A fluid particle passing
across the control surface
during a time inferval At.

FIGURE 6.8
A fluid jet striking
a flat vane.

«— General equation

<— Simplified equation

Sum of forces acting Time rate of change Net rate at which the
on the matter thatis | == | of the momentum of fluid flow transports <— Main ideas
inside the CV the matter inside CV momentum out of the CV
Net Force = Momentun} " Net Momentum <+— Names of terms
Accumulation Flow

Particle L=vAr
| I 4~ Volume = A¥ = LA4 = vAtA4

—

- -

Area = A4

and the particle’s volume is ¥ = (vA)AA. The momentum of the particle is
momentum of one particle = (mass)(velocity) = (pAV)v = (pvAtAA)v

Next, add up the momentum of all particles that are crossing the control surface through
given face.

momentum of all particles = > (prAtAA)v (6.1

Now, let the time interval At and the area AA approach zero and replace the sum with tl
integral. Eq. (6.11) becomes

momentum of all particles crossing the CS
: : = = [ (pv)vdA
interval of time instant in time cs

Summary Momentum flow describes the rate at which the flowing fluid transports mome!
tum across the control surface.

Momentum Flow (Calculations)

When fluid crosses the control surface, it transports momentum across the CS. At section
(Fig. 6.8), momentum is transporting into the CV. At section 2, momentum is transported o1
of the CV.

v=8m/s
2kgls
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When the velocity is uniformly distributed across the CS, Eq. (6.10) indicates that the

itude of . ,
( magnituce o ) = my = pAv- (6.12)
momentum flow

Thus, at section 1, the momentum flow has a magnitude of
mv = (2kg/s)(8 m/s) = 16kg - m/s* = 16 N

and the direction of vector is to the right. Similarly at section 2, the momentum flow has a
magnitude of 16 newtons and a direction of 45° below horizontal. From Eq. (6.10), the net
momentum flow term is:

mv, — mv, = {(16 N) cos(45°i — sin 45°j)} — {(16 N)i}

Summary For uniform velocity, momentum flow terms have a magnitude mv = pAv’and a
direction parallel to the velocity vector. The net momentum flow is calculated by subtracting
the inlet momentum flow vector(s) from the outlet momentum flow vector(s).

v CHECKPOINT PROBLEM 6.2

Pressurized air forces water out of a tank. If the air pressure is
increased so that the exit speed increases from V to 2V, what
happens to the rate of momentum flow out the bottom of the
tank? The rate

a. Stays the same

Pressurized air

b. Increases by 1x — 24
c. Increases by 2x

Water
d. Increases by 3x

e. Increases by 4x
f. Increases by 8x

Momentum Accumulation (Physical Interpretation)

To understand what accumulation means, consider a control volume around a nozzle (Fig. 6.9).
Then, divide the control volume into many small volumes. Pick one of these small volumes,
and note that the momentum inside this volume is (pAV)v.

FIGURE 6.9

The momentum of matter inside this small '
volume is given by: Q nozzie.

momentum = (mass)(velocity)
= (pAVXY)

Water flowing through



To find the total momentum inside the CV add up the momentum for all the small volur
that comprise the CV. Then, let AV — 0, and use the fact that an integral is the sum of m:
small terms.

Total momentum
( inside the CV ) = 2 (pA¥)v = D vpA¥ = J vpd¥ (6.

Taking the time derivative of Eq. (6.13) gives the final result:

( Momentum

Accumulation

Rate of change of the
) Tt

= total momentum — J vpd¥ (6.
inside the CV «

Summary Momentum accumulation describes the time rate of change of the momentum ins

the CV. For most problems, the accumulation term is zero or negligible. To analyze the momenti

accumulation term, one can ask two questions. Is the momentum of the matter inside the CV cha;

ing with time? Is this change significant? If the answers to both questions are yes, then the mome

tum accumulation term should be analyzed. Otherwise, the accumulation term can be set to ze

Checkpoint Problem 6.3 gives you a chance to test your understanding of the momentt
equation.

v’ CHECKPOINT PROBLEM 6.3
The sketch shows a liquid flowing through a stationary nozzle. /cv
Assume steady flow. Which statements are true? (select all that :
apply) —_—
a. The momentum accumulation is zero. D
b. The momentum accumulation is nonzero. @ @

c. The sum of forces is zero.
d. The sum of forces is nonzero.

6.3 Linear Momentum Equation: Application

Working Equations

Table 6.1 summarizes the linear momentum equation.

TABLE 6.1 Summary of the Linear Momentum Equation

Description Equation Terms
General Equation (2 F) - g; J vod¥ + J pv(V - dA) :EFifxl =(s;1m of external forces (N)
ex v es = ume (s
Eq.(6.7) ' v = velocity measured from the selected ref, frame (m/s
Simpliﬁ_ed Equation d(meve,) ' ' (must select a reference frame that is inertial)
. ( F )m =T 1 2 v, = Dy, Vo, = velocity of CV from selected ref. frame (m/s)
Use this equation for most = s . .
problems. Assumptions: Eq. (6.10) V = velocity measured from the control surface (m/s)
(a) all particles inside the p = density of fluid (kg/m?)

CV have the same velocity,
and (b) when flow crosses
the CS, the velocity is
uniformly distributed,

mg, = mass of the matter inside the control volume (kg
m, = mass flow rate out of the control volume (kg/s)
m; = mass flow rate into the control volume (kg/s)




SECTION 6.3 LINEAR MOMENTUM EQUATION: APPLICATION

Force and Momentum Diagram

The recommended method for applying the momentum equation, the VSM (visual solution
method), is illustrated in the next example.

: EXAMPLE. This example explains how to apply the VSM for water flowing out a nozzle
: (Fig. 6.10a). The water enters at section 1 and jets out at section 2.

FIGURE 6.10

d . .
ZF = 'Z;(mcvvcv)+ [Zmavu_ Z”'ivi) (b)
s s
® !
% PR I PR 8
/ . \) * s ’ \)
’ ’
’ .7 ’ 7
/ ) / / /

! l ' fu— U /

1 1 I |
»— flange W I 1 1 (©

@ | i I 1

o o o — o o = = - o

{ !
water P4 vy
(2)
Force diagram Momentum diagram

F,=mv,cos@ )
piAy + F, = W=rivysind — iy, ©

Step 1. Write the momentum equation (see Fig. 6.10b). Select a control volume that surrounds
the nozzle.

Step 2a. To represent the force terms, sketch a force diagram (Fig. 6.10¢). A force diagram
illustrates the forces that are acting on the matter that is inside the CV. A force diagram is
similar to a free body diagram in terms of how it is drawn and how it looks. However, a free-
body diagram is an Lagrangian idea, whereas a force diagram is an Eulerian idea. This is why
different names are used.

To draw the force diagram, sketch the CV, then sketch the external forces acting on the CV.
In Fig. 6.10c, the weight vector, W, represents the weight of the water plus the weight of the
nozzle material. The pressure vector, symbolized with p,A;, represents the water in the pipe
pushing the water through the nozzle. The force vector, symbolized with F, and F), repre-
sents the force of the support that is holding the nozzle stationary.

Step 2b. To represent the momentum terms, sketch a momentum diagram (Fig. 6.10c). This
diagram shows the momentum terms from the right side of the momentum equation. The
momentum outflow is represented with f1v, and momentum inflow is represented with .
The momentum accumulation term is zero because the total momentum inside the CV is
constant with time.

Step 3. Using the diagrams, write the reduced equations (see Figs. 6.10d and 6.10e).



FIGURE 6.11

A classification scheme for
problems that are solvable
by application of the
momentum equation.

L
FIGURE 6.12
A problem involving
a fluid jet.

Summary The force diagram shows forces on the CV, and the momentum diagram shows
momentum terms. We recommend drawing these diagrams and using the VSM.

A Process for Applying the Momentum Equation
Step 1. Selection. Select the linear momentum equation when the problem invol
forces, accelerating fluid particles, and torque does not need to be considered.

Step 2. Sketching. Select a CV so that control surfaces cut through where (a) you know infi
mation or (b) you want information. Then, sketch a force diagram and a momentum diagra

Step 3. Analysis. Write scalar or vector equations by using the VSM.

Step 4. Validation. Check that all forces are external force. Check the signs on vecto
Check the physics. For example, if accumulation is zero, then the sum of forces shot
balance the momentum flow out minus the momentum flow in.

A Road Map for Problem Solving

Fig. 6.11 shows a classification scheme for problems. Like a road map, the purpose of tt
diagram is to help navigate the terrain. The next two sections present the details of each catego
of problems.

Stationary CVs Moving CVs

L 1
Jets and Nozzles and Variable Constant .
| vanes Lpipe bends I veIocityI Veloc;l Accelerating

6.4 The Linear Momentum Equation
for a Stationary Control Volume

When a CV is stationary with respect to the earth, then the accumulation term is nearly alway
zero or negligible. Thus, the momentum equations simplifies to

(sum of forces) = (rate of momentum out) — (rate of momentum in)

Fluid Jets

Problems in the category of fluid jet involve a free jet leaving a nozzle. However, analysis
the nozzle itself is not part of the problem. An example of a fluid jet problem is shown i
Fig. 6.12. This problem shown involves a water cannon on a cart. The water leaves the nozzl
with velocity V, and the goal is to find the tension in the cable.

Cable SRl s
\ | ;




Each category of problems has certain facts that make problem solving easier. These facts
will be presented in the form of tips. Tips for fluid jet problems are

® When a free jet crosses the control surface, the jet does not exert a force. Thus, do
not draw a force on the force diagram. The reason is that the pressure in the jet is
ambient pressure, so there is no net force. This can be proven by applying Euler’s
equation.

® The momentum flow of the fluid jet is mv.

Example 6.1 shows a problem in the “fluid jet” category.

EXAMPLE 6.1 i Assumptions. Pressure is 0.0 kPa gage at the nozzle exit

lane.
Momentum Equation Applied to a Stationary Rocket d

i State the Goal
F, (N) 4m Force that acts on the support

Problem Statement

The following sketch shows a 40 g rocket, of the type used
for model rocketry, being fired on a test stand to evaluate Generate Ideas and Make a Plan
thrust. The exhaust jet from the rocket motor has a diameter
of d = 1 cm, a speed of v = 450 m/s, and a density of

p = 0.5 kg/m’. Assume the pressure in the exhaust jet equals
ambient pressure. Find the force F, acting on the support
that holds the rocket stationary. ¢ Sketching. Select a CV surrounding the rocket because the

: control surface cuts

Selection. Select the momentum equation because fluid
particles are accelerating due to pressures generated by
combustion and because force is the goal.

« through the support (where we want information), and
-~ 1 o across the rocket nozzle (where information is known).

: Then, sketch a force diagram and a momentum diagram.
¢ Notice that the diagrams include an arrow to indicate the
A k : positive y-direction. This is important because the moment
equation is a vector equation.

Define the Situation

A small rocket is fired on a test stand.

i In the force diagram, the body force is the weight (W). The
y, i force (F,) represents the downward push of the support on

¢ the rocket. There is no pressure force at the nozzle exit plar
d=001m i because pressure is atmospheric.

. Analysis. Apply the momentum equation in vertical direct
1 _ . . by selecting terms off the diagrams.
v=450m/s i

p=0.5kg/m’ : F, + W= my,




In Eq. (a), the only unknown is F,. Thus, the plan is Review
1. Calculate momentum flow: mv, = pAv2.
2. Calculate weight.

3. Solve for force F,. Then, apply Newton's third law. 2

1. Knowledge. Notice that forces acting on the rocket do not
sum to zero. This is because the fluid is accelerating.

. Knowledge. For a rocket, the term mv is sometimes called a
“thrust force.” For this example mv = 7.95 N (1.79 1bf); this
value is typical of a small motor used for model rocketry.

Take Action (Execute the Plan)

1. Momentum flow. © 3. Knowledge. Newtons third law tells us that forces always
pAY: = (0.5kg/m*)(w X 0.01> m?/4)(450° m%/s?) i occur in pairs, equal in magnitude and opposite in
= 7952 N direction. In the sketch below, F, and F, are equal in
2. Weight : magnitude and opposite in direction.

_————— ey

W = mg = (0.04 kg)(9.81 m/s%) = 0.3924 N
3. Force on the rocket (from Eq. (a))
F, = pAvi = W = (7.952 N) — (0.3924 N) = 7.56 N

By Newton’s third law, the force on the support is equal in
magnitude to F, and opposite in direction.

‘ F,=756N (upwardﬂ

Dy~ - ==

Example 6.2 gives another problem in the category of “fluid jet”

EXAMPLE 6.2 Define the Situation

Momentum Equation Applied to a Fluid Jet Concrete is flowing into a cart that is being weighed.

Problem Statement

: concrete, p = 150 Ibm/ft}
As shown in the sketch, concrete flows into a cart sitting : \ A=1R,v=101/s
on a scale. The stream of concrete has a density of p = :

150 Ibm/ft’, an area of A = 1 ft?, and a speed of v = 10 fi/s. f X
At the instant shown, the weight of the cart plus the : | | — 5% cart
concrete is 800 Ibf. Determine the tension in the cable , X N {concrete + cart)
and the weight recorded by the scale. Assume steady : i
flow. v

cable i

Concrete :
P -
\ : State the Goal
?w' i T(Ibf) 4m Tension in cable

W, (Ibf) 4m Weight recorded by the scale

| ' ‘ ’/scaIc ! Generate Ideas and Make a Plan

O 0O O © Select the momentum equation. Then, select a CV and sketch

_ i this in the situation diagram. Next, sketch a force diagram and

momentum diagram.




Take Action (Execute the Plan)

1. Momentum equation (horizontal direction)

T = mvcos60° = pAv’ cos60°

slugs

T = (150 lbm1ﬁ3)(32 > lbm

- ()

2. Momentum equation (vertical direction)

)(1 £2)(10 ft/s)? cos 60°

Notice in the force diagram tha.xt ?he liquid jet does not e.xert a N— W = rvsin60° = pAv? sin60°
force at the control surface. This is because the pressure in the :
jet equals atmospheric pressure. : N = W + pAv’sin60°
To apply the momentum equation, use the force and = 800 Ibf + 403 Ibf = {1200 lbf
momentum diagrams to visualize the vectors. :
SF = v, - 1 : Review
= m,v, = m,v; :

1. Discussion. The weight recorded by the scale is larger than

~Ti+ (N = W)k = —mv{(cos60°)i — (sin60°)j) the weight of the cart because of the momentum carried b
Next, write scalar equations the fluid jet.
—T = —mvcos60° (o) 2. Discussion. The momentum accumulation term in this
(N — W) = ravsin60° (b) : problem is nonzero. However, it was assumed to be small

and was neglected.
Now, the goals can be solved for. The plan is to:

1. Calculate T using Eq. (a).
2. Calculate N using Eq. (b). Then let W, = —N.

Vanes

A vane is a structural component, typically thin, that is used to turn a fluid jet (Fig. 6.13). A
vane is used to idealize many components of engineering interest. Examples include a blade in
a turbine, a sail on a ship, and a thrust reverser on an aircraft engine.

FIGURE 6.13

A fluid et striking a flat
vane.

To make solving of vane problems easier, we offer the following Tips.

® Tip 1. Assume that v, = v, = v;. This assumption can be justified with the Bernoulli
equation. In particular, assume inviscid flow and neglect elevation changes, and the
Bernoulli equation can be used to prove that the velocity of the fluid jet is constant.
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® Tip 2. Let each momentum flow equal mv. For example, in Fig. 6.13, the momentum
inflow is m,v,. The momentum outflows are m,v, and m;v;.

® Tip 3. If the vane is flat, as in Fig. 6.13, assume that the force to hold the vane
stationary is normal to the vane because viscous stresses are small relative to pressure
stresses. Thus, the load on the vane can assumed to be due to pressure, which acts

normal to the vane.

® Tip 4. When the jet is a free jet, as in Fig. 6.13, recognize that the jet does not cause a net
force at the control surface because the pressure in the jet is atmospheric. Only pressures
different than atmospheric cause a net force.

EXAMPLE 6.3

Momentum Equation Applied to a Vane

Problem Statement

A water jet (p = 1.94 slug/ft®) is deflected 60° by a stationary
vane as shown in the figure. The incoming jet has a speed of
100 ft/s and a diameter of 1 in. Find the force exerted by the jet
on the vane.

V) — —;—
/@
Define the Situation

A water jet is deflected by a vane.

—_—
v=100 ft/s

d=112ft
p =194 slug/f’
Assumptions:

« Jet velocity is constant: v, = v, = v.
o Jet diameter is constant: d, = d, = d.
« Neglect gravitational effects.

State the Goal
F,.,(N) 4m Force of the fluid jet on the vane

Generate Ideas and Make a Plan

Select. Because force is a parameter and fluid particles
accelerate as the jet turns, select the linear momentum
equation.

Sketch. Select a CV that cuts through support so that the
force of the support can be found. Then, sketch a force
diagram and a momentum diagram.

In the force and momentum diagrams, notice that

« Pressure forces are zero because pressures in the water jet
at the control surface are zero gage.

 Each momentum flow is represented with mv.

Analysis. To apply the momentum equation, use the force and
momentum diagrams to write a vector equation.

EF = myyv, — my,
(=F,)i + (—F))j = mv(cos60°i — sin60°j) — mvi
Now, write scalar equations

—F, = mv(cos60° — 1) {a)
—F, = —mv(sin60°) {b)



Because there is enough information to solve Egs. (a) and (b), 3. Linear momentum equation ( y-direction)
the problem is cracked. The plan is :

. F, = mvsin60°
1. Calculate mv.

= (105.8 Ibf)sin 60°
F, = 91.8Ibf

4. Newton’s third law

: The force of the jet on the vane (F,,) is opposite in
Take Action (Execute the Plan) Zili:;ecfrt}ilon tfo the force required to hold the vane station
. Therefore,

F. = (53.01bf)i + (91.8 Ibf)j

2. Apply Eq. (a) to calculate F,.
3. Apply Eq. (b) to calculate F,.
4. Apply Newton's third law to find the force of the jet.

1. Momentum flow rate.

mv = (pAv)y :
= (1.94 slug/fe)(w X 0.0417% f2)(100 ft/s)? © Review
= 105.8 Ibf i L. Discussion. Notice that the problem goal was specified
2. Linear momentum equation (x-direction) i asavector. Thus, the answer was given as a vector.
F. = mv(1 — cos60°) © 2. Skill. Notice how the common assumptions for a vane w
= (105.8 Ibf)(1 — cos60°) applied in the “define the situation” portion.
F. = 53.01bf ‘
Nozzles

Nozzles are flow devices used to accelerate a fluid stream by reducing the cross-sectional area
of the flow (Fig, 6.14). Problems in this category involve analysis of the nozzle itself, not analy-
sis of the free jet.

...... C oy FIGURE 6.14
A fluid jet exiting a no:

———. K
Flow ' " =S

To make solving of nozzle problems easier, we offer the following Tips.

* Tip 1. Let each momentum flow equal 7itv. For the nozzle in Fig. 6.14, the momentum
inflow is mv, and the outflow is ri1v.

¢ Tip 2. Include a pressure force where the nozzle connects to a pipe. For the nozzle in
Fig. 6.14, include a pressure force of magnitude p,A, on the force diagram. This pressure
force, like all pressure forces, is compressive.

* Tip 3. To find p,, apply the Bernoulli equation between A and B.

* Tip 4. To relate v, and v, apply the continuity equation.

* Tip 5. When the CS cuts through a support structure (e.g- a pipe wall, a flange), represent

the associated force on the force diagram. For the nozzle shown in Fig. 6.14, add a force F,,
and F,, to the force diagram.
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EXAMPLE 6.4

Momentum Equation Applied to a Nozzle

Problem Statement

The sketch shows air flowing through a nozzle. The inlet pressure
is p, = 105 kPa abs, and the air exhausts into the atmosphere,
where the pressure is 101.3 kPa abs. The nozzle has an inlet
diameter of 60 mm and an exit diameter of 10 mm, and the
nozzle is connected to the supply pipe by flanges. Find the force
required to hold the nozzle stationary. Assume the air has a
constant density of 1.22 kg/m”’. Neglect the weight of the nozzle.

[[| , Flanges

Fi
oW
‘m——’ ©)
®©
Define the Situation
Air flows through a nozzle
® ©)
I
1 . |
|

| |
| 1
Py = 3.7 kPa-gage p> = 0.0 kPa-gage
D,=006m D, =001m
Properties. p = 1.22 kg/m’.
Assumptions
« Weight of nozzle is negligible.
» Steady flow, constant density flow, inviscid flow.

State the Goals
F(N) 4 Force required to hold nozzle stationary

Generate Ideas and Make a Plan

Select. Because force is a parameter and fluid particles are
accelerating in the nozzle, select the momentum equation.

Sketch. Sketch a force and momentum diagram.

Write the momentum equation (x-direction)

F+pA;=m(v,—v) (a)
To solve for F, we need v, and v;, which can be found using
the Bernoulli equation. Thus, the plan is

1. Derive an equation for v, by applying the Bernoulli
equation and the continuity equation.

2. Calculate v, and v,.
3. Calculate F by applying Eq. (a).

Take Action (Execute the Plan)
1. Bernoulli Equation (apply between 1 and 2)

1 1
ptyz EPVf =ptyz t “z'PVg

Term-by-term analysis
e z,=2=0
e py=3.7kPa;p, = 0.0
The Bernoulli equation reduces to
py + pvi/2 = pvi/2
Continuity Equation. Select a CV that cuts through sections 1

and 2. Neglect the mass accumulation terms. Continuity
simplifies to
vid| = A,
vy d 12 =V d g
Substitute into the Bernoulli equation and solve for v;:
2p,
p(1 = (d/d))")

2=

2. Calculate v, and v,.

v, = =77.9m/s

\/ 2 X 3.7 X 1000 Pa
(1.22 kg/m?)(1 — (10/60)*)

d,\?
V=" d_l

1 2
779 m/s X (g) = 2.16 m/s

3. Momentum equation
F+pA =m(v, —v)
F=pAw(v; — vi) — pA;
= (122 kg/m’)(%)(o.% m)?(2.16 m/s)
X (77.9 — 2.16)(m/s)
~3.7 X 1000 N/m? X (E)(o.os m)?
= 0.564 N — 1046 N = —9.90 N



Because F is negative, the direction is opposite to the direction
assumed on the force diagram. Thus,

rl-‘orce to hold nozzle = 9.90 N(« directioﬂ'

Review

1. Knowledge. The direction initially assumed for the force on
a force diagram is arbitrary. If the answer for the force is

Pipe Bends

negative, then the force acts in a direction opposite the
chosen direction.

2. Knowledge. Pressures were changed to gage pressure in the
“define the situation” operation because it is the pressures
differences as compared to atmospheric pressure that caus
net pressure forces.

A pipe bend is a structural component that is used to turn through an angle (Fig. 6.15). A pipe
bend is often connected to straight runs of pipe by flanges. A flange is round disk with a hole
in the center that slides over a pipe and is often welded in place. Flanges are bolted together to

connect sections of pipe.

Boited flange
(2 places) L
I

Flow

Pipe bend

To make solving of nozzle problems easier, we offer the following Tips.

FIGURE 6.15
Pipe Bend

e Tip 1. Let each momentum flow equal mv. For the bend in Fig. 6.15, the momentum

inflow is v, and the outflow is mvs.

e Tip 2. Include pressure forces where the CS cuts through a pi

pe. In Fig. 6.15, there is a

pressure force at section A: Fy = psA4 and at section B: Fg = pgAp. As always, both

pressure forces are compressive.

* Tip 3. To relate p, and pj, it is most correct to apply the energy equation from Chapter 7
and include head loss. An alternative is to assume that pressure is constant or to assume

inviscid flow and apply the Bernoulli equation.

e Tip 4. To relate v, and v, apply the continuity equation.

e Tip 5. When the CS cuts through a support structure (pipe wall, flange), include the loads

caused by the support on the force diagram.

EXAMPLE 6.5

Momentum Equation Applied to a Pipe Bend

Problem Statement

A 1-m-diameter pipe bend shown in the diagram is carrying
crude oil (S = 0.94) with a steady flow rate of 2 m’/s. The bend
has an angle of 30° and lies in a horizontal plane. The volume
of oil in the bend is 1.2 m’, and the empty weight of the bend
is 4 kN. Assume the pressure along the centerline of the bend

is constant with a value of 75 kPa gage. Find the force requi

to hold the bend in place.
/ Bolted flange
—
Flow




Define the Situation

Crude oil flows through a pipe bend.

* Bend lies in a horizontal plane.

* ¥, = 1.2 m® = volume of oil in bend,

* Whiena = 4000 N = empty weight of bend.

* P = 75kPa-gage = pressure along centerline.

@ T =1lm
— =
0oil &
§=094
Q=2ms
30°
State the Goal

F(N) 4= Force to hold the bend stationary.

Generate Ideas and Make a Plan

Select. Because force is a parameter and fluid particles
accelerate in the pipe bend, select the momentum equation.

Sketch. Select a CV that cuts through the support structure
and through sections 1 and 2. Then, sketch the force and
momentum diagrams.

¥

£
i L.
F, —»l =x

x

lf
pA-—P‘ QW “"/ ny e—p|

\\
! /‘- : //Q;
——. . o
PA mv

Analysis. Using the diagrams as guides, write the momentum
equation in each direction:

—_——

« x-direction
Fe+ piA; = pyA;c0830° = riv,cos30° — my;  {a)
o y-direction
F, = p;A;sin30° = —rhy, sin30° (b)
e z-direction

—F,— Wy =0 (c)

Review these equations and notice that there is enough infor
mation to solve for the goals F,, F,, and F,. Thus, create a plai

1. Calculate the momentum flux my.
2. Calculate the pressure force pA.

3. Solve Eq. (a) for F..

4. Solve Eq. (b) for F,.

5. Solve Eq. (¢) for F,.

Take Action (Execute the Plan)

1. Momentum Flow

Example 6.6
* Apply the volume flow rate equation
(2m’/s)
v=Q/A = = 2.55m/s

(7 X 0.5’m?)
* Next, calculate the momentum flow
mv = pQv = (0.94 X 1000 kg/m’)(2 m*/s)(2.55 m/s)
= 4,79 kN
2. Pressure Force
PA = (75 kN/m*)(m X 0.5 m?) = 58.9 kN
3. Momentum Equation (x-direction)
F. + piA; — p;A;c0830° = rv,cos30° — mv,
Fy = —pA(1 - c0s30°) — mv(1 — c0s30°)
~(pA + mv)(1 — cos30°)
=(58.9 + 4.79)(kN)(1 — c0s 30°)
—8.53 kN

4. Momentum Equation ( y-direction)
F, + p2A;sin30° = —riv, sin 30°
F, = —(pA + mv)sin 30°
—(58.9 + 4.79)(kN)(sin 30°) = —31.8 kN

Reaction force in z-direction. (The bend weight includes
the oil plus the empty pipe).

—F, ~ Wou =0
W = y¥ + 4kN
= (0.94 X 9.81 kN/m’)(1.2m’) + 4kN = 15.1 kN
Force to hold the bend
[F = (-853kN)i + (-31.8kN); + (15.1 kN)Kk |

Variable Velocity Distribution

This subsection shows how to solve a problem when the momentum flow is evaluated by inte
gration. This case is illustrated by Example 6.6.
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EXAMPLE 6.6

Momentum Equation Applied with a Variable Velocity
Distribution

Problem Statement

The drag force of a bullet-shaped device may be measured
using a wind tunnel. The tunnel is round with a diameter
of 1 m, the pressure at section 1 is 1.5 kPa gage, the
pressure at section 2 is 1.0 kPa gage, and air density is

1.0 kg/m®. At the inlet, the velocity is uniform with a
magnitude of 30 m/s. At the exit, the velocity varies
linearly as shown in the sketch. Determine the drag

force on the device and support vanes. Neglect viscous
resistance at the wall, and assume pressure is uniform
across sections 1 and 2.

Support vanes P2
A

ul 7—X 1t

- Y

® ©)

Define the Situation

Data is supplied for wind tunnel test (see above).
Assume. Steady flow.

Air: p = 1.0 kg/m’.

State the Goal

Find: Drag force (in newtons) on model

Make a Plan

1. Select a control volume that encloses the model.
2. Sketch the force diagram,

3. Sketch the momentum diagram.

4

. The downstream velocity profile is not uniformly
distributed. Apply the integral form of the momentum
equation, Eq. (6.7).

w

. Evaluate the sum of forces.

6. Determine velocity profile at section 2 by application
of continuity equation.

7. Evaluate the momentum terms.

8. Calculate drag force on model.

Take Action (Execute the Plan)

1. The control volume selected is shown. The control volun
is stationary.

)

. .
P4 | v1 |
——~‘F;2 ———Ha_
FD MD

2. The forces consist of the pressure forces and the force on
the model support struts cut by the control surface. The
drag force on the model is equal and opposite to the forc
on the support struts: F, = F,; + F,,.

3. There is inlet and outlet momentum flux.

4. Integral form of momentum equation in x-direction

>EF = Jpv dyv + J pve(V - dA)

On cross section 1, V * dA = —v.dA,and on cross
section 2,V - dA = v.dA, so

EF = j pv.d¥ — J pvidA + Jpv,dA

5. Evaluation of force terms.

S F.=pA-pA—(F, +F,)

=pA-pA-Fp

6. Velocity profile at section 2.

Velocity is linear in radius, so choose v, = v|K(r/r,), whe
r, is the tunnel radius and K is a proportionality factor ta
be determined.

Q=Q

Ay, = J vy(r)dA = J —v,K(rir,,)Z'n'r dr
A )

1
Triv, = Zwv,Ké rl
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7. Evaluation of momentum terms : 8. Drag force

d : . {9
» Accumulation term for steady flow is dtj pv,d¥ =0 : pA—pA—Fp= mv,(8 = 1)
v :

» Momentum at cross section 1 with v, = v, is

JpvﬁdA = pviA = mv,

1 5
Fp=(p— p)A - BPAVE

= (m X 0.5 m*)(1.5 — 1.0)(10°)N/m?

« Momentum at cross section 2 is N é(l kg/m?)(m X 0.5 m?)(30 m/s)’

o= [3
2 (1]

3
2

r\1]? 9 .
v'(f, >] 27rdr = val : Fp =|304N

6.5 Examples of the Linear Momentum
Equation (Moving Objects)

This section describes how to apply the linear momentum equation to problems that involy
moving objects such as carts in motion and rockets. When an object is moving, one le
the CV move with the object. As shown below (repeated from Fig. 6.11), problems th:
involve moving CVs classify into two categories: objects moving with constant velocity an
objects that are accelerating. Both categories involve selection of a reference frame, whic
is the next topic.

Stationary CVs Moving CVs

1
Variable
velocity

Constant
velocity

T
Nozzles and
pipe bends

I
Jets and
vanes

Accelerating

Reference Frame

When an object is moving, it is necessary to specify a reference frame. A reference fram
is a three-dimensional framework from which an observer takes measurements. For ex
ample, Fig. 6.16 shows a rocket in flight. For this situation, one possible reference frame i
fixed to the earth. Another possible reference frame is fixed to the rocket. Observers i
these two frames of reference would report different values of the rocket velocity Vg
and the velocity of the fluid jet V,,,. The ground-based reference frame is inertial. An in
ertial reference frame is any reference frame that is stationary or moving with constan
velocity with respect to the earth. Thus, an inertial reference frame is a nonacceleratin
reference frame. Alternatively, a noninertial reference frame is any reference frame tha
is accelerating.

Regarding the linear momentum equation as presented in this text, this equation is onl
valid for an inertial frame. Thus, when objects are moving, the engineer should specify a
inertial reference frame.
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FIGURE 6.16

- Reference frame
fixed to accelerating rocket

(noninertial)

|

i —

AN - EEA
Reference frame
/";P "IL'\ fixed to earth
(inertial)

Andlyzing a Moving Body (Constant Velocity)

When an object is moving with constant velocity, then the reference frame can be placed on
the moving object or fixed to the earth. However, most problems are simpler if the frame is
fixed to the moving object. Example 6.7 shows how to solve a problem involving an object

moving with constant velocity.

EXAMBLE'6.7 Define the Situation

Momentum Equation Applied to a Moving CV : A block slides at constant velocity due to a fluid jet.
Problem Statement I
A stationary nozzle produces a water jet with a speed of H.0, p = 1000 kg/m’

50 m/s and a cross-sectional area of 5 cm’. The jet strikes a
moving block and is deflected 90° relative to the block. The
block is sliding with a constant speed of 25 m/s on a surface :
with friction. The density of the water is 1000 kg/m”. Find §oo— — vy =V, =25

the frictional force F acting on the block. v =30mis (from fixed RF
(from fixed RF)

A =5x10""m?

:  State the Goal
0 @ F;(N) 4a The frictional force on the block
v .
Flow Q —_— i Solution Method I (Moving RF)
When a body is moving at constant velocity, the easiest way

solve the problem is to put the RF on the moving body. This
solution method is shown first.



Generate Ideas and Make a Plan

Select the linear momentum equation because force is the
goal and fluid particles accelerate as they interact with
the block.

Select a moving CV that surrounds the block because this CV
involves known parameters (i.e., the two fluid jets) and the
goal (frictional force).

Because the CV is moving at a constant velocity, select a
reference frame (RF) that is fixed to the moving block. This
RF makes analysis of the problem simpler.

Sketch the force and momentum diagrams and the RE

mvy

X
RF: fixed
to block
To apply the momentum equation, use the force and
momentum diagrams to visualize the vectors. The
momentum equation in the x-direction is
_Ff = —rhvl {Ol

In Eq. (a), the mass flow rate describes the rate at which
mass is crossing the control surface. Because the CS is
moving away from the fluid jet, the mass flow rate term
becomes

Vblock) (b)

In Eq. (a), the velocity v, is the velocity as measured from the
selected reference frame. Thus,

VI = Vit = Vblock (C)

m= pAV = ije((Vjel -

Combining Eqs. (a), (b), and (c) gives
Vblock) (d)

Because, all variables on the right side of Eq. (d) are known,
we can find the problem goal. The plan is simple: plug
numbers into Eq. (d).

EJ’ = thl = pA)ct(vjet -

Take Action (Execute the Plan)

F, = pA;ct(Vjel - Vblock)2

Fy = (1000 kg/m?)(5 X 107" m*)(50 — 25)(m/s)?

Solution Method II (Fixed RF)

Another way to solve this problem is to use a fixed reference
frame. To implement this approach, sketch the force diagram,
the momentum diagram, and the selected RE

Notice that v, shows a vertical and horizontal component.
This is because an observer in the selected RF would see these
velocity components.

to ground

From the diagrams, one can write the momentum equation in
the x-direction:
—F; = mvycos8 — riy,

{e)

F; = m(v; — v;c0s6)

In the momentum equation, the mass flow rate is
measured relative to the control surface. Thus, m is
independent of the RF, and one can use Eq. (b), which
is repeated below:

Vhlock) (f)

In Eq. (e), the velocity v, is the velocity as measured from
the selected reference frame. Thus,

Y1 = Ve (9)

To analyze v,, relate velocities by using a relative-velocity
equation from a Dynamics Text:

m = pAV = ijel(Vjet -

Vit = Vhlock F Viewblock (h)
where

* v, = v, is the velocity of the jet at section 2 as measured
from the fixed RE.

* Wplock i the velocity of the moving block as measured from
the fixed RE

Viewbiock iS the velocity of the jet at section as measured from
a RF fixed to the moving block.

Substitute numbers into Eq. (h) to give
v, = (25 m/s)i + (25 m/s)j (i)
Thus

v2€080 = vy, = 25m/s = vy (i)



Substitute Egs. (f), (g), and (j) into Eq. (e). Z
Fr = {m}(v; — v;cos0) 1

Review the Solution and the Process

¢ L. Knowledge. When an object moves with constant velocity,
= {pAja(Vier = Votoa) HVjer ~ Vhlock) (k) : select an RF fixed to the moving object because this is
= pAj(Vix = i o) much easier than selecting an RF fixed to the earth.

Eq. (k) is identical to Eq. (d). Thus, Solution Method 1 is
equivalent to Solution Method II.

Analyzing a Moving Body (Accelerating)

This section presents an example of an accelerating object, namely the analysis of a rocket
(Fig. 6.17). To begin, sketch a control volume around the rocket. Note that the reference frame
cannot be fixed to the rocket because the rocket is accelerating.

Assume the rocket is moving vertically upward with a speed v, measured with respect to
the ground. Exhaust gases leave the engine nozzle (area A,) at aspeed V, relative to the rocket
nozzle with a gage pressure of p,. The goal is to obtain the equation of motion of the rocket.

The control volume is drawn around and accelerates with the rocket. The force and mo-
mentum diagrams are shown in Fig. 6.18. There is a drag force of D and a weight of W acting
downward. There is a pressure force of p.A, on the nozzle exit plane because the pressure
in a supersonic jet is greater than ambient pressure. The summation of the forces in the
z-direction is

S E =pA -~ W=D (6.15)

There is only one momentum flux out of the rocket nozzle, mv,. The speed v, must be refer-
enced to an inertial reference frame, which in this case is chosen as the ground. The speed of
the exit gases with respect to the ground is

vo= (V.= ) (6.16)

because the rocket is moving upward with speed v, with respect to the ground, and the exit
gases are moving downward at speed V, with respect to the rocket.

2. Knowledge. Specifying the control volume and the
reference frame are independent decisions.

FIGURE 6.17
Vertical launch of rocks

FIGURE 6.18

Force and momentum
diagrams for rocket.



The momentum equation, in the z-direction is
d . .
EFZ = vzpd¥+2mavoz —Emiviz
dt cv s cs

The velocity inside the control volume is the speed of the rocket, v,, so the accumulation te

becomes
d d d
Z(Jwvzpd"l) = E[Verd'VJ = E(mrvr)

Substituting the sum of the forces and momentum terms into the momentum equation give
d .
pPA.—W—-D= E(m,v,) -m(V,—v,) (6.1
Next, apply the product rule to the accumulation term. This gives
pA,—W—=D= m,—+v,<—+ rh)— mv, (6.1

The continuity equation can now be used to eliminate the second term on the right. Applyii
the continuity equation to the control surface around the rocket leads to

:H pa¥ + D rit, — 31y = 0

{6.1
% ¢ e 0
a "
Substituting Eq. (6.19) into Eq. (6.18) yields
. dv,
mV, + pA,— W—D = m,—dlt (6.2

The sum of the momentum outflow and the pressure force at the nozzle exit is identified as th
thrust of the rocket

T = rhve + peAe = pEAEVEZ + PeAe
so Eq. (6.20) simplifies to

£11’5*"T—D—W (6.21
m,dt— .

which is the equation used to predict and analyze rocket performance.

Integration of Eq. (6.21) leads to one of the fundamental equations for rocketry: th
burnout velocity or the velocity achieved when all the fuel is burned. Neglecting the drag anc
weight, the equation of motion reduces to

dv,
T=m~" :
m, ot 6.22
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The instantaneous mass of the rocket is given by m, = m; — mt, where m; is the initial rocket
mass and ¢ is the time from ignition. Substituting the expression for mass into Eq. (6.22) and
integrating with the initial condition v(0) = 0 results in

Vo = Eln Zf (6.23)
where v, is the burnout velocity and m;is the final (or payload) mass. The ratio T/ is known
as the specific impulse, I,,, and has units of velocity.

6.6 The Angular Momentum Equation

This section presents the angular momentum equation, which is also called the moment-of-
momentum equation. The angular momentum equation is very useful for situations that in-
volve torques. Examples include analyses of rotating machinery such as pumps, turbines, fans,
and blowers.

Derivation of the Equation

Newton’s second law of motion can be used to derive an equation for the rotational motion of
a system of particles:

d Hs S.
>M= % (6.24)

where M is a moment and Hjy, is the total angular momentum of all mass forming the system.

To convert Eq. (6.24) to an Eulerian equation, apply the Reynolds transport theorem,

Eq. (5.23). The extensive property B,,, becomes the angular momentum of the system:

By, = Hy,. The intensive property b becomes the angular momentum per unit mass. The

angular momentum of an element is r X mv, and so b = r X v. Substituting for By, and bin
Eq. (5.23) gives

dHy) 4

it P L(r X v)pd¥ + J (r X v)pV - dA {6.25)

cs

Combining Eqs. (6.24) and (6.25) gives the integral form of the moment-of-momentum
equation:

ZM=-§J (r X v)pd¥ + f(er)pV-dA (6.26)

where r is a position vector that extends from the moment center, V is flow velocity relative, to
the control surface, and v is flow velocity relative to the inertial reference frame selected.

If the mass crosses the control surface through a series of inlet and outlet ports with uni-
formly distributed properties across each port, the moment-of-momentum equation becomes

>SM= -‘%J (r X V)pd¥ + Dr, X (myv,) — >, X (mv) (6.27)
The moment-of-momentum equation has the following physical interpretation:

( sum of ) B (angular momentum) + (angular momentum) <angu]ar momentum)

moments accumulation outflow inflow
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Application

The process for applying the angular momentum equation is similar to the process for applyis
the linear momentum equation. To illustrate this process, Example 6.8 shows how to apply t
angular momentum equation to a pipe bend.

EXAMPLE 6.8

Applying the Angular Momentum Equation to Calculate
the Moment on a Reducing Bend

Problem Statement

The reducing bend shown in the figure is supported on a
horizontal axis through point A. Water (20°C) flows through

the bend at 0.25 m’/s. The inlet pressure at cross section 1 is

150 kPa gage, and the outlet pressure at section 2 is 59.3 kPa
gage. A weight of 1420 N acts 20 cm to the right of point A. Find
the moment the support system must resist. The diameters of the
inlet and outlet pipes are 30 cm and 10 cm, respectively.

S

15cm
PR

325cm I ) 1

©)

I I

P TR,

le— 20 cm

Define the Situation

Water flows through a pipe bend.
Assume steady flow.
Water (Table A.5,20°C,p = 1 atm): p = 998 kg/m’.

D=03m
p, =150 kPa gage

l 0.3 m l 0.2m

0.15m

0.325m

1 W=1420 N

D,=0.1m
@ P, =593 kPa gage

State the Goal
M, (N) @ Moment acting on the support structure

Generate Ideas and Make a Plan

Select the moment-of-momentum equation (Eq. 6.27)
because (a) torque is a parameter and (b) fluid particles are
accelerating as they pass through the pipe bend.

Select a control volume surrounding the reducing bend. The
reason is that this CV cuts through point A (where we want
to know the moment) and also cuts through sections 1 and 2
where information is known.

Sketch the force and momentum diagrams. Add dimensions
to the sketches so that it is easier to evaluate cross products.

0.15m]

0.325m

Select point “A” to sum moments about. Because the flow is
steady, the accumulation of momentum term is zero. Also,
there is one inflow of angular momentum and one outflow.
Thus, the angular momentum equation (Eq. 6.27) simplifies to:

S M, = {r; X (mv;)} = {r, X (rav)} (a)
Sum moments in the z-direction
2 M, = (pA)(0.15m) + (p,A;)(0475 m)
+ M, — W(0.2m)
Next, analyze the momentum terms in Eq. (a).
{r2 X (mvy)} — {r; X (mv))}, = {—rymv,} — {rymv}  (c)
Substitute Egs. (b) and (c) into Eq. (a)
(pA)0.15m) + (p,A,)(0.475 m) + M, — W(0.2 m)
= {—rymv;} = {rimv}

All the terms in Eq. (d) are known, so M, can be calculated.
Thus, the plan is

(b)

(d)

1. Calculate torques to due to pressure: r, p)A; and r,p; A,.
2. Calculate momentum flow terms: rymv, + r, mv,.
3. Calculate M,.



Take Action (Execute the Plan)

1. Torques due to pressure

rpiA, = (0.15m)(150 X 1000 N/m?)(w X 0.3%/4 m?)
=1590N - m

r.p2A; = (0.475m)(59.3 X 1000 N/m?)(w X 0.152/4 m?)
=498N+m

2. Momentum flow terms

m = pQ = (998 kg/m>)(0.25 m*/s)

= 250kg/s
Q 0.25 m*/s
=2 22 5
M A T axoasm  ooimis
0.25 m’
= Qo 025ms s s

A, w X 0075 m?
m(rv; + rv) = (250 kg/s)
X (0.475 X 14.15 + 0.15 X 3.54)(m?/s)
=1813N'm

SECTION 6.6 THE ANGULAR MOMENTUM EQUATION

3. Moment exerted by support
M, = —0.15p,A, — 0.475p,A;, + 02W — m(rv, + nv,
=(1590N - m) — (498 N » m)
+(0.2m X 1420 N) — (1813 N - m)
—362kN - m

M,

Thus, a moment of 3.62 kN - m acting in the clockwise,
direction is needed to hold the bend stationary.

By Newton’s third law, the moment acting on the support
structure is M, = 3.62 kKN * m (counterclockwise).

Review the Solution and the Process

Tip. Use the “right-hand-rule” to find the correct direction
of moments.

Example 6.9 illustrates how to apply the angular momentum equation to predict the power
delivered by a turbine. This analysis can be applied to both power-producing machines (turbines)
and power-absorbing machines (pumps and compressors). Additional information is presented in

Chapter 14.

EXAMPLE 6.9

Applying the Angular Momentum Equation to Predict
the Power Delivered by a Francis Turbine

Problem Statement

A Francis turbine is shown in the diagram. Water is directed
by guide vanes into the rotating wheel (runner) of the turbine.
The guide vanes have a 70° angle from the radial direction.
The water exits with only a radial component of velocity with
respect to the environment. The outer diameter of the wheel is
1 m, and the inner diameter is 0.5 m. The distance across the
runner is 4 cm. The discharge is 0.5 m’/s, and the rotational

rate of the wheel is 1200 rpm. The water density is 1000 kg/m’.

Find the power (kW) produced by the turbine.

Im
l 05m I !
™~ -~ I
vy 1
l 4cm
Outlet

Define the Situation

A Francis turbine generates power.

20~
o—D=10m
D,=0.5m
10m
- \L\ 7 =
\ '_ 0 m_‘
Q=05ms
=1200 »
1257 madls p=1000 kg/m
State the Goal

P(W) 4m Power generated by the turbine

Generate Ideas and Make a Plan

Because power is the goal, select the power equation.
P=To

where T is torque acting on the turbine, and w is turbine

angular speed. In Eq. (a), torque is unknown, so it becomes

the new goal. Torque can be found using the angular
momentum equation.
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Sketch. To apply the angular momentum equation, select a
control volume surrounding the turbine. Then, sketch a force
and momentum diagram

m

o
20
2,

In the force diagram, the torque T is the external torque
from the generator. Because this torque opposes angular
acceleration, its direction is counterclockwise. The flow is
idealized by using one inlet momentum flow at section 1
and one outlet momentum flow at section 2.

Select point “O” to sum moments about. Because the
flow is steady, the accumulation of momentum is zero.
Thus, the angular momentum equation (Eq. 6.26)
simplifies to:

DM, = {r X (Av)} = {r X (mv,)} (b)

Apply Eq. (b) in the z-direction. Also, recognize that
the flow at section 2 has no angular momentum. That is,
{r, X (mv,)} = 0. Thus, Eq. (b) simplifies to

T = 0 — {—rymv,cos20°}
which can be written as:

T = rymv,c0s20° (<)

In Eq. (c), the velocity v, can be calculated using the flow rate
equation. Because velocity is not perpendicular to area, use
the dot product.

Q =V, A,
Q = v,A,sin20°
which can be rewritten as
Q
= ——— d'
"7 A sin20° (d

Now, the number of equations equals the number of
unknowns. Thus, the plan is to

1. Calculate inlet velocity v, using Eq. (d).
2. Calculate mass flow rate using m = pQ.
3. Calculate torque using Eq. (c).
4. Calculate power using Eq. (a).

Take Action (Execute the Plan)

1. Volume flow rate equation:

Q (0.5m’/s)
= : = x = 11.63m/s
A;sin20°  w(1.0 m)(0.04 m)sin20°

2. Mass flow rate equation:

4!

m = pQ = (1000 kg/m*)(0.5 m®/s) = 500 kg/s
3. Angular momentum equation:
T = rymv,cos20°
= (0.5 m)(500 kg/s)(11.63 m/s)cos20°
=2732N-m
4. Power equation:

P = Tw = (2732 N + m)(125.7 rad/s)

6.7 Summarizing Key Knowledge

Newton’s Second Law of Motion

® A force is a push or pull of one body on another. A push/pull is an interaction that can
cause a body to accelerate. A force always requires the interaction of two bodies.

® Forces can be classified into two categories:

» Body forces. Forces in this category do not require that the interacting bodies be touchin
Common body forces include weight, the magnetic force, and the electrostatic force.

» Surface forces. Forces in this category require that the two interacting bodies are
touching. Most forces are surface forces.

e Newton's second law X F = ma applies to a fluid particle; other forms of this law are

derived from this equation.
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® Newtons second law asserts that forces are related to accelerations:
» Thus, if 3 F > 0, the particle must accelerate.
b Thus, if a > 0, the sum of forces must be nonzero.

Solving Vector Equations

® A vector equation is one whose terms are vectors.
® A vector equation can be written as one or more equivalent scalar equations.

® The Visual Solution Method (VSM) is an approach for solving a vector equation that
makes problem solving easier. The process for the VSM is

» Step 1: Identify the vector equation in its general form.

b Step 2: Sketch a diagram that shows the vectors on the left side of the equation. Sketch
an equal sign. Sketch a diagram that shows the vectors on the right side of the equation.

b Step 3: From the diagrams, apply the general equation, write the final results, and
simplify the results to create the reduced equation(s).

The Linear Momentum Equation
¢ The linear momentum equation is Newton’s second law in a form that is useful for solving
problems in fluid mechanics
® To derive the momentum equation
» Begin with Newton’s second law for a single particle.
» Derive Newton's second law for a system of particles.
» Apply the Reynolds transport theorem to give the final result.
® Physical Interpretation

(sum of \ _ ( momentum ) N (momentum) momentum
forces accumulation outflow inflow
® The momentum accumulation term gives the rate at which the momentum inside the

control volume is changing with time.

® The momentum flow terms give the rate at which momentum is being transported across
the control surfaces.

The Angular Momentum Equation

® The angular momentum equation is the rotational analog to the linear momentum
equation.
» This equation is useful for problems involving torques (i.e., moments)

» This equation is commonly applied to rotating machinery such as pumps, fans, and
turbines.

® The physics of the angular momentum equation are

( sum of ) B (angular momentum> . <angular momentum) (angular momentum)

moments accumulation outflow inflow

® To apply the angular momentum equation, use the same process as that used for the linear
momentum equation.
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PROBLEMS

FiUs Problem available in WileyPLUS at instructor’s discretion.

Newton’s Second Law of Motion (§6.1)

6.1 Identify the surface and body forces acting on a glider in
flight. Also, sketch a free body diagram and explain how
Newton’s laws of motion apply.

6.2 Newton’s second law can be stated that the force is equal to
the rate of change of momentum, F = d(mv)/dt. Taking the
derivative by parts yields F = m(dv)/(dt) + v(dm)/(dt). This
does not correspond to F = ma. What is the source of the
discrepancy?

The Linear Momentum Equation: Theory (§6.2)

6.3 'PLUs Which are the following are correct with respect to the
derivation of the momentum equation? (Select all that apply.)

a. Reynold’s transport theorem is applied to Fick's law.
b. The extensive property is momentum.

¢. The intensive property is mass.
d

. The velocity is assumed to be uniformly distributed
across each inlet and outlet.

. 'The net momentum flow is the “ins” minus the “outs.”

o

f. The net force is the sum of forces acting on the matter
inside the CV

The Linear Momentum Equation: Application (§6.3)

6.4 FLUs When making a force diagram (FD) and its partner
momentum diagram (MD) to set up the equations for a
momentum equation problem (see Fig. 6.10 on p. 217 in §6.3),
which of the following elements should be in the FD, and which
should be in the MD? (Classify all below as either FD or MD.)

a. Each mass stream with product 1, v, or product s, v;
crossing a control surface boundary.

b. Reaction forces required to hold walls, vanes, or pipes in
place.

c. Weight of a solid body that contains or contacts the fluid.

d. Weight of the fluid.

e. Pressure force caused by a fluid flowing across a control
surface boundary.

Applying the Momentum Equation to Fluid Jets (§6.4)
6.5 Give five examples of jets and how they are used in practice.

6.6 'FLUs A “balloon rocket” is a balloon suspended from a taut
wire by a hollow tube (drinking straw) and string. The nozzle is

25" Guided Online (GO) Problem, available in WileyPLUS at
instructor’s discretion.

formed of a 0.8-cm-diameter tube, and an air jet exits the nozzl
with a speed of 45 m/s and a density of 1.2 kg/m’. Find the force
needed to hold the balloon stationary. Neglect friction.

6.7 @S The balloon rocket is held in place by a force F. The
pressure inside the balloon is 8 in-H,0, the nozzle diameter is
1.0 cm, and the air density is 1.2 kg/m®. Find the exit velocity v
and the force F. Neglect friction and assume the air flow is
inviscid and irrotational.

|
: — f—

|
Nozzle \

<— - F

PROBLEMS 6.6, 6.7

6.8 PLU's For Example 6.2 in §6.4, the situation diagram shows
concrete being “shot” at an angle into a cart that is tethered by a
cable, and sitting on a scale. Determine whether the following
two statements are “true” or “false””

a. Mass is being accumulated in the cart.

b. Momentum is being accumulated in the cart.
6.9 [FLUS A water jet of diameter 30 mm and speed v = 25 m/s
filling a tank. The tank has a mass of 25 kg and contains 25 liter
of water at the instant shown. The water temperature is 15°C.
Find the force acting on the bottom of the tank and the force
acting on the stop block. Neglect friction.

v

Stop

block \ \70°
{

PROBLEMS 6.9, 6.10

6.10 55" A water jet of diameter 2 inches and speed v = 60 ft/
is filling a tank. The tank has a mass of 25 Ibm and contains
6 gallons of water at the instant shown. The water temperature



is 70°F. Find the minimum coefficient of friction such that the
force acting on the stop block is zero.

6.11 A design contest features a submarine that will travel at a
steady speed of V,,,, = 1 m/s in 15°C water. The sub is powered
by a water jet. This jet is created by drawing water from an inlet
of diameter 25 mm, passing this water through a pump and then
accelerating the water through a nozzle of diameter 5 mm to a
speed of V.. The hydrodynamic drag force (Fp) can be

calculated using
VZ
Fp= CD<p_2£)AP

where the coefficient of drag is Cp = 0.3 and the projected area is
A, = 0.28 m”. Specify an acceptable value of V.

PROBLEM 6.11

6.12 A horizontal water jet at 70°F impinges on a vertical-
perpendicular plate. The discharge is 2 cfs. If the external force
required to hold the plate in place is 200 1bf, what is the velocity
of the water?

6.13 @s A horizontal water jet at 70°F issues from a circular
orifice in a large tank. The jet strikes a vertical plate that is
normal to the axis of the jet. A force of 600 Ibf is needed to hold
the plate in place against the action of the jet. If the pressure in
the tank is 25 psig at point A, what is the diameter of the jet just
downstream of the orifice?

v

ik

—

A
L]

PROBLEMS 6.12,6.13

6.14 @ An engineer, who is designing a water toy, is
making preliminary calculations. A user of the product will
apply a force F, that moves a piston (D = 80 mm) at a speed of
Viision = 300 mm/s. Water at 20°C jets out of a converging nozzle

PROBLEMS

of diameter d = 15 mm. To hold the toy stationary, the user
applies a force F, to the handle. Which force (F, versus F) it
larger? Explain your answer using concepts of the momentu
principle. Then calculate F, and F,. Neglect friction betweer
piston and the walls.

Fa
PROBLEM 6.14

6.15 A firehose on a boat is producing a 4-in.-diameter wat:
with a speed of V = 60 mph. The boat is held stationary by «
cable attached to a pier, and the water temperature is 50°F.
Calculate the tension in the cable.

6.16 @5 A boat is held stationary by a cable attached

to a pier. A firehose directs a spray of 5°C water at a speed of
V = 50 m/s. If the allowable load on the cable is 5 kN, calcul
the mass flow rate of the water jet. What is the correspondin
diameter of the water jet?

PROBLEMS 6.15, 6.16

6.17 ’"G-Jg\ A group of friends regularly enjoys white-water
rafting, and they bring piston water guns to shoot water fron
one raft to another. One summer they notice that when on p
slack water (no current), after just a few volleys at each other
they are drifting apart. They wonder whether the jet being
ejected out of a piston gun has enough momentum to force t
shooter and raft backward. To answer this question,

a. Sketch a CV,an FD, and an MD for this system.

b. Calculate the momentum flux (N) generated by ejec
water with a flow rate of 1 gal/s from a cross section
of 1.5 in.

6.18 ’“E'EE' A tank of water (15°C) with a total weight of 2001
(water plus the container) is suspended by a vertical cable.
Pressurized air drives a water jet (d = 12 mm) out the bottor
of the tank such that the tension in the vertical cable is 10 N.
If H = 425 mm, find the required air pressure in units of

atmospheres (gage). Assume the flow of water is irrotational.
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Vertical cable

Pressurized air

fe— 2 —
£
3

Jet diameter d

PROBLEM 6.18

6.19FlUs A jet of water (60°F) is discharging at a constant rate
of 2.0 cfs from the upper tank. If the jet diameter at section 1 is
4 in., what forces will be measured by scales A and B? Assume
the empty tank weighs 300 Ibf, the cross-sectional area of the
tankis4 f,h = 1 f,and H = 9 ft.

PROBLEM 6.19

6.20 A conveyor belt discharges gravel into a barge as shown at
a rate of 50 yd*/min. If the gravel weighs 120 Ibf/ft’, what is the
tension in the hawser that secures the barge to the dock?

Conveyor belt
V=10 ft/s

PROBLEM 6.20

6.21 The semicircular nozzle sprays a sheet of liquid through

180° of arc as shown. The velocity is V at the efflux section where

the sheet thickness is t. Derive a formula for the external force I
(in the y-direction) required to hold the nozzle system in place.
This force should be a function of p, V,r,and t.

.

!
iy« I
C ’2’/——-»' ||
. |-
\ A l f A
l \ — jf_l_»_r

l Section 4-4
x

PROBLEM 6.21

6.22 The expansion section of a rocket nozzle is often conical i
shape, and because the flow diverges, the thrust derived from t}
nozzle is less than it would be if the exit velocity were everywhe
parallel to the nozzle axis. By considering the flow through the
spherical section suspended by the cone and assuming that the
exit pressure is equal to the atmospheric pressure, show that th:
thrust is given by

(1 + cosa)
2

where m is the mass flow through the nozzle, V. is the exit
velocity, and  is the nozzle half-angle.

T =mV,

i

\
Y
'

—r

I

/

PROBLEM 6.22

Applying the Momentum Equation to Vanes (§6.4)

6.23 FLU’s Determine the external reactions in the x- and y-directic
needed to hold this fixed vane, which turns the oil jet (S = 0.9)ina
horizontal plane. Here V; is 22 m/s, V; = 21 m/s,and Q = 0.15m’

p

0il (5= 0.90)

ﬁ—'—\ 30°

!
PROBLEMS 6.23,6.24



6.24 Solve Prob. 6.23 for V, = 70 ft/s, V, = 65 ft/s, and
Q= 1.5cfs.

6.25 P This planar water jet (60°F) is deflected by a fixed
vane. What are the x- and y-components of force per unit width
needed to hold the vane stationary? Neglect gravity.

Kéao

40 fi/s N

— L.
x

aoe

02f

0l ft
PROBLEM 6.25

6.26 FilU's A water jet with a speed of 30 ft/s and a mass flow rate
of 35 Ibm/s is turned 30° by a fixed vane. Find the force of the
water jet on the vane. Neglect gravity.

20 fi/s

/

PROBLEM 6.26

6.27 E“-g'\ Water (p = 1000 kg/m’) strikes a block as shown and
is deflected 30°. The flow rate of the water is 1.5 kg/s, and the inlet
velocity is V = 10 m/s. The mass of the block is 1 kg. The
coefficient of static friction between the block and the surface

is 0.1 (friction force/normal force). If the force parallel to the
surface exceeds the frictional force, the block will move.
Determine the force on the block and whether the block will
move. Neglect the weight of the water.

I Vertical

PROBLEMS 6.27,6.28

PROBLEMS

6.28 For the situation described in Prob. 6.27, find the
maximum inlet velocity (V) such that the block will not slip

6.29 EE'U\;S Plate A is 50 cm in diameter and has a sharp-edg
orifice at its center. A water jet (at 10°C) strikes the plate
concentrically with a speed of 90 m/s. What external force it
needed to hold the plate in place if the jet issuing from the
orifice also has a speed of 90 m/s? The diameters of the jets :
D=10cmand d = 3.5cm.

PROBLEM 6.29

6.30 A two-dimensional liquid jet impinges on a vertical wi
Assuming that the incoming jet speed is the same as the exil
jet speed (V, = V,), derive an expression for the force per ui
width of jet exerted on the wall. What form do you think the
upper liquid surface will take next to the wall? Sketch the sh
you think it will take, and explain your reasons for drawing
that way.

Vertical

¥

PROBLEM 6.30

6.31 FLU's A cone that is held stable by a wire is free to mov
the vertical direction and has a jet of water (at 10°C) strikin;
it from below. The cone weighs 30 N. The initial speed of the
jet as it comes from the orifice is 15 m/s, and the initial jet
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diameter is 2 cm. Find the height to which the cone will rise and
remain stationary. Note: The wire is only for stability and should
not enter into your calculations.

Wire for
stability
k. -

" T

—-|-F-4—-—-d

PROBLEM 6.31

6.32 A horizontal jet of water (at 10°C) that is 6 cm in diameter
and has a velocity of 20 m/s is deflected by the vane as shown.
If the vane is moving at a rate of 7 m/s in the x-direction, what
components of force are exerted on the vane by the water in

the x- and y-directions? Assume negligible friction between the
water and the vane.

"\
;\ .
\(/4

5

PROBLEM 6.32

6.33 FLUS A vane on this moving cart deflects a 15-cm-
diameter water (p = 1000 kg/m®) jet as shown. The initial
speed of the water in the jet is 50 m/s, and the cart moves at a
speed of 3 m/s. If the vane splits the jet so that half goes one
way and half the other, what force is exerted on the vane by
the water?

6.34 Refer to the cart of Prob. 6.33. If the cart speed is
constant at 5 ft/s, and if the initial jet speed is 60 ft/s, and jet
diameter = 0.15 ft, what is the rolling resistance of the cart?
(p = 62.4 Ibm/ft’)

Elevation view

50m/s
l \ 45° 3mis

P T
T \ Vane
1Scm 90°
diameter N~
Plan view
PROBLEMS 6.33,6.34

6.35 @S The water (p = 1000 kg/m®) in this jet has a speed
of 60 m/s to the right and is deflected by a cone that is moving
to the left with a speed of 5 m/s. The diameter of the jet is
10 cm. Determine the external horizontal force needed to move
the cone. Assume negligible friction between the water and

the vane.

6.36 This two-dimensional water (at 50°F) jet is deflected by tt
two-dimensional vane, which is moving to the right with a spee
of 60 ft/s. The initial jet is 0.30 ft thick (vertical dimension), anc
its speed is 100 ft/s. What power per foot of the jet (normal to

the page) is transmitted to the vane?
/<50°

\

PROBLEMS 6.35, 6.36

6.37 'PLU's Assume that the scoop shown, which is 20 cm wide,

is used as a braking device for studying deceleration effects,
such as those on space vehicles. If the scoop is attached to a
1000 kg sled that is initially traveling horizontally at the rate of
100 m/s, what will be the initial deceleration of the sled? The
scoop dips into the water 8 cm (d = 8 cm). (T = 10°C.)
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PROBLEM 6.37

6.38 This snowplow “cleans” a swath of snow that is 4 in. deep
(d = 4in.) and 2 ft wide (B = 2 ft). The snow leaves the blade

in the direction indicated in the sketches. Neglecting friction
between the snow and the blade, estimate the power required
for just the snow removal if the speed of the snowplow is 40 ft/s.

Snow (§=0.20)

B, —

Elevation view

Plan view

PROBLEM 6.38

6.39 'Eé\" A finite span airfoil can be regarded as a vane as

shown in the figure. The cross section of air affected is equal to
the circle with the diameter of the wing span, b. The wing
deflects the air by an angle o and produces a force normal to the
free-stream velocity, the lift L, and in the free-stream direction,
the drag D. The airspeed is unchanged. Calculate the lift and
drag for a 30 ft wing span in a 300 ft/s airstream at 14.7 psia

and 60°F for flow deflection of 2°.

L
. D
Side view \V;a\’
b
PROBLEM 6.39

PROBLEMS

6.40 The “clam shell” thrust reverser sketched in the figure is
often used to decelerate aircraft on landing. The sketch show:
normal operation (a) and when deployed (b). The vanes are
oriented 20° with respect to the vertical. The mass flow throu
the engine is 150 Ibm/s, the inlet velocity is 300 ft/s, and the ¢
velocity is 1400 ft/s. Assume that when the thrust reverser is
deployed, the exit velocity of the exhaust is unchanged. Assw
the engine is stationary. Calculate the thrust under normal
operation (Ibf) and when the thrust reverser is deployed.

T

U, U,

«———— -—
L-‘_‘--‘
(a)
20° -} /‘ Tp

/ UF

-—

&)
PROBLEM 6.40

Applying the Momentum Equation to Nozzles (§6.4)

6.41 Firehoses are fitted with special nozzles. Use the Intern
or contact your local fire department to find information on
operational conditions and typical hose and nozzle sizes usec

6.42 é"_@_"s High-speed water jets are used for speciality cutti
applications. The pressure in the chamber is approximately
60,000 psig. Using the Bernoulli equation, estimate the water
speed exiting the nozzle exhausting to atmospheric pressure.
Neglect compressibility effects and assume a water temperatt
of 60°F.

6.43 @s Water at 60°F flows through a nozzle that contrac
from a diameter of 3-in. to 1 in. The pressure at section 1 is
2500 psfg, and atmospheric pressure prevails at the exit of the
Calculate the speed of the flow at the nozzle exit and the forc
required to hold the nozzle stationary. Neglect weight.

WILEY

6.44 ;E' Water at 15°C flows through a nozzle that contrac
from a diameter of 10 cm to 2 cm. The exit speed is v, = 251
and atmospheric pressure prevails at the exit of the jet. Calcu
the pressure at section 1 and the force required to hold the n:
stationary. Neglect weight.

2

PROBLEMS 6.43, 6.44
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6.45 FTU's Water (at 50°F) flows through this nozzle at a rate
of 20 cfs and discharges into the atmosphere. D, = 26 in., and
D, = 9 in. Determine the force required at the flange to
hold the nozzle in place. Assume irrotational flow. Neglect
gravitational forces.

6.46 Solve Prob. 6.45 using the following values: Q = 0.30 m%/s,
D, = 30cm,and D, = 10 cm. {p = 1000 kg/m>.)

A

_"DI

ﬁ D,

PROBLEMS 6.45, 6.46

e

6.47 @S This “double” nozzle discharges water (p = 62.4 Ibm/ft*)
into the atrnosphere at a rate of 16 cfs. If the nozzle is lying in a
horizontal plane, what x-component of force acting through the
flange bolts is required to hold the nozzle in place? Note: Assume
irrotational flow, and assume the water speed in each jet to be the
same. Jet A is 4 in. in diameter, jet B is 4.5 in. in diameter, and

the pipe is 1 ft in diameter.

6.48 This “double” nozzle discharges water (at 10°C) into the
atmosphere at a rate of 0.65 m/s. If the nozzle is lying in a
horizontal plane, what x-component of force acting through the
flange bolts is required to hold the nozzle in place? Note: Assume
irrotational flow, and assume the water speed in each jet to be the
same. Jet A is 8'cm in diameter, jet B is 9 cm in diameter, and the
pipe is 30 cm in diameter.

PROBLEMS 6.47, 6.48

6.49 @s A rocket-nozzle designer is concerned about the force
required to hold the nozzle section on the body of a rocket. The
nozzle section is shaped as shown in the figure. The pressure

and velocity at the entrance to the nozzle are 1.5 MPa and

100 m/s. The exit pressure and velocity are 80 kPa and 2000 m/s.
The mass flow through the nozzle is 220 kg/s. The atmospheric
pressure is 100 kPa. The rocket is not accelerating. Calculate

the force on the nozzle-chamber connection. Note: The given
pressures are absolute.

\/ V,=2000m/s
u=100m/s p—
n =220 kg/
A=1m?| "TESES |4, =2m?
1.5 MP:
p=1 a /"—\‘Q'_
Chamber Nozzle p,=80kPa
Py =100 kPa
PROBLEM 6.49

6.50 A 15 cm nozzle is bolted with six bolts to the flange of a
30 cm pipe. If water (p = 1000 kg/m®) discharges from the
nozzle into the atmosphere, calculate the tension load in

each bolt when the pressure in the pipe is 200 kPa, Assume
irrotational flow.

6.51 Water (p = 62.4 Ibm/ft®) is discharged from the two-
dimensional slot shown at the rate of 8 cfs per foot of slot.
Determine the pressure p at the gage and the water force per fc
on the vertical end plates A and C. The slot and jet dimensions
and b are 8 in. and 4 in., respectively.

6.52 Water (at 10°C) is discharged from the two-dimensional
slot shown at the rate of 0.40 m*/s per meter of slot. Determinc
the pressure p at the gage and the water force per meter on the
vertical end plates A and C. The slot and jet dimensions B and
are 20 cm and 7 cm, respectively.

UL

L
T

PROBLEMS 6.51, 6.52

6.53 This spray head discharges water {(p = 62.4 Ibm/ft*) ata
rate of 4 ft*/s. Assuming irrotational flow and an efflux speed o
65 ft/s in the free jet, determine what force acting through the
bolts of the flange is needed to keep the spray head on the 6 in.
pipe. Neglect gravitational forces.

I)’

T

PROBLEM 6.53



6.54 Two circular water (p = 62.4 Ibm/ft*} jets of 0.5 in. diameter
(d = 0.5 in.) issue from this unusual nozzle. If the efflux speed is
80.2 ft/s, what force is required at the flange to hold the nozzle in
place? The pressure in the 4 in. pipe (D = 3.5 in.) is 50 psig.

DP

U\.

Y
d
Vj
30°
PROBLEM 6.54

6.55 Liquid (S = 1.2) enters the “black sphere” through a 2 in.
pipe with velocity of 50 ft/s and a pressure of 60 psig. It leaves the
sphere through two jets as shown. The velocity in the vertical jet
is 100 ft/s, and its diameter is 1 in. The other jet’s diameter is also
1 in. What force through the 2 in. pipe wall is required in the

x- and y-directions to hold the sphere in place? Assume the
sphere plus the liquid inside it weighs 200 1bf.

6.56 @ Liquid (S = 1.5) enters the “black sphere” through a 5
cm pipe with a velocity of 10 m/s and a pressure of 400 kPa. It
leaves the sphere through two jets as shown. The velocity in the
vertical jet is 30 m/s, and its diameter is 25 mm. The other jet’s
diameter is also 25 mm. What force through the 5 cm pipe wall is
required in the x- and y-directions to hold the sphere in place?
Assume the sphere plus the liquid inside it weighs 600 N.

I y (vertical)

—_—X

"Black sphere"

PROBLEMS 6.55, 6.56

Applying the Momentum Equation to Pipe Bends (§6.4)

6.57 J{L_U} A hot gas stream enters a uniform-diameter return
bend as shown. The entrance velocity is 100 ft/s, the gas
density is 0.02 lbm/ft’, and the mass flow rate is 1 Ibm/s. Water
is sprayed into the duct to cool the gas down. The gas exits with
a density of 0.06 Ibm/ft’. The mass flow of water into the gas is
negligible. The pressures at the entrance and exit are the same
and equal to the atmospheric pressure. Find the force required
to hold the bend.

PROBLEMS

100 ft/s
— Water spray
—x
-
PROBLEM 6.57

6.58 Assume that the gage pressure p is the same at sections
and 2 in the horizontal bend shown in the figure. The fluid
flowing in the bend has density p, discharge Q, and velocity
The cross-sectional area of the pipe is A. Then the magnitud
the force (neglecting gravity) required at the flanges to hold 1
bend in place will be (a) pA, (b) pA + pQV,(c) 2pA + pQV,
(d) 2pA + 2pQV.

6.59 FLU's The pipe shown has a 180° vertical bend in it. Th
diameter D is 1 ft, and the pressure at the center of the uppe
pipe is 15 psig. If the flow in the bend is 20 cfs, what externa
force will be required to hold the bend in place against the
action of the water? The bend weighs 200 Ibf, and the volum
of the bend is 3 ft*. Assume the Bernoulli equation applies.
(p = 62.4 Ibm/ft’.)

6.60 The pipe shown has a 180° horizontal bend in it as sho'
and D is 20 cm. The discharge of water (p = 1000 kg/m®) in

pipe and bend is 0.35 m?/s, and the pressure in the pipe and

is 100 kPa gage. If the bend volume is 0.10 m’, and the bend

weighs 400 N, what force must be applied at the flanges to hc
the bend in place?

6.61 Set up the solution for Problem 6.60, and answer the
following questions:

a. Do the two pressure forces from the inlet and exit a
in the same direction, or in opposite directions?

b. For the data given, which term has the larger magni
(in N), the pressure force term, or the net momentu
flux term?

PROBLEMS 6.58, 6.59, 6.60, 6.61
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6.62 Water (at 50°F) flows in the 90° horizontal bend at a rate of
12 cfs and discharges into the atmosphere past the downstream
flange. The pipe diameter is 1 ft. What force must be applied at
the upstream flange to hold the bend in place? Assume that the
volume of water downstream of the upstream flange is 4 ft* and
that the bend and pipe weigh 100 Ibf. Assume the pressure at the
inlet section is 4 psig.

6.63 @ s The gage pressure throughout the horizontal 90°
pipe bend is 300 kPa. If the pipe diameter is 1 m and the water
(at 10°C) flow rate is 10 m®/s, what x-component of force must
be applied to the bend to hold it in place against the water
action?

PROBLEMS 6.62, 6.63

6.64 This 30° vertical bend in a pipe with a 2 ft diameter carries
water (p = 62.4 bm/ft’) at a rate of 31.4 cfs. If the pressure p, is
10 psi at the lower end of the bend, where the elevation is 100 ft,
and p, is 8.5 psi at the upper end, where the elevation is 103 ft,
what will be the vertical component of force that must be exerted
by the “anchor” on the bend to hold it in position? The bend
itself weighs 300 1b, and the length L is 4 ft.

Flow direction

Expansion joints to
eliminate force transfer
between pipe and

Bend anchor

PROBLEM 6.64

6.65 " This bend discharges water (p = 1000 kg/m?) into
the atmosphere. Determine the force components at the flange
required to hold the bend in place. The bend lies in a horizontal
plane. Assume viscous forces are negligible. The interior volume
of the bend is 0.25 m*, D, = 60 cm, D, = 30 cm,and V, = 10 m/s.
The mass of the bend material is 250 kg,

PROBLEM 6.65

6.66 FLUs This nozzle bends the flow from vertically upward t
30° with the horizontal and discharges water (y = 62.4 Ibf/ft*) .
a speed of V = 130 ft/s. The volume within the nozzle itself is
1.8 ft>, and the weight of the nozzle is 100 Ibf. For these conditios
what vertical force must be applied to the nozzle at the flange t«
hold it in place?

Vertical

Volume = 1.8 f

Flange

A=10R
PROBLEM 6.66

6.67 A pipe 1 ft in diameter bends through an angle of 135°. Tt
velocity of flow of gasoline (S = 0.8) is 20 ft/s, and the pressure
10 psig in the bend. What external force is required to hold the
bend against the action of the gasoline? Neglect the gravitation:
force.

6.68 F1U's A 6 in. horizontal pipe has a 180° bend in it. If the
rate of flow of water (60°F) in the bend is 2 cfs and the pressure
therein is 20 psig, what external force in the original direction ¢
flow is required to hold the bend in place?

6.69 A pipe 15 cm in diameter bends through 135°. The velocit
of flow of gasoline (S = 0.8) is 8 m/s, and the pressure is 100 kF
gage throughout the bend. Neglecting gravitational force,
determine the external force required to hold the bend against
the action of the gasoline.

6.70 A horizontal reducing bend turns the flow of water

(p = 1000 kg/m?) through 60°. The inlet area is 0.001 m? and th
outlet area is 0.0001 m?. The water from the outlet discharges int
the atmosphere with a velocity of 50 m/s. What horizontal force
(parallel to the initial flow direction) acting through the metal of
the bend at the inlet is required to hold the bend in place?



6.71 Water (at 10°C) flows in a duct as shown. The inlet water
velocity is 10 m/s. The cross-sectional area of the duct is 0.1 m?
Water is injected normal to the duct wall at the rate of 500 kg/s
midway between stations 1 and 2. Neglect frictional forces on the
duct wall. Calculate the pressure difference (p1 — p;) between
stations 1 and 2.

@ @ [Venical

10m/s ——p

e

A4=0.10m? /—IT l§

500 kg/s
PROBLEM 6.71

6.72 FLUs For this wye fitting, which lies in a horizontal plane,

the cross-sectional areas at sections 1,2, and 3 are 1 5112,
and 0.25 f, respectively. At these same respective sections the
pressures are 1000 psfg, 900 psfg, and 0 psfg, and the water
discharges are 20 cfs to the right, 12 cfs to the right, and exits to
atmosphere at 8 cfs, What x-component of force would have to
be applied to the wye to hold it in place?

20 cfs 1 2) 12cfs
\

—_—

PROBLEM 6.72

6.73 Water (p = 62.4 Ibm/ft*) flows through a horizontal bend
and T section as shown. The mass flow rate entering at section
ais 12 1bm/s, and those exiting at sections b and c are 6 Ibm/s each.
The pressure at section a is 5 psig. The pressure at the two outlets is
atmospheric. The cross-sectional areas of the pipes are the same: 5 in®.
Find the x-component of force necessary to restrain the section,

6.74 Water (p = 1000 kg/m’) flows through a horizontal bend
and T section as shown. At section a the flow enters with a
velocity of 6 m/s, and the pressure is 4.8 kPa, At both sections b
and c the flow exits the device with a velocity of 3 m/s, and the
pressure at these sections is atmospheric ( p = 0). The cross-
sectional areas at a, b, and c are all the same: 0.20 mZ Find the
x- and y-components of force necessary to restrain the section.

— P
] —

[

PROBLEMS 6.73,6.74

PROBLEMS

6.75 For this horizontal T through which water (p =10001
is flowing, the following data are given: Q, = 0.25 m’/s,
Q; = 0.10 m/s, p, = 100 kPa, p, = 70 kPa, P3 = 80 kPa,
D, =15cm,D, = 7cm, and D; = 15 cm. For these condit
what external force in the x-y plane (through the bolts or «
supporting devices) is needed to hold the T in place?

®> ' 9 |

o _0% i
% N (% 71
D, @ Dy

e N

PROBLEM 6.75

Applying Momentum Equation: Other Situations (§6.4)

6.76 g“:)h’ Firehoses can break windows. A 0.2-m diameter (
firehose is attached to a nozzle with a 0.1 m diameter (d;) ou
The free jet from the nozzle is deflected by 90° when it hits t|
window as shown. Find the force the window must withstan,
due to the impact of the jet when water flows through the
firehose at a rate of 0.15 m¥s,

6.77 @s A fireman is soaking a home that is dangerously ¢
to a burning building. To prevent water damage to the inside o
neighboring home, he throttles down his flow rate so thatitv
not break windows. Assuming the typical window should be
to withstand a force up to 25 Ibf, what is the largest volumetri
flow rate he should allow (gal/min.), given an 8-inch diamete
(Dy) firehose discharging through a nozzle with 4-inch diame
(d;) outlet. The free jet from the nozzle is deflected by 90° wh.
it hits the window as shown.

‘/- Windov

T .

PROBLEMS 6.76, 6.77



6.78 For laminar flow in a pipe, wall shear stress (7p) causes the
velocity distribution to change from uniform to parabolic as
shown. At the fully developed section (section 2), the velocity is
distributed as follows: 4 = tp[1 — (r/ro)?]. Derive a formula for
the force on the wall due to shear stress, Fr, between l and 2 asa
function of U (the mean velocity in the pipe), p. p1, P2, and D
(the pipe diameter).

\O) ®

E P —-—-—-II —_x
T o == |:
\
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PROBLEM 6.78

6.79 @s The propeller on a swamp boat produces a slipstream
3 ft in diameter with a velocity relative to the boat of 100 ft/s. If
the air temperature is 80°F, what is the propulsive force when the
boat is not moving and also when its forward speed is 30 ft/s?
Hint: Assume that the pressure, except in the immediate vicinity
of the propeller, is atmospheric.

\)l
|

-

PROBLEM 6.79

6.80 ¥1Us A wind turbine is operating in a 12 m/s wind that has
a density of 1.2 kg/m’. The diameter of the turbine silhouette

is 4 m. The constant-pressure (atmospheric) streamline has

a diameter of 3 m upstream of the windmill and 4.5 m
downstream. Assume that the velocity distributions are uniform
and the air is incompressible. Determine the thrust on the wind
turbine.

P = Pam
3m '[
=l T
PROBLEM 6.80

6.81 FLU’s The figure illustrates the principle of the jet pump.
Derive a formula for p, — p, as a function of D;, V;, Do, Vi, and p.

Assume that the fluid from the jet and the fluid initially flowing
in the pipe are the same, and assume that they are completely
mixed at section 2, so that the velocity is uniform across that
section. Also assume that the pressures are uniform across both
sections 1 and 2. What is p, — p, if the fluid is water, A;/Ao = 1/3,
V;=15m/s,and Vo =2 m/s? Neglect shear stress.
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PROBLEM 6.81

6.82 Jet-type pumps are sometimes used to circulate the flow in
basins in which fish are being reared. The use of a jet-type pumg
eliminates the need for mechanical machinery that might be
injurious to the fish. The accompanying figure shows the basic
concept for this type of application. For this type of basin the je!
would have to increase the water surface elevation by an amoun
equal to 6V'%/2g, where V is the average velocity in the basin

(1 ft/s as shown in this example). Propose a basic design for a je
system that would make such a recirculating system work for a
channel 8 ft wide and 4 ft deep. That is, determine the speed,
size, and number of jets.

Nozzle and jet 6 r
{_ Y _z; Nozzle 2
"'———4‘ﬁ — Jet Chann
E— ¢ flo
_.%JJ Pump
8 ft 1ft/s
Plan view View A-A
PROBLEM 6.82

6.83 An engineer is measuring the lift and drag on a wind
turbine blade section mounted in a two-dimensional wind
tunnel. The wind tunnel is 0.5 m high and 0.5 m deep (into the
paper). The upstream wind velocity is uniform at 10 m/s, and A
downstream velocity is 12 m/s and 8 m/s as shown. The vertic:
component of velocity is zero at both stations. The test section
1 m long. The engineer measures the pressure distribution in t
tunnel along the upper and lower walls and finds

I

p. = 100 — 10x — 20x(1 — x)(Pa gage)
p =100 — 10x + 20x(1 — x)(Pa gage)

where x is the distance in meters measured from the beginnir
of the test section. The gas density is homogeneous throughot
and equal to 1.2 kg/m®. The lift and drag are the vectors indici
on the figure. The forces acting on the fluid are in the opposit
direction to these vectors. Find the lift and drag forces acting
on the wind turbine blade section.
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PROBLEM 6.83

6.84 ﬁ“ﬁs A torpedolike device is tested in a wind tunnel with
an air density of 0.0026 slugs/ft’. The tunnel is 3 ft in diameter,
the upstream pressure is 0.24 psig, and the downstream
pressure is 0.10 psig. If the mean air velocity V is 120 fi/s,
what are the mass rate of flow and the maximum velocity at
the downstream section at C? If the pressure is assumed to be
uniform across the sections at A and C, what is the drag of the
device and support vanes? Assume viscous resistance at the
walls is negligible.

g Pa

b=

SuppoR vanes Pc
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PROBLEM 6.84

6.85 A ramjet operates by taking in air at the inlet, providing
fuel for combustion, and exhausting the hot air through the exit.
The mass flow at the inlet and outlet of the ramjet is 60 kg/s (the
mass flow rate of fuel is negligible). The inlet velocity is 225 m/s.
The density of the gases at the exit is 0.25 kg/m®, and the exit area
is 0.5 m”. Calculate the thrust delivered by the ramjet. The ramjet
is not accelerating, and the flow within the ramjet is steady.

Fuel spray Combustion zone

P> i
Vo | > | Vou
— > | —
L > J'

PROBLEM 6.85

6.86 @s A modern turbofan engine in a commercial jet
takes in air, part of which passes through the compressors,
combustion chambers, and turbine, and the rest of which
bypasses the compressor and is accelerated by the fans. The
mass flow rate of bypass air to the mass flow rate through the
compressor-combustor-turbine path is called the “bypass ratio”
The total flow rate of air entering a turbofan is 300 kg/s with a
velocity of 300 m/s. The engine has a bypass ratio of 2.5.

The bypass air exits at 600 m/s, whereas the air through the

PROBIEMS 4

compressor-combustor-turbine path exits at 1000 m/s. What is
thrust of the turbofan engine? Clearly show your control volum
and application of momentum equation.

Bypass
Combustor

—>» 600 m/s
—> 1000 m/s

300m/s V)
—_— ';ll — [=l-='_l
tity — i

vJ/

PROBLEM 6.86

Applying Momentum Equation to Moving CVs (§6.5)

6.87 Using the Internet or some other source as reference, de:
in your own words the meaning of “inertial reference frame”

6.88 The surface of the earth is not a true inertial reference
frame because there is a centripetal acceleration due to the
earth’s rotation. The earth rotates once every 24 hours and has
a diameter of 8000 miles. What is the centripetal acceleration
on the surface of the earth, and how does it compare to the
gravitational acceleration?

6.89 A large tank of liquid is resting on a frictionless plane as
shown. Explain in a qualitative way what will happen after the
cap is removed from the short pipe.

6.90 Pﬁf'\u"s The open water tank shown is resting on a friction
plane. The capped orifice on the side has a 4-cm diameter exit
pipe that is located 3 m below the surface of the water. Ignore
friction effects, and determine the force necessary to keep the
tank from moving when the cap is removed.

IIiiﬂ

X

PROBLEMS 6.89, 6.90

6.91 Consider a tank of water (p = 1000 kg/m?) in a containe
that rests on a sled. A high pressure is maintained by a
compressor so that a jet of water leaving the tank horizontally
from an orifice does so at a constant speed of 25 m/s relative t
the tank. If there is 0.10 m® of water in the tank at time tand t
diameter of the jet is 15 mm, what will be the acceleration of t
sled at time t if the empty tank and compressor have a weight
350 N and the coefficient of friction between the sled and the
is 0.05?

WLy

6.92 'PLUS A cart is moving along a railroad track at a constan
velocity of 5 m/s as shown, Water (p = 1000 kg/m?) issues fro:
nozzle at 10 m/s and is deflected through 180° by a vane on th
cart. The cross-sectional area of the nozzle is 0.002 m? Calcul:
the resistive force on the cart.
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Nozzle

PROBLEM 6.92

6.93 A water jet is used to accelerate a cart as shown. The
discharge (Q) from the jet is 0.1 m*/s, and the velocity of the

jet (V}) is 10 m/s. When the water hits the cart, it is deflected
normally as shown. The mass of the cart (M) is 10 kg. The
density of water (p) is 1000 kg/m?. There is no resistance on the
cart, and the initial velocity of the cart is zero. The mass of the
water in the jet is much less than the mass of the cart. Derive

an equation for the acceleration of the cart as a function of Q, p,
V., M, and V;. Evaluate the acceleration of the cart when the
velocity is 5 m/s.

6.94 FUUS A water jet strikes a cart as shown. After striking the
cart, the water is deflected vertically with respect to the cart. The
cart is initially at rest and is accelerated by the water jet. The
mass in the water jet is much less than that of the cart. There is
no resistance on the cart. The mass flow rate from the jet is 45 kg/s.
The mass of the cart is 100 kg. Find the time required for the cart
to achieve a speed one-half of the jet speed.

PROBLEMS 6.93, 6.94

6.95 It is common practice in rocket trajectory analyses to
neglect the body-force term and drag, so the velocity at burnout
is given by

_1 st
Voo = N n MJI'
Assuming a thrust-to-mass-flow ratio of 3000 N + s/kg and a final
mass of 50 kg, calculate the initial mass needed to establish the
rocket in an earth orbit at a velocity of 7200 m/s.

6.96 A very popular toy on the market several years ago was the
water rocket. Water (at 10°C) was loaded into a plastic rocket and
pressurized with a hand pump. The rocket was released and
would travel a considerable distance in the air. Assume that a
water rocket has a mass of 50 g and is charged with 100 g of
water. The pressure inside the rocket is 100 kPa gage. The exit
area is one-tenth of the chamber cross-sectional area. The inside
diameter of the rocket is 5 cm. Assume that Bernoulli’s equation

is valid for the water flow inside the rocket. Neglecting air
friction, calculate the maximum velocity it will attain.

PROBLEM 6.96

The Angular Momentum Equation (§6.6)

6.97 FTU's Water (p = 1000 kg/m®) is discharged from the slot i
the pipe as shown. If the resulting two-dimensional jet is 100 cn
long and 15 mm thick, and if the pressure at section A-A is 30 kP
what is the reaction at section A-A? In this calculation, do not
consider the weight of the pipe.

‘ Diameter = 8 cm

\ Dlameter 5cm

8cm
-—

| 130 cm
Elevation view
I )

O —.

4mfs‘

lOOcm —’1

|
1
1
1

Tm/s

Plan view

PROBLEM 6.97

6.98 Two small liquid-propellant rocket motors are mounted a
the tips of a helicopter rotor to augment power under emergenc
conditions. The diameter of the helicopter rotor is 7 m, and it
rotates at 1 rev/s. The air enters at the tip speed of the rotor, and
exhaust gases exit at 500 m/s with respect to the rocket motor.
The intake area of each motor is 20 cm? and the air density is
1.2 kg/m®. Calculate the power provided by the rocket motors.
Neglect the mass rate of flow of fuel in this calculation.
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PROBLEM 6.98



6.99 Design a rotating lawn sprinkler to deliver 0.25 in. of
water per hour over a circle of 50 ft radius. Make the simplifying
assumptions that the pressure to the sprinkler is 50 psig and
that frictional effects involving the flow of water through the
sprinkler flow passages are negligible (the Bernoulli equation

is applicable). However, do not neglect the friction between

the rotating element and the fixed base of the sprinkler.

6.100 F"alis What is the force and moment reaction at section 1?
Water (at 50°F) is flowing in the system. Neglect gravitational
forces.

30°

¥
®p=20psi A=0.1

Pipe area __»
=0.6 f? EL
L‘ 36in. *-‘ V=50ft/s

A=02/
PROBLEM 6.100

6.101 What is the reaction at section 1? Water (p = 1000 kg/m?)
is flowing, and the axes of the two jets lie in a vertical plane. The
pipe and nozzle system weighs 90 N.

I 4 60°, ,  4=001m?
() p=200kpPa 7" V=20m/s
|
Pipe area
=0.10 m’ =
| A=002m’
I 100 cn > V=20mr's

PROBLEM 6.101

6.102 A reducing pipe bend is held in place by a pedestal as
shown. There are expansion joints at sections 1 and 2, so no force

PROBLEMS

is transmitted through the pipe past these sections. The pres:
at section 1 is 20 psig, and the rate of flow of water (p = 62.4 Ibr
is 2 cfs. Find the force and moment that must be applied at
section 3 to hold the bend stationary. Assume the flow is
irrotational, and neglect the influence of gravity.

6 in. diameter

4 in. diameter

PROBLEM 6.102

6.103 A centrifugal fan is used to pump air. The fan rotor is
in diameter, and the blade spacing is 2 in. The air enters with
angular momentum and exits radially with respect to the fan
rotor. The discharge is 1500 cfm. The rotor spins at 3600 rev/:
The air is at atmospheric pressure and a temperature of 60°F.
Neglect the compressibility of the air. Calculate the power (hj
required to operate the fan.

\w = 3600 rpm

— 1

PROBLEM 6.103



