CONTROL VOLUME
APPROACH AND
CONTINUITY
EQUATION

Chapter Road Map

This chapter describes how conservation of mass ¢
be applied to a flowing fluid. The resulting equatic
is called the continuity equation. The continuity
equation is applied to a spatial region called a
control volume, which is also introduced.

Learning Objectives

STUDENTS WILL BE ABLE TO

® Deline mass flow rate and volume flow rate. (§5.1)

® Apply the flow rate equations. Describe how the flow
rate equations are derived. (§5.1)

* Define and calculate the mean velocity. (§5.1)

FIGURE 5.1 - * Describe the types of systems that engineers use for
: analysis. List the key differences between a CV and
a closed system. (§5.2)

The photo shows an evacuated-ube solar collector that
is being fested to measure the efficiency. This project

was done by undergraduate engineering students. The - * Describe the purpose, application, and derivation
team applied the control volume concept, the continuity of the Reynolds transport theorem. (§5.2)

equation, the flow rate equations as well as knowledge - ® Describe and apply the continuity equation. Describe
from thermodynamics and heat transfer. (Photo by Donald : how the equation is derived. {§5.3, §5.4)

Elger.) ~* Explain what cavitation means, describe why it is

important, and list guidelines for designing to avoid
cavitation. {§5.5)



FIGURE 5.2

Sketches used to define
volume flow rate

[a) gasoline flowing out of
a valve at a filling station,
{b) air flowing inward to

a person during inhalation.

5.1 Characterizing the Rate of Flow

Engineers characterize the rate of flow using the (a) mass flow rate, m, and (b) the volume flc
rate Q. Thus, these concepts and associated equations are introduced in this section.

Volume Flow Rate (Discharge)

Volume flow rate Q is the ratio of volume to time at an instant in time. In equation form,

= lim — 5.
st Atlino At (

(volume of fluid passing through a cross sectional area) A¥
interval of time instant

: EXAMPLE. To describe volume flow rate (Q) for a gas pump (Fig. 5.2a), select a crot
i sectional area. Then, Q is the volume of gasoline that flowed across the specified sectis
! during a specified time interval (say one second) divided by the time interval. The un
i could be gallons per minute or liters per second.

EXAMPLE. To describe volume flow rate (Q) for a person inhaling while doing yo
. (Fig. 5.2b), select a cross-sectional area as shown. Then, Q is the volume of air that flow
! across the specified section during a specified time interval (say At = 0.01 s) divided by t
i time interval. Notice that the time interval should be short because the flow rate is contin
i ously varying during breathing. The idea is to let At — 0 so that the flow rate is charactc
i ized at an instant in time.

Q = volume/time

Q = volume/time
( of gasoline of air (instant in time)
!
IT <
Specified cross- \ Specified cross-

sectional area

(a) (b)

Volume flow rate is often called discharge. Because these two terms are synonyms, this t¢
uses both terms interchangeably.

The SI units of discharge are cubic meters of volume per second (m%/s). In traditios
units, the consistent unit is cubic feet of volume per second (ft*/s). Often this unit is writt
as cfs, which stands for cubic feet per second.

Deriving Equations for Volume Flow Rate (Discharge)

This subsection shows how to derive useful equations for discharge Q in terms of fluid veloc
and section area A.

To relate Q to velocity V, select a flow of fluid (Fig. 5.3) in which velocity is assumed to
constant across the pipe cross section. Suppose a marker is injected over the cross section
section A-A for a period of time At. The fluid that passes A-A in time At is represented by 1
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marked volume. The length of the marked volume is VAt so the volume is A¥ = AVAt. Apply
the definition of Q:

Q= lim 2¥_ yp AVAL_

—=VA 5.2
At—0 At a0 At 5.2

In Eq. (5.2), notice how the units work out:
Q=VA
Flow Rate (m*/s) = Velocity (m/s) X Area (m?)

FIGURE 5.3 FIGURE 5.4

Volume of fluid in flow with Volume of fluid that passes section
uniform velocity distribution that AA in fime Af.

passes section A-A in time At.

Cross-sectional
area A

Because Eq. (5.2) is based on a uniform velocity distribution, consider a flow in which the
velocity varies across the section (see Fig. 5.4). The blue shaded region shows the volume of
fluid that passes across a differential area of the section. Using the idea of Eq. (5.2), let dQ = V dA.
To obtain the total flow rate, add up the volume flow rate through each differential element and
then apply the definition of the integral:

<r=2vmm=Jvm (5.3)

section A

Eq. (5.3) means that velocity integrated over section area gives discharge. To develop another
useful result, divide Eq. (5.3) by area A to give

v=2_1
Vs AJVM (5.4)

A
Eq. (5.4) provides a definition of V, which is called the mean velocity. As shown, the mean
velocity is an area-weighted average velocity. For this reason, mean velocity is sometimes
called area-averaged velocity. This label is useful for distinguishing an area-averaged velocity
from a time-averaged velocity, which is used for characterizing turbulent flow (see Section 4.3).
Some useful values of mean velocity are summarized in Table 5.1.
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TABLE 5.1 Values of Mean Velocity

Situation Equation for Mean Velocity
Fully developed laminar flow in a round pipe. V/ Ve = 0.5, where V. is the value of the
For more information, see Section 10.5. maximum velocity in the pipe. Note that V,,,,, is

the value of the velocity at the center of the pipe
Fully developed laminar flow in a rectangular VIV, = 2/3 = 0.667
channel (channel has infinite width).

Fully developed turbulent flow in a round pipe. ~ V/V,,,. = 0.79 to 0.86, where the ratio depend:
For more information, see Section 10.6. on Reynolds number.

The following checkpoint problems gives you a chance to test your understanding
flow rate.

v/ CHECKPOINT PROBLEM 5.1

Consider flow through two round pipes. 20
Pipe A has twice the diameter of pipe B.

1 D
The mean velocity in each pipe is the ?; 1
same. What is Q,/Q5? Y — V —s i

a.l

b.2

c.4 Pipe A Pipe B

d.8

v CHECKPOINT PROBLEM 5.2

Consider flow through two S —,
round pipes. The maximum I =
velocity in each pipe is the —— =% B
same. The only difference is the [ B
velocity distribution. Which PheA G
pipe has the larger value of Pe >t
mean velocity? Why?

a.Pipe A

b. Pipe B

.c. They both have the same mean velocity

Eq. (5.4) can be generalized by using the concept of the dot product. The dot prodi
is useful when the velocity vector is aligned at an angle with respect to the section a
(Fig. 5.5). The only component of velocity that contributes to the flow through the d
ferential area dA is the component normal to the area, V,. The differential dischar
through area dA is

dQ = V,dA
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Velocity component Va
normal to surface

Differential area

vector Fluid velocity

vector

Differential
ares, d4
If the vector, A, is defined with magnitude equal to the differential area, dA, and direction normal
to the surface, then V,dA = |V| cos 8 dA = V - dA where V - dA is the dot product of the two
vectors. Thus a more general equation for the discharge or volume flow rate through a surface A is

Q= J V-dA (5.5)
A
If the velocity is constant over the area and the area is a planar surface, then the discharge is
Q=V-A
If, in addition, the velocity and area vectors are aligned, then
Q=VA

which reverts to the original equation developed for discharge, Eq. (5.2).

Mass Flow Rate

Mass flow rate 1 is the ratio of mass to time at an instant in time. In equation form,

) mass of fluid passing through a cross sectional area Am
m= o T lim —  (5.6)
ins

interval of time T Ao At

in time
The common units for mass flow rate are kg/s, lbm/s, and slugs/s.
Using the same approach as for volume flow rate, the mass of the fluid in the marked
volume in Fig. 5.3 is Am = pA¥, where p is the average density. Thus, one can derive several
useful equations:

in= tim 3™ = plim 5¥ = 5o
ar—0 At pAt—>0 At P (5.7)
= pAV
The generalized form of the mass flow equation corresponding to Eq. (5.5) is
m= J pv - dA {5.8)

A

where both the velocity and fluid density can vary over the cross-sectional area. If the density
is constant, then Eq. (5.7) is recovered. Also if the velocity vector is aligned with the area
vector, such as integrating over the cross-sectional area of a pipe, Eq. (5.8) reduces to

m = J pVdA (5.9)
A

Working Equations

Table 5.2 summarizes the flow rate equations. Notice that multiplying Eq. (5.10) by density
gives Eq. (5.11).

FIGURE 5.5

Velocity vector oriented
at angle 6 with respect
normal.



TABLE 5.2 Summary of the Flow Rate Equations

| |

Description | Equation | Terms
! |
Volume flow rate — } = vol flow rate = discharge (m?/s
euaﬁm{l Q=VA=ﬁ=JvdA=fv.dA (s.10) 3~ volume wr ischarge (m ),
9 | P A A V = mean velocity = area averaged velocity (m/s
|
| A = cross section area (m?)
| i = mass flow rate (kg/s)
V = speed of a fluid particle (m/s)
| dA = differential area (m?)
V = velocity of a fluid particle (m/s)
| dA = differential area vector (m?)
(points outward from control surface)
Mass flow rate | . = t = mass flow rate (kg/s
equat{in | ' m=pAV =pQ = fdeA = ij +dA  (5.11) | _ . (ke 3)
A A | p=mass density (kg/m?)

Example Problems

For most problems, application of the flow rate equation involves substituting numbers into t
appropriate equation; see Example 5.1 for this case.

EXAMPLE 5.1 © To find the last goal (V'), apply the volume flow rate equation
: (Eq.5.10):

Applying the Flow Rate Equations to a Flow of Air in a Pipe ] (b)

Problem Statement i The plan is

Air that has a mass density of 1.24 kg/m’ (0.00241 slugs/f®) P Calculate Q using Eq. (a).
flows in a pipe with a diameter of 30 cm (0.984 ft) at a mass : 2 leulate V7 usi b

rate of flow of 3 kg/s (0.206 slugs/s). What are the mean ;! Galculate ¥/ using Eq,(b),
velocity and discharge in this pipe for both systems of units?

Take Action (Execute the Plan)

Define the Situation 1. Mass flow rate equation:
Air flows in a pipe. j 3 kg/s
: Q=ﬂ=———g 5 =|242m’/s
/— 0.3 m=0.984 fi : p 124kg/m
: s 3531t
.._.E Y : Q=242ms X == )5 85.5 cfs
Air

p =124 kg/m’ =0.00241 shug/f’
=3 kg/s =0.0206 slug/s

_Q_ 24e2mis
State the Goal : V= A W =(34.2m/s
Q(m"/s and ft*/s) 4@ Volume flow rate (discharge)

1ft
V(m/s and ft/s) 4 Mean velocity Y5 Aamisx (0.3048 m) E

Generate Ideas and Make a Plan

Because Q is the goal and i and p are known, apply the mass
flow rate equation (Eq. 5.11):

m=pQ (a)

i 2. Volume flow rate equation:




When fluid passes across a control surface and the velocity vector is at an angle with respect
to the surface normal vector, then one uses the dot product. This case is illustrated by Example 5.2.

EXAMPLE 5.2 State the Goal

Caleulating the Volume Flow Rate by Applying the Dot Product Q(m’/s) 4m discharge per meter of width of the channel

Problem Statement Generate Ideas and Make a Plan

Water flows in a channel that has a slope of 30°. If the velocity Because V and A are not at right angles, apply
is assumed to be constant, 12 m/s, and if a depth of 60 cm is
measured along a vertical line, what is the discharge per meter
of width of the channel?

Q = V- A = VA cos 0. Because all variables are known except
Q. the plan is to substitute in values.

Take Action (Execute the Plan)

Q=V-+A = V(cos30°)A
= (12 m/s)(cos 30°)(0.6 m)
= [;24 m®/s per meter|

i Review the Solution and the Process

1. Knowledge. This example involves a channel flow. A flow is
a channel flow when a liquid (usually water) flows with
open surface exposed to air under the action of gravity.

DEGnEthe:Sipeton i 2. Knowledge. The discharge per unit width is usually

Water flows in an open channel. :  designated as q.

Another important case is when velocity varies at different points on the control surface.
In this case, one uses an integral to determine flow rate as specified by Eq. (5.10):

Q=JVdA.
A

In this integral, the differential area dA depends on the physics of the problem. Two common
cases are shown in Table 5.3. Analyzing a variable velocity is illustrated by Example 5.3.

TABLE 5.3 Differential Areas for Determining Flow Rate

Label Sketch Description

Channel Flow & dd = wdy When velocity varies as V = V(y) in a rectangular channel, then use a
Channel walt | differential area dA given by dA = wdy where w is the width of the
channel and dy is a differential height.

_ dardr _;V;xe_n v_é_locit)' varies_as_V: V(r)ina roun:i;i;é, th_en usea
differential area dA given by dA = 2wrdr where r is the radius of the
differential area and dr is a differential radius.

Pipe Flow




EXAMPLE 5.3

Determining Flow Rate by Integration

Problem Statement

The water velocity in the channel shown in the accompanying
figure has a velocity distribution across the vertical section
equal to u/uy,, = (y/d)"2. What is the discharge in the
channel if the water is 2 m deep (d = 2 m), the channel is 5 m
wide, and the maximum velocity is 3 m/s?

u

paRE
i)

Define the Situation

Water flows in a channel.
u(y)= um(y/d)"2
dyIr/ a
A= |

&
dembr_/ ZZ7 jllf

| w=5m

State the Goal
Q(m’/s) 4m Discharge (Volume Flow Rate)

Generate Ideas and Make a Plan

Because velocity is varying over the cross-sectional area, apply
: Eq.(5.10):

Q=JVdA (c

Because Eq. (a) has two unknowns (V and dA), find equations
¢ for these unknowns. The velocity is given:

V = 4(y) = tinae(yld)" (b

: From Table 5.3, the differential area is

dA = wdy (c

Notice that the differential area is sketched in the situation
: diagram. Substitute Egs. (b) and (c) into Eq. (a):

d
Q- j (1) dy (d
0

The plan is to integrate Eq. (d) and then plug numbers in.

Take Action (Execute the Plan)

d
Q=J “max(y/d)UZWdy
0

d
Wlnax
= j ym d}’
0

dl.’z
Wiy 2 4 Wi, 2
< Ml 2 | o W 2 pra
d’“ 3 d“ 3

= (.‘:(nzl)r(n%z/s)xgx (2m)*? = 20m3/s|

Engineers solve problems in fluid mechanics using the control volume approach. Equations f
this approach are derived using Reynolds transport theorem. These topics are presented in t}

section.

The Closed System and the Control Volume

As introduced in Section 2.1, a system is whatever the engineer selects for study. The surroun
ings are everything that is external to the system, and the boundary is the interface between tl
system and the surroundings. Systems can be classified into two categories: the closed syste
and the open system (also known as a control volume).

The closed system (also known as a control mass) is a fixed collection of matter that t]
engineer selects for analysis. By definition, mass cannot cross the boundary of a closed syster



SECTION 5.2 THE CONTROL VOLUME APPROACH 17

The boundary of a closed system can move and deform.

: EXAMPLE. Consider air inside a cylinder (see Fig. 5.6). If the goal is to calculate the pres-
i sure and temperature of the air during compression, engineers select a closed system com-
i prised of the air inside the cylinder. The system boundaries would deform as the piston
i moves so that the closed system always contains the same matter. This is an example of a
i closed system because the mass within the system is always the same.

/—Piston moving downward

Closed system
(air inside the cylinder)

System boundary

Because the closed system involves selection and analysis of a specific collection of matter,
the closed system is a Lagrangian concept.

The control volume (CV or cv; also known as an open system) is a specified volumetric
region in space that the engineer selects for analysis. The matter inside a control volume is usu-
ally changing with time because mass is flowing across the boundaries. Because the control
volume involves selection and analysis of a region in space, the CV is an Eulerian concept.

: EXAMPLE. Suppose water is flowing through a tank (Fig. 5.7) and the goal is to calculate the
i depth of water h as a function of time. A key to solving this problem is to select a system, and
i the best choice of a system is a CV surrounding the tank. Note that the CV is always three
. dimensional because it is a volumetric region. However, CVs are usually drawn in two di-
i mensions. The boundary surfaces of a CV are called the control surface. This is abbreviated
i asCSorcs.

Contrel velume (CV): volumetric
region surrounding the tank

/ Control surface (CS): surface of
the control volume

A control volume can be defined so that it is deforming or fixed. When a fixed CV is
defined, this means that the shape of the CV and its volume are constant with time. When a
deforming CV is defined, the shape of the CV and its volume change with time, typically to
mimic the volume of a region of fluid.

: EXAMPLE. To model a rocket made from a balloon suspended on a string, one can define
i a deforming CV that surrounds the deflating balloon and follow the shape of the balloon
i during the process of deflation.

FIGURE 5.6
Example of a closed
system.

FIGURE 5.7

Water entering a tank
through the top and exiti
through the bottom



Summary When engineers analyze a problem, they select the type of system that is m
useful (see Fig. 5.8). There are two approaches. Using the control volume approach the engin
selects a region in space and analyzes flow through this region. Using the closed system approc
the engineer selects a body of matter of fixed identity and analyzes this matter.

Table 5.4 compares the Control Volume Approach and Closed System Approach.

FIGURE 5.8

When engineers select a system, they choose either the control volume
approach or the closed system approach. Then, they select the specific type
of system from a choice of six possibilities.

System: whatever the
engineer selects for study

Control volume can be Closed systemn
approach o
(Eulerian) ) Closed system: / (Lagrangian)

\ C r:nit:;zlu\1 (;Ium:, )
5 o of fixed identity

can be I— can be —
L

@ed CV: volum} Qeforming CV: volume ( Particle: small) Sy s‘zﬁ:&ﬁ;’:;fc.leﬁ

constant with time changes with time quantity of matter many particles

I 1

Rigid body: Isolated system:

many particles with no work or heat
fixed distance between transfer at boundaries,

TABLE 5.4 Comparison of the Control Volume and the Closed System Approaches

Feature

Closed System Approach

Control Volume Approach

Basic idea
Lagrangian versus Eulerian
Mass crossing the boundaries

Mass (quantity)

Mass (identity)

Application

Analyze a body or fixed collection of matter.
Lagrangian approach.
Mass cannot cross the boundaries.

The mass of the closed system must stay
constant with time; always the same number

Analyze a spatial region.
Eulerian approach.
Mass is allowed to cross the boundaries.

The mass of the materials inside the CV can stay
constant or can change with time.

of kilograms.

Can contain the same matter at all times. Or the
identity of the matter can vary with time.

Always contains the same matter.

Solid mechanics, fluid mechanics, thermody-
namics, and other thermal sciences.

Fluid mechanics, thermodynamics, and other
thermal sciences.

Intensive and Extensive Properties

Properties, which are measurable characteristics of a system, can be classified into two categq
ries. An extensive property is any property that depends on the amount of matter present. A
intensive property is any property that is independent of the amount of matter present.

Examples (extensive). Mass, momentum, energy, and weight are extensive propertic
because each of these properties depends on the amount of matter present. Examples (intensive
Pressure, temperature, and density are intensive properties because each of these propertie
are independent on the amount of matter present.



Many intensive properties are obtained by taking the ratio of two extensive properties. For
example, density is the ratio of mass to volume. Similarly, specific energy e is the ratio of energy
to mass.

To develop a general equation to relate intensive and extensive properties, define a generic
extensive property, B. Also, define a corresponding intensive property b.

B
o= (
mass point in space

The amount of extensive property B contained in a control volume at a given instant is

B, = J bdm = [ bpd¥ (5.12)

v (24

where dm and d¥ are the differential mass and differential volume, respectively, and the inte-
gral is carried out over the control volume.

Property Transport across the Control Surface

Because flow transports mass, momentum, and energy across the control surface, the next step
is to describe this transport. Consider flow through a duct (Fig. 5.9) and assume that the veloc-
ity is uniformly distributed across the control surface. Then, the mass flow rate through each
section is given by

m = pAV) my = py AV
The rate of outflow minus the rate of inflow is
(outflow minus inflow) = (net mass outflow rate) = 1, — my = p2 AV, — pAY)

Next, we'll introduce velocity. The same control volume is shown in Fig. 5.10 with each control
surface area represented by a vector, A, oriented outward from the control volume and with
magnitude equal to the cross-sectional area. The velocity is represented by a vector, V. Taking
the dot product of the velocity and area vectors at both stations gives

Vit A = —ViA Vot A, = VA,

FIGURE 5.9

Flow through control
volume in a duct.

FIGURE 5.10

Control surfaces
represented by area
vectors and velocities
by velocity vectors.



because at station 1 the velocity and area have the opposite directions while at station 2

velocity and area vectors are in the same direction. Now the net mass outflow rate ca
written as

net mass outflow rate = p,V, 4, — p,V}4,
=pVac A, +pV, - A (5
= E pvV-A
(=}
Equation (5.13) states that if the dot product pV - A is summed for all flows into and out of
control volume, the result is the net mass flow rate out of the control volume, or the net n
efflux (efflux means outflow). If the summation is positive, the net mass flow rate is out of

control volume. If it is negative, the net mass flow rate is into the control volume. If the inf
and outflow rates are equal, then

DpV:A=0
s
To obtain the net rate of flow of an extensive property B across a section, write

b m = B
—N— —~—

——
( B )(mass)_( B )
mass / \ time time

Next, include all inlet and outlet ports:

m
. /—/R
Bi= X bpV-A (5.1

Equation (5.14) is applicable for all flows where the properties are uniformly distribut
across the flow area. To account for property variation, replace the sum with an integral:

By = f bpV - dA (5.1

s

Eq. (5.15) will be used in the derivation of the Reynolds transport theorem.

Reynolds Transport Theorem

The Reynolds transport theorem is an equation that relates a derivative for a closed system |
the corresponding terms for a control volume. The reason for the theorem is that the conserv:
tion laws of science were originally formulated for closed systems. Over time, researchers fig
ured out how to modify the equations so that they apply to a control volume. The result is tk
Reynolds transport theorem.

To derive the Reynolds transport theorem, consider a flowing fluid; see Fig. 5.11. Th
darker shaded region is a closed system. As shown, the boundaries of the closed system chang
with time so that the system always contains the same matter. Also, define a CV as identifie
by the dashed line. At time ¢ the closed system consists of the material inside the control vol
ume and the material going in, so the property B of the system at this time is

Bcloscd system(t) = Bcv(t) + ABin (5. 16
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/ Control surface \ Au‘?w_\

-..-.q-—.l-.-\n-_-, l-r-.a;-..*‘l-_-n-—"

1 1

i :

B. () B {1+ A1) }

¢ |_—— Control volume ——] 3

AB,, — (fixed volume) Pl 4

1 1

Flow A . ] Flow ;

= Vs 3 = L L :
k System at time ¢ k System at time ¢ + At
(dark shaded region) (dark shaded region)

At time t + At the closed system has moved and now consists of the material in the control
volume and the material passing out, so B of the system is

Bclosedsyslem(t + At) = Bcv(t + At) + ABout (5-]7)

The rate of change of the property B is

dBCOSC system BCOSC system t+ At —BCOSC system t
losed system _ lim[ Josed system ) Josed syst ()] (5.18)
dt At—0 At
Substituting in Eqgs. (5.16) and (5.17) results in
dBcloseds stem BCV t+ At - Bcv t) + ABou - ABin
M e lim[ ( ) ® ‘ ] (5.19)
dt At—0 At
Rearranging terms yields
dBclosedsystem [BW(t + At) - Bcv(t)] AB t AB;
— l. + 1. oul . 1. n I
dt A:EO At A}To At AtlE:O At (5.20)

The first term on the right side of Eq. (5.20) is the rate of change of the property B inside the
control volume, or

B, (t + At) — Bw(t)] dB,,
li =— .
AITO{ At dt 1521}
The remaining terms are
AB . AB; .
1. out o B . mn s "
a0 At out and Al:_ngo At Bin
These two terms can be combined to give
Bnet = Bout - Biﬂ (5.22)

or the net efflux, or net outflow rate, of the property B through the control surface. Equation
(5.20) can now be written as
dBclosed system d

dt = EBCV + Bnet

FIGURE 5.11

Progression of a closed
system through a control
volume.



Substituting in Eq. (5.15) for B,,, and Eq. (5.12) for B, results in the general form of
Reynolds transport theorem:

dBclosed system d
————=—| bpd¥ + | bpV -

dt altfcv pa¥ f PV - da 5.
Lagrangian Eulerian

Eq. (5.23) may be expressed in words as

Rate of change Rate of change Net outflow
of property B 3 =<  of property B + of property B
in closed system in control volume through control surface

The left side of the equation is the Lagrangian form, that is, the rate of change of property
for the closed system. The right side is the Eulerian form, that is, the change of property
evaluated in the control volume and the flux measured at the control surface. This equati
applies at the instant the system occupies the control volume and provides the connecti:
between the Lagrangian and Eulerian descriptions of fluid flow. The velocity V is alwa
measured with respect to the control surface because it relates to the mass flux across t
surface,

A simplified form of the Reynolds transport theorem can be written if the mass cros
ing the control surface occurs through a number of inlet and outlet ports, and the veloci
density and intensive property b are uniformly distributed (constant) across each po

Then
dBclosed system d
————=—| bpd¥ + > pbV- 2
” " L p > pbV - A (5

where the summation is carried out for each port crossing the control surface.
An alternative form can be written in terms of the mass flow rates:

dB osed system . .
% = Lpbd¥+ CEm,,bo — gm,b,— (5.2

where the subscripts i and o refer to the inlet and outlet ports, respectively, located on tt
control surface. This form of the equation does not require that the velocity and density t
uniformly distributed across each inlet and outlet port, but the property b must be.

5.3 Continuity Equation (Theory)

The continuity equation is the law of conservation of mass applied to a control volum
Because this equation is commonly used by engineers, this section presents the relevar
topics.

Derivation

The law of conservation of mass for a closed system can be written as

d(mass of a closed system)  dMiosed system

= 5.2
dt dt 0 15-2¢



To transform (Eq. 5.26) into an equation for a control volume, apply the Reynolds transport
theorem, Eq. (5.23). In Eq. (5.23), the extensive property is mass, Boy = Maosed system- The cor-
responding value intensive property is mass per unit mass, or simply, unity.

Mlosed system
h=— =
Mclosed system

Substituting for B, and b in Eq. (5.23) gives

dmclosed system d
Tl R =2 | pd¥+ | pV-dA 5.2
dt dt Lpd Lp 15-:27)

Combining Eq. (5.26) to Eq. (5.27) gives the general form of the continuity equation.

%J pd¥ + J pV-dA =0 {5.28)

(24 cs

If mass crosses the boundaries at a number of inlet and exit ports, then Eq. (5.28) reduces
to give the simplified form of the continuity equation:

%mw + St - D=0 (5.29)

Physical Interpretation of the Continuity Equation

Fig. 5.12 shows the meaning of the terms in the continuity equation. The top row gives the
general form (Eq. 5.28), and the second row gives the simplified form (Eq. 5.29). The arrows
shows which terms have the same conceptual meaning.

The accumulation term describes the changes in the quantity of mass inside the control
volume (CV) with respect to time. Mass inside a CV can increase with time (accumulation is
positive), decrease with time (accumulation is negative) or stay the same (accumulation is
zero).

The inflow and outflow terms describe the rates at which mass is flowing across the
surfaces of the control volume. Sometimes inflow and outflow are combined to give efflux,
which is defined as the net positive rate at which is mass is flowing out of a CV. That is,
(efflux) = (outflow) — (inflow). When efflux is positive, there is a net flow of mass out
of the CV, and accumulation is negative. When efflux is negative, then accumulation is
positive.

d
= IpdV = @ «— General equation
% = @ - @ <— Simplified equation

Rate of accumulation of | _| Rate at which mass | _| Rateat which mass <— Main ideas
mass inside the CV (kg/s) |~ | enters the CV (kg/s) leaves the CV (kg/s) (mass balance)

! | 1

(Accumulation) = (Inflow) = (Outflow) «— Names of terms

FIGURE 5.12
This figure shows the

conceptual meaning of
the continuity equation



As shown in Fig, 5.12, the physics of the continuity equation can be summarized as:
accumulation = inflow — outflow (

where all terms in Eq. (5.30) are rates (see Fig.5.12)

Eq.(5.30) is called a balance equation because the ideas relate to our everyday experie
with how things balance. For example, the accumulation of cash in a bank account equals
inflows (deposits) minus the outflows (withdrawals). Because the continuity equation is a
ance equation, it is sometimes called the mass balance equation.

The continuity equation is applied at an instant in time and the units are kg/s. Someti
the continuity equation is integrated with respect to time and the units are kg. To recogni
problem that will involve integration, look for a change in state during a time interval.

5.4 Continuity Equation (Application)

This section describes how to apply the continuity equation and presents example problen

Working Equations

Three useful forms of the continuity equations are summarized in Table 5.5.

TABLE 5.5 Summary of the Continuity Equation

Description Equations Terms
General form: valid for any d f f t = time (s)
= d¥ + V-dA =0 (Eq.528

problem, dt wp csp (Eq.5.28) p = density (kg/m’)

| — . 3
Simplified form: useful when d . . d¥ = differential volume (m®)
there are well defined inlet and dt Mey + ; M, = g m; = 0 (Eq.5.29) V = fluid velocity vector (m/s)
exit ports. (reference frame is the control surface)
Pipe flow form; valid for flow P24V, = p AV, (Eq.5.33)  dA = differential area vector (m?)
in a pipe. (positive direction of dA is outward from CS

(gases: density can vary but the m, = mass inside the control volume (kg)

density must be uniform across m = pAV = mass/time crossing CS (kg/s)
sections 1 and 2). A = area of flow (m?)

(liquids: the equation reduces V= mean velocity (m/s)

to A,V, = A,V, for a constant

density assumption).

The process for applying the continuity equation is

Step 1. Selection. Select the continuity equation when flow rates, velocity, or ma
accumulation are involved in the problem.

Step 2. Sketching. Select a CV by locating CSs that cut through where (a) you know info
mation or (b) you want information. Sketch the CV and label jt appropriately. Note that
is common to label the inlet port as section 1 and the outlet port as section 2.

Step 3. Analysis. Write the continuity equation and perform a term-by-term analysis t
simplify the starting equation to the reduced equation.

Step 4. Validation. Check units. Check the basic physics; that is, check that (inflow mint
outflow) = (accumulation).



Example Problems

SECTION 5.4 CONTINUITY EQUATION [APPLICATION)

The first example problem (Example 5.4) shows how continuity is applied to a problem that

involves accumulation of mass.

EXAMPLE 5.4

Applying the Continuity Equation to a Tank with an Inflow
and an Outflow

Problem Statement

A stream of water flows into an open tank. The speed of

the incoming water is V = 7 m/s, and the section area is

A = 0.0025 m®, Water also flows out of the tank at rate of

Q = 0.003 m"/s. Water density is 1000 kg/m’. What is the rate
at which water is being stored (or removed from) the tank?

\V--- 7Tm/s, 4= 0.0025 m*

J 0= 0.003 m's

Define the Situation

Water flows into a tank at the top and out at the bottom.

\i’, =7 m/s, 4, = 0.0025 m’

Y R

d Water
! p=1000 kg/m’
:
[}
]

CV/‘_ ____________

(fixed) @} 2.~ 0003 ms

State the Goal

(dm./dt) (kg/s) 4m rate of accumulation of water in tank

Analysis. Write the continuity equation (simplified form)

d . .
;ft_m“’+ gma— 2m,=0

cs

Analyze the outflow and inflow terms.
2 Yh‘, = pQZ |
2 m; = pA,V,
Combine Egs. (a), (b), and (c).
d
'd_tmcv =pA YV, — pQ, {

Validate. Each term has units of kilograms per second.
Eq. (d) makes physical sense: (rate of accumulation of mass) =
(rate of mass flow in) — (rate of mass flow out).

Because variables on the right side of Eq. (d) are known, the
problem can be solved. The plan is:

1. Calculate the flow rates on the right side of Eq.(d).
2. Apply Eq. (d) to calculate the rate of accumulation.

Take Action (Execute the Plan)

1. Mass flow rates (inlet and outlet).

PAV, = (1000 kg/m’)(0.0025 m*)(7 m/s) = 17.5 kg/s
PQ; = (1000 kg/m’)(0.003 m%s) = 3 kg/s

2. Accumulation

d ov
=i 17.5kg/s — 3 kg/s

dt
- 85 g7

Generate Ideas and Make a Plan

Selection. Select the simplified form of the continuity
equation (Eq. 5.29).

Sketching. Modify the situation diagram to show the CV
and sections 1 and 2. Notice that the CV in the upper left
corner is sketched so that it is at a right angle to the

inlet flow.

Review the Solution and the Process

1. Discussion. Because the accumulation is positive, the
quantity of mass within the control volume is increasing
with time,

2. Discussion. The rising level of water in the tank causes air
to flow out of the CV. Because air has a density that is
about 1/1000 of the density of water, this effect is
negligible.



Example 5.5 shows how to solve a problem that involves accumulation by using

fixed CV.

EXAMPLE 5.5

Applying the Continuity Equation to Calculate the Rate
of Water Rise in a Reservoir

Problem Statement

A river discharges into a reservoir at a rate of 400,000 ft'/s
(cfs), and the outflow rate from the reservoir through the
flow passages in a dam is 250,000 cfs. If the reservoir
surface area is 40 miZ, what is the rate of rise of water in
the reservoir?

Wats rface (A = 40 mi®
River (400,000 cfs)  / aer siflice (4 240 m )

Outlet
(250,000 cfs)
Define the Situation
A reservoir is filling with water.
y!
Q, = 400,000 cfs @I A,=40 mi*
— T % =
Ccv
(fixed)
0, = 250,000 cfs

State the Goal
V,(ft/h) 4m Speed at which the water surface is rising

Generate Ideas and Make a Plan

Selection. Select the continuity equation because the problem
involves flow rates and accumulation of mass in a reservoir.

Sketching. Select a fixed control volume and sketch this CV on
the situation diagram. The control surface at section 3 is just
below the water surface and is stationary. Mass passes through

control surface 3 as the water level in the reservoir rises (or
falls). The mass within the control volume is constant because
the volume of the CV is constant.
Analysis. Write the continuity equation (simplified form):

d . .
et DM, — 2w =0 (a)
dt = p
Next, analyze each term
« Mass in the control volume is constant. Thus,

dm./dt = 0. (b)
« There are two outflows, at sections 2 and 3. Thus,
E m, = pQ, + pAsV; (c)

« There is one inflow, at section 1. Thus,
(=1

Substitute Egs. (b), (c), and (d) into Eq. (a). Then, divide each
term by density

Q.+ AV, =Q (e)
Validation. Eq. (e) is dimensionally homogeneous because
each term has dimensions of volume per time. Eq. (¢) makes

physical sense: (outflow through sections 2 and 3) equals
(inflow from section 1).

Because Eq. (e) contains the problem goal and all other
variables are known, the problem is cracked. The plan
is to

1. Use Eq. (e) to derive an equation for V.

2. Solve for V.

Take Action (Execute the Plan)
1. Continuity Equation

Q - Q
v, = ——=
3 A,
2. Calculations
400, 000 cfs — 250, 000 cfs

5 = 40 mi® X (5280 ft/mi)?

1.34 X 107*ft/s = |0.482 ft/hr

Example 5.6 shows (a) how to use a deforming CV and (b) how to integrate the continu

equation.




EXAMPLE 5.6

Applying the Continuity Equation to Predict the Time
for a Tank to Drain

Problem Statement

A 10 cm jet of water issues from a 1-m-diameter tank.

Assume the Bernoulli equation applies so the velocity in the

jetis V/2gh m/s where h is the elevation of the water surface

above the outlet jet. How long will it take for the water

surface in the tank to drop from h, = 2 m to by = 0.50 m?
f——1m —

Air

Define the Situation

Water is draining from a tank.

D=1m—od

Initial State: h=h =2 m
Final State: h = h/ =05m

d
|
: 1
o O

(deforming)

State the Goal
t¢(s) 4m Time for the tank to drain from h, to hy

Generate Ideas and Make a Plan

Selection. Select the continuity equation by recognizing that the
problem involves outflow and accumulation of mass in a tank.

Also note that the continuity equation will need to be
integrated because this problem involves time and a defined
initial state and final state.

Sketching. Select a deforming CV that is defined so that the top
surface area is coincident with the surface level of the water.
Sketch this CV in the situation diagram.

Analysis. Write the continuity equation.

4 e+ Sty - S =0 (o)
at = =

Analyze each term in a step-by-step fashion.
e Mass in the control volume is given by*
DZ
m,, = (density)(volume) = p(14~-)h
« Differentiate Eq. (b) with respect to time. Note that th

only variable that changes with time is water depth h s
the other variables can come out of the derivative.

L) o)
e ar\P\' 4 P\ Jar

o The inflow is zero and the outflow is
. d’
zm, =pA,V, = p(ﬂT)VZgh

Substitute Eqgs. (b), (c), and (d) into Eq. (a).
wD*\ dh 'rrdz)
p( 4 )E‘ *p( AL L

Validation. In Eq. (e), each term has units of kg/s. Also, this
equation makes physical sense: (accumulation rate) = (the
negative of the outflow rate).

Integration. To begin, simplify Eq. (e)

D\dh
<d)_&? = —V2gh

Next, apply the method of separation of variables. Put the
variables involving h on the left side and the other variables
on the right side. Integrate using definite integrals

fan  fray
- h[ Vg f (5) !
Perform the integration to give:
2Vh, - Vh) g\
) ‘

D
Because Eq. (h) contains the problem goal (¢,) and all other
variables in this equation are known, the plan is to use Eq. (h
to calculate (t).

Take Action (Execute the Plan)
(DY AVh, — Vh)
= (F)( Vg )
_( Im )2(2(\/(2 m) — V(0.5 m)))
“\0lm V2(9.81 m/s%)

*The mass in the CV also include the mass of the water below the outlet. However, when dm,,/dt is evaluated, this term
will go to zero.
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Example 5.7 shows another instance in which the continuity equation is integrated wi

respect to time.

EXAMPLE 5.7

Depressurization of Gas in Tank

Problem Definition

Methane escapes through a small (107" m?) hole ina 10 m*
tank. The methane escapes so slowly that the temperature
in the tank remains constant at 23°C. The mass flow rate of
methane through the hole is given by m = 0.66 pA//RT,
where p is the pressure in the tank, A is the area of the hole,
R is the gas constant, and T is the temperature in the tank.
Calculate the time required for the absolute pressure in the
tank to decrease from 500 to 400 kPa.

Define the Situation

Methane leaks through a 1077 m” hole in 10 m’ tank.
Assumptions.

1. Gas temperatures constant at 23°C during leakage.
2. Ideal gas law is applicable.

Properties: Table A.2, R = 518 J/kgK.

State the Goal

Find: Time (in seconds) for pressure to decrease from 500 kPa

to 400 kPa.

Generate Ideas and Make a Plan

Select a CV that encloses whole tank.

1. Apply continuity equation, Eq. (5.29).
2. Analyze term by term,

3. Solve equation for elapsed time.

4. Calculate time.

Take Action (Execute the Plan)
1. Continuity equation

d . .
—My + DM, — DM =0
dt S

cs

2. Term-by-term analysis.

« Rate of accumulation term. The mass in the control
volume is the sum of the mass of the tank shell, M.y,
and the mass of methane in the tank,

My, = Mgy + p'u
where ¥ is the internal volume of the tank, which is
constant. The mass of the tank shell is constant, so

dm,, d

— -V—P
dt dt
o There is no mass inflow:

>m=0

o Mass out flow rate is
. pA
m, = 0.66 ——=—
2 VRT

Substituting terms into continuity equation

vdp— osei
dt RT

3. Equation for elapsed time:
o Use ideal gas law for p,

4 L>_ s .. 8
¥ dt(RT = 066 -

» Because R and T are constant,
d AVRT
_P —0.66 p__

dt

o Next, separate variables
P _ _oee AVRTdl
p ' ¥

« Integrating equation and substituting limits for initial
and final pressure

,_ 152¥% o
AVRT P

4. Elapsed time

1.52(10 m®) 500 "

B ] )IIZ 40
107 m?){ 518 —— X
(10 m)(SlBkg_K 300 K

Review the Solution and the Process
1. Discussion. The time corresponds to approximately one day.

2. Knowledge. Because the ideal gas law is used, the pressure
and temperature have to be in absolute values.



Continuity Equation for Flow in a Conduit

A conduit is a pipe or duct or channel that is completely filled with a flowing fluid. Because
flow in conduits is common, it is useful to derive an equation that applies to this case. To begin
the derivation, recognize that in a conduit (see Fig. 5.13), there is no place for mass to accumu-
late, so Eq. (5.28) simplifies to

[ov-an-o (5.31)
cs
Mass is crossing the control surface at sections 1 and 2, so Eq. (5.31) simplifies to
j pVdA — J pVdA =0 (5.32)
section 2 section 1

If density is assumed to be constant across each section, Eq. (5.32) simplifies to

pAIVI = pAY, (5.33)

surface @

Eq. (5.33), which is called the pipe flow form of the continuity equation, is the final result. The
meaning of this equation is (rate of inflow of mass at section 1) = (rate of outflow of mass at
section 2).

There are other useful ways of writing the continuity equation. For example, Eq. (5.33) can
be written in several equivalent forms:

Q= pQ: (5.34)
rhl = 'hz (5.35)

If density is assumed to be constant, then Eq. (5.34) reduces to
Q=0Q (5.36)

Eq. (5.34) is valid for both steady and unsteady incompressible flow in a pipe. If there
are more than two ports and the accumulation term is zero, then Eq. (5.29) can be re-
duced to

Sm= > m, 5.37)

If the flow is assumed to have constant density, Eq. (5.37) can be written in terms of
discharge:

>Q=2>Q, (5.38)

Summary Depending on the assumptions of the problem, there are many ways to write
the continuity equation. However, one can analyze any problem using the three equations

FIGURE 5.13

Flow through a conduit
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summarized in Table 5.5. Thus, we recommend starting with one of these three equatic
because this is simpler than remembering many different equations.

v CHECKPOINT PROBLEM 5.3

Water and alcohol mix in a tank. Can the
continuity equation be used to show that
the outlet flow rate is 2 liters per second?

a.yes
b.no

Water (1 liter/second)

—

Water/alcohol n
—

—

Alcohol (1 liter/second)

Example 5.8 shows how to apply continuity to flow in a pipe.

EXAMPLE 5.8

Applying the Continuity Equation to Flow in a Variable
Area Pipe

Problem Statement

A 120 cm pipe is in series with a 60 cm pipe. The speed of the
water in the 120 cm pipe is 2 m/s. What is the water speed in
the 60 cm pipe?

Define the Situation

Water flows through a contraction in a pipe.

State the Goal
V,(m/s) 4m Mean velocity at section 2

Generate Ideas and Make a Plan

Selection. Select the continuity equation because the problem
variables are velocity and pipe diameter.

Sketch. Select a fixed CV. Sketch this CV on the situation
diagram. Label the inlet as section 1 and outlet as section 2.

Analysis. Select the pipe flow form of continuity (i.e., Eq. 5.33)
because the problem involves flow in a pipe.

pA,V, = pA,V, (O

Assume density is constant (this is standard practice for steady
flow of a liquid). The continuity equation reduces to

AV, = AV, (b}

Validate. To validate Eq (b), notice that the primary
dimensions of each term are L*/T. Also, this equation makes
physical sense because it can be interpreted as (inflow) =
(outflow).

Plan. Eq (b) contains the goal (V,) and all other variables
are known. Thus, the plan is to substitute numbers into this
equation.

Take Action (Execute the Plan)
Continuity Equation:

A DY
V= V= V.(—‘)

Vz—

|
=
3
<z
N
[=]
ENEN)
3|3
S’
il
oo
E]
]
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Example 5.9 shows how the continuity equation can be applied together with the Bernoulli
equation

EXAMPLE 5.9 Generate Ideas and Make a Plan

Applying the Bernoulli and Continuity Equations to Flow : 1. Because viscous effects are unimportant, apply the
through a Venturi : Bernoulli equation between stations 1 and 2.
: 2. Combine the continuity equation (5.33) with the results

Problem Statement

Water with a density of 1000 kg/m’ flows through a vertical ‘g
venturimeter as shown. A pressure gage is connected across :
two taps in the pipe (station 1) and the throat (station 2). The
area ratio Ao/ Apipe is 0.5. The velocity in the pipe is 10 m/s.
Find the pressure difference recorded by the pressure gage. :
Assume the flow has a uniform velocity distribution and that  : 1. The Bernoulli equation
viscous effects are not important. :

of step 1.

. Find the pressure on the gage by applying the hydrostatic
equation.

Take Action (Execute the Plan)

vi v
pt vz e Entyntes

Rewrite the equation in terms of piezometric pressure.
P2 2
p:, =P = ”Z‘(Vz = Vi)
Ol _ovi(v )
2 \vi
7m0 ---- - 2. Continuity equation V,/V, = A /A,
_pVifA}
O * P~ Pa= 3\ !
: 1000 kg/m’ N
Y X (10 m/sy* X (2* = 1)
Define the Situation = 150 kPa

Water flows in venturimeter. Area ratio = 0.5. V, = 10 m/s.
3. Apply the hydrostatic equation between the gage attachme

Assumptions: i point where the pressure is p, and station 1 where the ga;
1. Velocity distribution is uniform. line is tapped into the pipe,

2. Viscous effects are unimportant. =
p 7 = P £

e = 3
Properties: p = 1000 kg/m". Also p, = p, so

State the Goal APgge = Py — Py, = Pz, — Po, = |150 kPa

Find: Pressure difference measured by gage.

5.5 Predicting Cavitation

Designers can encounter a phenomenon, called cavitation, in which a liquid starts to boil due
to low pressure. This situation is beneficial for some applications, but it is usually a problem
that should be avoided by thoughtful design. Thus, this section describes cavitation and
discusses how to design systems to minimize the possibility of harmful cavitation.



FIGURE 5.14

Cavitation damage fo a
propeller. {Photo by
Erik Axdahl)

Description of Cavitation

Cavitation is when fluid pressure at a given point in a system drops to the vapor pressure an
boiling occurs.

i EXAMPLE. Consider water flowing at 15°C in a piping system. If the pressure of the wat
¢ drops to the vapor pressure, the water will boil, and engineers will say that the system is cav
! tating. Because the vapor pressure of water at 15°C, which can be looked up in Appendix A.
i is p, = 1.7 kPa abs, the condition required for cavitation is known. To avoid cavitation, tt
i designer can configure the system so that pressures at all locations are above 1.7 kPa absolut

Cavitation can damage equipment and degrade performance. Boiling causes vapor bul
bles to form, grow, and then collapse, producing shock waves, noise, and dynamic effects th;
lead to decreased equipment performance and, frequently, equipment failure. Cavitation dan
age to a propeller (see Fig. 5.14) occurs because the spinning propeller creates low pressur
near the tips of the blades where the velocity is high. Serious erosion produced by cavitation i
a spillway tunnel of Hoover Dam is shown in Fig. 5.15.

Cavitation degrades materials because of the high pressures associated with the collapse «
vapor bubbles. Experimental studies reveal that very high intermittent pressure, as high :
800 MPa (115,000 psi), develops in the vicinity of the bubbles when they collapse (1). Ther
fore, if bubbles collapse close to boundaries such as pipe walls, pump impellers, valve casing
and dam slipway floors, they can cause considerable damage. Usually this damage occurs :
the form of fatigue failure brought about by the action of millions of bubbles impacting (i
effect, imploding) against the material surface over a long period of time, thus producing
material pitting in the zone of cavitation.

In some applications, cavitation is beneficial. Cavitation is responsible for the effectivene
of ultrasonic cleaning, Supercavitating torpedoes have been developed in which a large bubb
envelops the torpedo, significantly reducing the contact area with the water and leading !
significantly faster speeds. Cavitation plays a medical role in shock wave lithotripsy for tt
destruction of kidney stones.




SECTION 5.5 PREDICTING CAVITATION

The world’s largest and most technically advanced water tunnel for studying cavitation is
located in Memphis, Tennessee—the William P. Morgan Large Cavitation Tunnel. This facility
is used to test large-scale models of submarine systems and full-scale torpedoes as well as
applications in the maritime shipping industry. More detailed discussions of cavitation can be
found in Brennen (2) and Young (3).

Identifying Cavitation Sites

To predict cavitation, engineers looks for locations with low pressures. For example, when
water flows through a pipe restriction (Fig. 5.16), the velocity increases according to the conti-
nuity equation, and in turn, the pressure decreases as dictated by the Bernoulli equation. For
low flow rates, there is a relatively small drop in pressure at the restriction, so the water remains
well above the vapor pressure, and boiling does not occur. However, as the flow rate increases,
the pressure at the restriction becomes progressively lower until a flow rate is reached where
the pressure is equal to the vapor pressure as shown in Fig. 5.16. At this point, the liquid boils
to form bubbles, and cavitation ensues. The onset of cavitation can also be affected by the pres-
ence of contaminant gases, turbulence and by viscous effects.

P ========. Lowﬂow—\_
—mm———a SSGR rate e mmmmm;
NN Py
NN PigPid
N ==y
Highflow _\\ R
rate ny ’
[ P .
VNS Cavitation
\ - -
\ LT
Vapor pressure \ -
Py - e e o o m m m am am e D p HD m m y
- 5

FIGURE 5.15

Cavitation damage to
a hydroelectric power
dam spillway tunnel. (I
Bureau of Reclamation

FIGURE 5.16

Flow through pipe
restriction: variation of
pressure for three diffe
flow rates.
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FIGURE 5.17
Formation of vapor
bubbles in the process
of cavitation.

{a} Cavitation.

{b) Cavitation—higher
flow rate.

The formation of vapor bubbles at the restriction in Fig. 5.16 is shown in Fig. 5.17a. ]
vapor bubbles form and then collapse as they move into a region of higher pressure and :
swept downstream with the flow. When the flow velocity is increased further, the minimu
pressure is still the local vapor pressure, but the zone of bubble formation is extended as shov
in Fig. 5.17b. In this case, the entire vapor pocket may intermittently grow and collapse, p1
ducing serious vibration problems.

Vapor bubbles
——n —_—
@
Vapor pocket
R —————tt—
()

Summary Cavitation, which is caused by boiling of liquids at low pressures, is usually problema
in an engineered system. Cavitation is most likely to occur at locations with low pressures such a

® High elevation points.
¢ Locations with high velocities. (e.g. constrictions in pipes, tips of propeller blades)
® The suction (inlet) side of pumps.

5.6 Summarizing Key Knowledge

Characterizing Flow Rate (m and Q)
® Volume flow rate, Q (m*/s) is defined by

_ (volume of fluid passing through a cross sectional area) .. A¥
B interval of time stant Ao At
intime
® Volume flow rate is also called discharge.
® Q can be calculated with four equations:
o=va="-= JVdA= JV-dA
P A A
® Mass flow rate, m (kg/s), is defined as
) (mass of fluid passing through a cross sectional area) . Am
m= - - = lim —
interval of time instant  At—0 At

in time

m can be calculated with four equations:

rh=pAV=pQ——-JdeA= JpV°dA

A A
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® Mean-velocity, V or V, is the value of velocity averaged over the section area at an instant
in time. This concept is different than time-averaged velocity, which involves velocity
averaged over time at a point in space.

¢ Typical values of mean velocity:
b V/Vpax = 0.5 for laminar flow in a round pipe
b V/Vyax = 2/3 = 0.667 for laminar flow in a rectangular conduit
» V/Voax = 0.79 to 0.86 for turbulent flow in a round pipe.
® Problems solvable with the flow rate equations can be organized into three categories:

» Algebraic Equations. Problems in this category are solved by straightforward application
of the equations (see Example 5.1).

» Dot Product. When the area is not-aligned with the velocity vector, then apply the dot
product (V - A) (see Example 5.2).

b Integration. When velocity is given as a function of position, one integrates velocity over
area (see Example 5.3).

The Control Volume Approach and Reynolds Transport Theorem
® A system is what the engineer selects to analyze. Systems can be classified into two
categories: the closed system and the control volume.

P A closed system is a given quantity of matter of fixed identity. Fixed identity means the
closed system is always comprised of the same matter. Thus, mass cannot cross the
boundary of a closed system.

P A control volume (cv or CV) is a geometric region defined in space and enclosed by a
control surface (cs or CS).

b The Reynolds transport theorem is a mathematical tool for converting an equation
written for a closed system to an equation written for a control volume.

The Continuity Equation

¢ ‘The law of conservation of mass for a control volume is called the continuity equation.
® The physics of the continuity equation are

rate of ) a ( rate of ) ( rate of )
accumulation of mass inflow of mass outflow of mass

® The continuity equation can be applied at an instant in time, and the units are kg/s.
Also, the continuity equation can be integrated and applied over a finite time interval
(e.g., 5 minutes), in which case the units are kg.

® Three useful forms of the continuity equation (see Table 5.5 on page 184) are
» The general equation (always applies)
» The simplified form (useful when there are well defined inlet and outlet ports)
» The pipe flow form (applies to flow in a pipe)

Cavitation

® Cavitation occurs in a flowing liquid when the pressure drops to the local vapor pressure
of the liquid.

® Vapor pressure is discussed in Chapter 2. Data for water are presented in Table A.5.
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® Cavitation is usually undesirable because it can cause reduced performance Cavitation c:
cause erosion or pitting of solid materials, noise, vibrations, and structural failures.

® Cavitation is most likely to occur in regions of high velocity, in inlet regions of centrifug;
pumps, and at locations of high elevations.

¢ To reduce the probability of cavitation, designers can specify that components that are
susceptible to cavitation (e.g., values and centrifugal pumps) be situated at low elevations
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PROBLEMS

TR S Problem available in WileyPLUS at instructor’s discretion.
Characterizing Flow Rates (§5.1)

5.1 Consider filling the gasoline tank of an automobile at a

gas station. (a) Estimate the discharge in gpm. (b) Using the
same nozzle, estimate the time to put 50 gallons in the tank.

(c) Estimate the cross-sectional area of the nozzle and calculate
the velocity at the nozzle exit.

5.2 The average flow rate (release) through Grand Coulee Dam
is 110,000 ft*/s. The width of the river downstream of the dam is
100 yards. Making a reasonable estimate of the river velocity,
estimate the river depth.

5.3 Taking a jar of known volume, fill with water from your
household tap and measure the time to fill. Calculate the
discharge from the tap. Estimate the cross-sectional area of the

faucet outlet, and calculate the water velocity issuing from the tap.
5.4 BLU's Another name for the volume flow rate equation could be:

a. the discharge equation
b. the mass flow rate equation
c. eitheraorb

5.5 Aliquid flows through a pipe with a constant velocity. If a
pipe twice the size is used with the same velocity, will the flow
rate be (a) halved, (b) doubled, (c) quadrupled? Explain.

wLEy

5.6 'FLU' For flow of a gas in a pipe, which form of the
continuity equation is more general?

a. V]Al = VzAz

b. p, V14, = p, VA,

c. both are equally applicable
5.7 'FLU’ The discharge of water in a 35-cm-diameter pipe is
0.06 m*/s. What is the mean velocity?
5.8 @s A pipe with a 18 in. diameter carries water having a
velocity of 4 ft/s. What is the discharge in cubic feet per second
and in gallons per minute (1 cfs equals 449 gpm)?

3. Young, E R. Cavitation. New York: McGraw-Hill, 1989.

%%\’ Guided Online (GO) Problem, available in WileyPLUS at

instructor’s discretion.

5.9 A pipe with a 2 m diameter carries water having a velocity
4 m/s. What js the discharge in cubic meters per second and in
cubic feet per second?

5.10 ‘FLU A pipe whose diameter is 6 cm transports air with a
temperature of 20°C and pressure of 180 kPa absolute at 19 m/s
Determine the mass flow rate.

5.11 '?ﬁ?s Natural gas (methane) flows at 25 m/s through a
pipe with a 0.84 m diameter. The temperature of the methane
is 15°C, and the pressure is 160 kPa gage. Determine the mass
flow rate.

5.12 An aircraft engine test pipe is capable of providing a flow
rate of 180 kg/s at altitude conditions corresponding to an
absolute pressure of 50 kPa and a temperature of —18°C. The
velocity of air through the duct attached to the engine is 255 my
Calculate the diameter of the duct.

5.13 A heating and air-conditioning engineer is designing a
system to move 1000 m”® of air per hour at 100 kPa abs, and 30°

The duct is rectangular with cross-sectional dimensions of 1 m
by 20 cm. What will be the air velocity in the duct?

5.14 The hypothetical velocity distribution in a circular duct is

Vo,
Vo R
where r is the radial location in the duct, R is the duct radius, an
Vo is the velocity on the axis. Find the ratio of the mean velocity
to the velocity on the axis.

¥
R
SIS

i

Yo

PROBLEM 5.14



5.15 Water flows in a two-dimensional channel of width W and
depth D as shown in the diagram. The hypothetical velocity

profile for the water is
4x? y:
Vix.y) = V,<1 - W2)<l - E)

where V. is the velocity at the water surface midway between the
channel walls, The coordinate system is as shown; x is measured
from the center plane of the channel and y downward from the
water surface. Find the discharge in the channel in terms of V,,
D,and W.

¥,

,v\‘

|l|

%

e

PROBLEM 5.15

k—o—]

5.16 %\Water flows in a pipe that has a 4 ft diameter and the
following hypothetical velocity distribution: The velocity is
maximum at the centerline and decreases linearly with r to a
minimum at the pipe wall. If V,,,, = 15 ft/s and V,,;;, = 12 fi/s,
what is the discharge in cubic feet per second and in gallons per
minute?

5.17 In Prob.5.16,if V. = 8 m/s, V;, = 6 m/s,and D = 2 m,
what is the discharge in cubic meters per second and the mean
velocity?
5.18 GO Air enters this square duct at section 1 with the
velocity distribution as shown. Note that the velocity varies in the
y direction only (for a given value of y, the velocity is the same
for all values of z).

a. What is the volume rate of flow?

b. What is the mean velocity in the duct?

¢. What is the mass rate of flow if the mass density of the
air is 1.2 kg/m*

@ 10 m/s
.
v 05m T
t + 1.0m
0.5m l
7
End view Elevation view

PROBLEM 5.18

5.19 LU’ The velocity at section A-A is 15 ft/s, and the vertical

depth y at the same section is 4 ft. If the width of the channel is
28 ft, what is the discharge in cubsic feet per second?

PROBLEMS

PROBLEM 5.19

5.20 'PLUS The rectangular channel shown is 1.2 m wide. Wi
the discharge in the channel?

Vertical depth=1m

PROBLEM 5.20

5.21 If the velocity in the channel of Prob. 5.20 is given as
u = 8[exp(y) — 1} m/s and the channel width is 2 m, what is
the discharge in the channel and what is the mean velocity?

5.22 @S Water from a pipe is diverted into a weigh tank
for exactly 20 min. The increased weight in the tank is 20 kN
What is the discharge in cubic meters per second? Assume

T =20°C.

5.23 Water enters the lock of a ship canal through 180 ports,
each port having a 2 ft by 2 ft cross section. The lock is 900 ft
long and 105 ft wide. The lock is designed so that the water
surface in it will rise at a maximum rate of 6 ft/min. For this
condition, what will be the mean velocity in each port?

5.24 @An empirical equation for the velocity distribution
in a horizontal, rectangular, open channel is given by u = u,,, (3.
where u is the velocity at a distance y feet above the floor of ]
channel. If the depth d of flow is 1.2 m, i, = 3 m/s,and n =
what is the discharge in cubic meters per second per meter ol
width of channel? What is the mean velocity?

5.25 The hypothetical water velocity in a V-shaped channel (
the accompanying figure) varies linearly with depth from zer:
the bottom to maximum at the water surface. Determine the

discharge if the maximum velocity is 6 ft/s.

6 in. f

— T
12in.
PROBLEM 5.25



5.26 The velocity of flow in a circular pipe varies according to
the equation V/V, = (1 — r*/r)", where V. is the centerline
velocity, ro is the pipe radius, and r is the radial distance from the
centerline. The exponent » is general and is chosen to fit a given
profile (n = 1 for laminar flow). Determine the mean velocity as
a function of V. and n.

5.27 Plot the velocity distribution across the pipe, and
determine the discharge of a fluid flowing through a pipe

1 m in diameter that has a velocity distribution given by

V = 12(1 — r¥/r}) m/s. Here r, is the radius of the pipe,and
r is the radial distance from the centerline. What is the mean
velocity?

5.28 Water flows through a 4.0-in.-diameter pipeline at
75 Ibm/min. Calculate the mean velocity. Assume T = 60°F.

5.29 ‘F1U's Water flows through a 15 cm pipeline at 700 kg/min.
Calculate the mean velocity in meters per second if T = 20°C.

5.30 Water from a pipeline is diverted into a weigh tank for
exactly 15 min. The increased weight in the tank is 4765 Ibf.
What is the average flow rate in gallons per minute and in cubic
feet per second? Assume T = 60°F.

5.31 A shell and tube heat exchanger consists of a one
pipe inside another pipe as shown. The liquid flows in
opposite directions in each pipe. If the speed of the liquid
is the same in each pipe, what is the ratio of the outer pipe
diameter to the inner pipe diameter if the discharge in each
pipe is the same?

T Ve———o
D, b, —_— 7
l i
PROBLEM 5.31

5.32 @5 The cross section of a heat exchanger consists of three
circular pipes inside a larger pipe. The internal diameter of the
three smaller pipes is 2.5 cm, and the pipe wall thickness is

3 mm. The inside diameter of the larger pipe is 8 cm. If the
velocity of the fluid in region between the smaller pipes and
larger pipe is 10 m/s, what is the discharge in m*/s?

(-4
OO

I 8cm {

PROBLEM 5.32

5.33 'FLU’s The mean velocity of water in a 6-in. pipe is 8.5 ft/s.
Determine the flow in slugs per second, gallons per minute, anc
cubic feet per second if T = 60°F.

Lagrangian and Eulerian Approaches (§5.2)

5.34 Read §4.2, §5.2 and the internet to find answers to the
following questions.

a. What does the Lagrangian approach mean? What are
three real-world examples that illustrate the Lagrangia
approach? (Use examples that are not in the text.)

b. What does the Eulerian approach mean? What are thre
real-world examples that illustrate the Eulerian
approach? (Use examples that are not in the text.)

¢. What are three important differences between the
Eulerian and the Lagrangian approaches?

d. Why use an Eulerian approach? What are the benefits?

e. What is a field? How is a field related to the Eulerian
approach?
f. What are the shortcomings of describing a flow field
using the Lagrangian description?
5.35 What is the difference between an intensive and extensive
property? Give an example of each.

5.36 1U’s State whether each of the following quantities is
extensive or intensive: :

a. mass
b. volume
c. density
d. energy
e. specific energy

5.37 (FLU's What type of property do you get when you divide :
extensive property by another extensive property—extensive ot
intensive? Hint: Consider density.

The Control Volume Approach {§5.2)

5.38 What is a control surface and a control volume? Can mas
pass through a control surface?

5.39 F1U's In Fig 5.11 on p. 181 of §5.2,
a. the CV is passing through the system.
b. the system is passing through the CV.
5.40 What is the purpose of the Reynolds transport theorem?

5.41 FLU’s Gas flows into and out of the chamber as shown. Fo
the conditions shown, which of the following statement(s) are
true of the application of the control volume equation to the
continuity principle?

a. By, =0

b. dB,,./dt =0

c 2pr-A=0



d
d.EJ pd¥ =0

cv
e.b=0
Control surface
-i Control volume
[
:
V,=10mis O] @ Vp=Smks
4,=010m’ U A
=2.00kgh
py=3.00 kg/m’ ' ! P gim
PROBLEM 5.41

5.42 FLU

LU's The piston in the cylinder is moving up. Assume that
the control volume is the volume inside the cylinder above the
piston (the control volume changes in size as the piston moves).

A gaseous mixture exists in the control volume. For the given
conditions, indicate which of the following statements
are true.

a. > pV - Aisequal to zero.
(=3

dt

c. The mass density of the gas in the control volume is
increasing with time.

d
b. — f pd¥ is equal to zero,

d. The temperature of the gas in the control volume is
increasing with time.

e. The flow inside the control volume is unsteady.

Control surface

Cylinder

Piston

PROBLEM 5.42

5.43 'PLUS For cases a and b shown in the figure, respond

to the following questions and statements concerning the
application of the Reynolds transport theorem to the
continuity equation.

a. What is the value of b?
b. Determine the value of dB,,/dt.

¢. Determine the value of 2 bpV- A,
cs

d. Determine the value of d/dtJ bpd¥.

v

PROBLEMS
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PROBLEM 5.43

Continuity Equation (Theory) (§5.3)

5.44 'PLU's The law of conservation of mass for a closed syst
requires that the mass of the system is

a. constant
b. zero

Applying the Continuity Equation (§5.4)

5.45 FiUs part a only Consider the simplified form of the
continuity equation, Eq. 5.29 on p. 183 of §5.3. An engineer
using this equation to find the Q¢ of a creek at the confluen:
with a large river because she has automatic electronic
measurements of the river discharge upstream, Qg,, and
downstream, Qgy, of the creek confluence.

a. Which of the three terms on the left-hand side of Ec
will the engineer assume is zero? Why?

b. Sketch the creek and the river and sketch the CV yc
would select to solve this problem.

5.46 A pipe flows full with water. Is it possible for the volun
flow rate into the pipe to be different than the flow rate out ¢
pipe? Explain.

5.47 Air is pumped into one end of a tube at a certain mass
rate, Is it necessary that the same mass flow rate of air comes
the other end of the tube? Explain.

5.48 If an automobile tire develops a leak, how does the ma:
air and density change inside the tire with time? Assuming t
temperature remains constant, how is the change in density
related to the tire pressure?

5.49 @s Two pipes are connected together in series. The
diameter of one pipe is twice the diameter of the second pip
With liquid flowing in the pipes, the velocity in the large pip:
is 4 m/s. What is the velocity in the smaller pipe?

5.50 Both pistons are moving to the left, but piston A has a
speed twice as great as that of piston B. Then is the water lev:
the tank (a) rising, (b) not moving up or down, or (c) fallingi

Ava .
. = Diameter = 6 in.
Diameter =3 in.

: I

PROBLEM 5.50



5.51 Two parallel disks of diameter D are brought together, each
with a normal speed of V. When their spacing is h, what is the
radial component of convective acceleration at the section just
inside the edge of the disk (section A) in terms of V, h, and D?
Assume uniform velocity distribution across the section.

1 Section 4

: _Lh
; T

V
| D !
PROBLEM 5.51

5.52 @S Two streams discharge into a pipe as shown. The
flows are incompressible. The volume flow rate of stream A into
the pipe is given by Q4 = 0.04t m’/s and that of stream B by
Qs = 0.006 £ m*/s, where ¢ is in seconds. The exit area of the
pipe is 0.01 m” Find the velocity and acceleration of the flow at
the exitatt = 1s,

O

i
\¥/A =0.01 m?

S —
Q,i/ /

PROBLEM 5.52

5.53 Air discharges downward in the pipe and then outward
between the parallel disks. Assuming negligible density change
in the air, derive a formula for the acceleration of air at point A,
which is a distance r from the center of the disks. Express the
acceleration in terms of the constant air discharge Q, the radial
distance , and the disk spacing h. If D = 10 cm, h = 0.6 cm, and
Q = 0.380 m*/s, what are the velocity in the pipe and the
acceleration at point A where r = 20 cm?

Elevation view Plan view

PROBLEMS 5.53,5.54

5.54 All the conditions of Prob. 5.53 are the same except that
h = 1 cm and the discharge is given as Q = Qy(t/t,), where

Q, = 0.1 m%s and t, = 1 s. For the additional conditions, what
will be the acceleration at point A whent = 2sand t = 3 s?

5.55 ;E;\'A tank has a hole in the bottom with a cross-
sectional area of 0.0025 m? and an inlet line on the side with a
cross-sectional area of 0.0025 m?, as shown. The cross-sectional
area of the tank is 0.1 m> The velocity of the liquid flowing out
the bottom hole is V = V/2gh, where h is the height of the wate:
surface in the tank above the outlet. At a certain time the surface
level in the tank is 1 m and rising at the rate of 0.1 cm/s. The
liquid is incompressible. Find the velocity of the liquid through
the inlet.

L

f A=0.0025 m* j

\ A4=00025 m® i V= agh
S— _ PROBLEM 5.55

’MLEV o,

5.56 ‘PLUS A mechanical pump is used to pressurize a bicycle
tire. The inflow to the pump is 0.8 cfm. The density of the air
entering the pump is 0.075 Ibm/ft*. The inflated volume of a
bicycle tire is 0.035 ft>. The density of air in the inflated tire is 0..
Ibm/ft’. How many seconds does it take to pressurize the tire if
there initially was no air in the tire?

5.57 A 6-in.-diameter cylinder falls at a rate of 4 ft/s in an
8-in.-diameter tube containing an incompressible liquid. What i
the mean velocity of the liquid (with respéct to the tube) in the
space between the cylinder and the tube wall?

4

—-’l l-—- 6in.

J,“\ 4fi/s
—> «— 8in.
PROBLEM 5.57

5.58 FLUY

PLUS This circular tank of water is being filled from a pipe
as shown. The velocity of flow of water from the pipe is 10 ft/s.
What will be the rate of rise of the water surface in the tank?

= l—— Diameter=1ft

=~ V=101fi/s
e—ap —
PROBLEM 5.58



5.59 A sphere 8 inches in diameter falls at 4 fi/s downward
axially through water in a 1-ft-diameter container. Find the
upward speed of the water with respect to the container wall at
the midsection of the sphere.

5.60 ﬁi‘s A rectangular air duct 20 cm by 60 cm carries a flow
of 1.44 m*/s. Determine the velocity in the duct. If the duct
tapers to 10 cm by 40 cm, what is the velocity in the latter
section? Assume constant air density.

5.61'

PLU'S A 30 cm pipe divides into a 20 cm branch and a
18 cm branch. If the total discharge is 0.40 m%/s and if the same
mean velocity occurs in each branch, what is the discharge in
each branch?

5.62 The conditions are the same as in Prob. 5.61 except that the

discharge in the 20 cm branch is twice that in the 15 cm branch.

What is the mean velocity in each branch?

5.63 (ﬂiis Water flows in a 10 in. pipe that is connected in series

with a 6 in. pipe. If the rate of flow is 898 gpm (gallons per minute),
“what is the mean velocity in each pipe?

5.64 What is the velocity of the flow of water in leg B of the tee
- shown in the figure?

A B
'—\l‘- 4 m diameter —_— V=17
‘ :
V=6m/s
2 m diameter
4m/s i [:
PROBLEM 5.64

5.65 'PLU's For a steady flow of gas in the conduit shown, what is
the mean velocity at section 2?

r .

1.2 m diameter 60 cm diameter
i p=15kg/m’
tp, =2.0kg/m?
Vy=15m/s

PROBLEM 5.65

5.66 Two pipes, A and B, are connected to an open water tank.
The water is entering the bottom of the tank from pipe A at 10 cfm.,
The water level in the tank is rising at 1.0 in./min, and the surface
area of the tank is 80 ft*. Calculate the discharge in a second pipe,
Pipe B, that is also connected to the bottom of the tank. Is the
flow entering or leaving the tank from pipe B?

5.67 Is the tank in the figure filling or emptying? At what rate is
the water level rising or falling in the tank?

PROBLEMS

6 ft diameter

4 in. diameter =

V=10 ft/s 6 in. diameter

PROBLEM 5.67
5.68 _co " Given: Flow velocities as shown in the figure an
water surface elevation (as shown) at t = 0 5. At the end of

will the water surface in the tank be rising or falling, and at
speed?

2 ft diameter

T Tank

— =— 12 in. diameter

12 in. diameter 6 in. diameter

—

PROBLEM 5.68

5.69 ?t}t;\' A lake with no outlet is fed by a river with a consta
flow of 1200 ft*/s. Water evaporates from the surface at a cons
rate of 13 ft’/s per square mile surface area. The area varies wi
depth h (feet) as A (square miles) = 4.5 + 5,55, What is the
equilibrium depth of the lake? Below what river discharge wil
the lake dry up?

5.70 A stationary nozzle discharges water against a plate mov
toward the nozzle at half the jet velocity. When the discharge
from the nozzle is 5 cfs, at what rate will the plate deflect wate;

5.71 An open tank has a constant inflow of 20 ft’/s. A 1.0-ft-
diameter drain provides a variable outflow velocity V,,,, equal
V(2gh) ft/s. What is the equilibrium height h,, of the liquid in
the tank?

5.72 Assuming that complete mixing occurs between the two
inflows before the mixture discharges from the pipe at C, find
the mass rate of flow, the velocity, and the specific gravity of
the mixture in the pipe at C,



O=3cfs
§=095

Diameter = 6 in.
Q=4cfs

Diameter = 6 in.

Diameter =4 in.
O=1cfs

S=0.85
PROBLEM 5.72

5.73 @s Oxygen and methane are mixed at 200 kPa absolute
pressure and 100°C. The velocity of the gases into the mixer is
5 m/s. The density of the gas leaving the mixer is 1.9 kg/m’.
Determine the exit velocity of the gas mixture.

CH,

A=1cm? |/)/;/)

o— i -
;’)))’)' NN A=3cm?
—_— !
- ~N\? R —
A=3cm? )2y (
0,
PROBLEM 5.73

5.74 F1'Us A pipe with a series of holes as shown in the figure is

used in many engineering systems to distribute gas into a system.

The volume flow rate through each hole depends on the pressure
difference across the hole and is given by

20p\\12
Q = 0.67 Au<"")—)

where A, is the area of the hole, Ap is the pressure difference
across the hole, and p is the density of the gas in the pipe. If the
pipe is sufficiently large, the pressure will be uniform along the
pipe. A distribution pipe for air at 20° C is 0.5 meters in diameter
and 10 m long. The gage pressure in the pipe is 100 Pa. The
pressure outside the pipe is atmospheric at 1 bar. The hole
diameter is 2.5 cm, and there are 50 holes per meter length

of pipe. The pressure is constant in the pipe. Find the velocity

of the air entering the pipe.

fe— 10m —]
> o o o o o (-1 o _f
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PROBLEM 5.74

5.75 The globe valve shown in the figure is a very common
device to control flow rate. The flow comes through the pipe at
the left and then passes through a minimum area formed by the

disc and valve seat. As the valve is closed, the area for flow
between the disc and valve is reduced. The flow area can be
approximated by the annular region between the disc and the
seat. The pressure drop across the valve can be estimated by
application of the Bernoulli equation between the upstream pipe
and the opening between the disc and valve seat. Assume there is
a 10 gpm (gallons per minute) flow of water at 60°F through the
valve. The inside diameter of the upstream pipe is 1 inch. The
distance across the opening from the disc to the seat is 1/8th of
an inch, and the diameter of the opening is 1/2 inch. What is the
pressure drop across the valve in psid?

PROBLEM 5.75

5.76 In the flow through an orifice shown in the diagram the
flow goes through a minimum area downstream of the orifice.
This is called the “vena contracta” The ratio of the flow area at
the vena contracta to the area of the orifice is 0.64.

a. Derive an equation for the discharge through the orific
in the form Q = CA,(2Ap/p)"%, where A, is the area of
the orifice, Ap is the pressure difference between the
upstream flow and the vena contracta, and p is the flui
density. C is a dimensionless coefficient.

b. Evaluate the discharge for water at 1000 kg/m®and a
pressure difference of 10 kPa for a 1.5 cm orifice cen-
tered in a 2.5-cm-diameter pipe.

2.5cm @——— 1.5cm

| roh
\-— Vena contracta

PROBLEM 5.76
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5.77 '@5 A compressor supplies gas toa 10 m? tank. The ink
mass flow rate is given by m = 0.5 po/p (kg/s), where p is the
density in the tank and p is the initial density. Find the time i
would take to increase the density in the tank by a factor of 2
the initial density is 2 kg/m’. Assume the density is uniform
throughout the tank.



¥=10m’

D ]

S
PROBLEM 5.77

5.78 A slow leak develops in a tire (assume constant volume), in
which it takes 3 hr for the pressure to decrease from 30 psig to
25 psig. The air volume in the tire is 0.5 ft’, and the temperature
remains constant at 60°F. The mass flow rate of air is given by

m = 0.68 pA/V/RT. Calculate the area of the hole in the tire.
Atmospheric pressure is 14 psia.

5.79 ;{“}s Oxygen leaks slowly through a small orifice in an
oxygen bottle. The volume of the bottle is 0.1 m? and the
diameter of the orifice is 0.12 mm. The temperature in the tank
remains constant at 18°C, and the mass-flow rate is given by

m = 0.68 pA/V/RT. How long will it take the absalute pressure
to decrease from 10 to 5 MPa?

5.80 How long will it take the water surface in the tank shown to
drop fromh =3 mto h = 50 cm?

,-— 60 cm diameter ———--f

==
]
3 cm diameter
] V=1y2gh
PROBLEM 5.80

5.81 A cylindrical drum of water, lying on its side, is being
emptied through a 2 in.-diameter short pipe at the bottom of the
drum. The velocity of the water out of the pipeis V = V/2gh,
where g is the acceleration due to gravity and h is the height of

[_ﬂi’

PROBLEM 5.81

PROBLEMS

the water surface above the outlet of the tank. The tank is 4
long and 2 ft in diameter, Initially the tank is half full, Find
time for the tank to empty.

5.82 Eo\ Water is draining from a pressurized tank as shor
the figure. The exit velocity is given by

2
V,=,/Fp+2gh

where p is the pressure in the tank, p is the water density, an
the elevation of the water surface above the outlet. The dept
the water in the tank is 2 m. The tank has a cross-sectional ¢
of 1 m’, and the exit area of the pipe is 10 cm? The pressure
the tank is maintained at 10 kPa. Find the time required to ¢
the tank. Compare this value with the time required if the t:
not pressurized.

Constant I

pressure —
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PROBLEM 5.82

5.83 For the type of tank shown, the tank diameter is given a
D = d + C,h, where d is the bottom diameter and C, is a

constant. Derive a formula for the time of fall of liquid surfac
from h = hyto h = hin terms of d;, d, hy, h, and C,. Solve for
hy=1mh=20cm,d = 20ecm,C, = 0.3,and d; = 5 cm. The
velocity of water in the liquid jet exiting the tank is V, = v/

PROBLEM 5.83



5.84 FLUS A spherical tank with a diameter of 1 m is half filled
with water. A port at the bottom of the tank is opened to drain
the tank. The hole diameter is 1 cm, and the velocity of the water
draining from the hole is V, = V2gh, where h is the elevation of
the water surface above the hole. Find the time required for the
tank to empty.

o

v,

e

PROBLEM 5.84

5.85 A tank containing oil is to be pressurized to decrease the
draining time. The tank, shown in the figure, is 2 m in diameter
and 6 m high. The oil is originally at a level of 5 m. The oil has a
density of 880 kg/m’. The outlet port has a diameter of 2 cm, and
the velocity at the outlet is given by

2p
VE=,/2h+—
0

where p is the gage pressure in the tank, p is the density of the
oil, and h is the elevation of the surface above the hole. Assume
during the emptying operation that the temperature of the air in
the tank is constant. The pressure will vary as
(L — ho)
= + _—
p = (Po + Pam) (L-h Datm

where L is the height of the tank, pay, is the atmospheric
pressure, and the subscript 0 refers to the initial conditions. The
initial pressure in the tank is 300 kPa gage, and the atmospheric
pressure is 100 kPa.

-

L=6m

'L—_l

PROBLEM 5.85

v,

¢

Applying the continuity equation to this problem, one finds

dh A, , 2p
o faoh + —

Integrate this equation to predict the depth of the oil with time
for a period of one hour.

5.86 Rocket Propulsion. To prepare for problems 5.87,5.88, and
5.89, use the Internet or other resources and define the following
terms in the context of rocket propulsion: (a) solid fuel, (b) grain
and (c) surface regression. Also explain how a solid-fuel rocket
engine works.

5.87 FiUs An end-burning rocket motor has a chamber
diameter of 10 cm and a nozzle exit diameter of 8 cm. The
density of the solid propellant is 1800 kg/m’, and the propellant
surface regresses at the rate of 1.5 cm/s. The gases crossing the
nozzle exit plane have a pressure of 10 kPa abs and a temperatur
of 2200°C. The gas constant of the exhaust gases is 415 J/kg K.
Calculate the gas velocity at the nozzle exit plane.

—

8cm

PROBLEM 5.87

5.88 A cytindrical-port rocket motor has a grain design
consisting of a cylindrical shape as shown. The curved internal
surface and both ends burn. The solid propellant surface
regresses uniformly at 1 cm/s. The propellant density is 2000 kg/n
The inside diameter of the motor is 20 cm. The propellant grain
is 40 cm long and has an inside diameter of 12 cm. The diamete
of the nozzle exit plane is 20 cm. The gas velocity at the exit pla
is 1800 m/s. Determine the gas density at the exit plane.

PROBLEM 5.88

5.89 The mass flow rate through a rocket nozzle (shown) is
given by
. P{Al
M= 0.65—
VRT,

where p, and T, are the pressure and temperature in the rocket
chamber and R is the gas constant of the gases in the chamber
The propellant burning rate (surface regression rate) can be
expressed as 7 = ap}, where a and n are two empirical constar
Show, by application of the continuity equation, that the cham
pressure can be expressed as

app 141 —n}(Ag)U(l n) )
A P o _° RT, /(201 = n)}
b (0.65) a) T



where p, is the propellant density and A, is the grain surface
burning area. If the operating chamber pressure of a rocket
motor is 3.5 MPa and n = 0.3, how much will the chamber
pressure increase if a crack develops in the grain, increasing
the burning area by 20%?

PROBLEM 5.89

5.90 The piston shown is moving up during the exhaust stroke
of a four-cycle engine. Mass escapes through the exhaust port at
a rate given by
I3 PL' AV

m = 0.65 VERT.
where p, and T, are the cylinder pressure and temperature, A, is
the valve opening area, and R is the gas constant of the exhaust
gases. The bore of the cylinder is 10 cm, and the piston is moving
upward at 30 m/s. The distance between the piston and the head
is 10 cm. The valve opening area is 1 cm?, the chamber pressure is
300 kPa abs, the chamber temperature is 600°C, and the gas
constant is 350 J/kg K. Applying the continuity equation,
determine the rate at which the gas density is changing in the
cylinder. Assume the density and pressure are uniform in the
cylinder and the gas is ideal.

PROBLEM 5.90

5.91 @ s Gas is flowing from Location 1 to 2 in the pipe
expansion shown. The inlet density, diameter and velocity are p,,
Dy, and V, respectively. If D, is 2D, and V, is half of V,, what is
the magnitude of p,?

a p,=4p
b. p,=2p,
¢ p=Yip
d. p,=p,
5.92 @5 Air is flowing from a ventilation duct (cross section 1) as

shown, and is expanding to be released into a room at cross section 2.

PROBLEMS

The area at cross section 2, Ay is 3 times A,. Assume that the
is constant. The relation between Q,and Q, is:

a Q=%Q
b. Q;=Q,

€ Q=3Q
d. Qz=9Q1

5.93 @s Water is flowing from Location 1 to 2 in this pij
expansion. D, and V, are known at the inlet. D, and P; are
known at the outlet. What equation(s) do you need to solv:
the inlet pressure P,? Neglect viscous effects,

a. The continuity equation
b. The continuity equation and the flow rate equatior

¢. The continuity equation, the flow rate equation, an
Bernoulli equation

d. There is insufficient information to solve the probl

®

PROBLEMS 5.91, 5.92, 5.93

5.94 The flow pattern through the pipe contraction is as she
and the Q of water is 60 cfs. For d = 2 ft and D = 6 ft, what :
pressure at point B if the pressure at point C is 3200 psf?

l N

PROBLEM 5.94

5.95 Water flows through a rigid contraction section of circul
pipe in which the outlet diameter is one-half the inlet diameter. "
velocity of the water at the inlet varies with time as V,, = (10 m/.
[1 — exp(—1/10)). How will the velocity vary with time at the ou
5.96'

FLU'S The annular venturimeter is useful for metering
flows in pipe systems for which upstream calming distances a
limited. The annular venturimeter consists of a cylindrical
section mounted inside a pipe as shown. The pressure differen
is measured between the upstream pipe and at the region
adjacent to the cylindrical section. Air at standard conditions
flows in the system. The pipe diameter is 6 in. The ratio of the
cylindrical section diameter to the inside pipe diameter is 0.8.
pressure difference of 2 in of water is measured. Find the volui
flow rate. Assume the flow is incompressible, inviscid, and stea
and that the velocity is uniformly distributed across the pipe.



PROBLEM 5.96

5.97 Venturi-type applicators are frequently used to spray liquid
fertilizers. Water flowing through the venturi creates a
subatmospheric pressure at the throat, which in turn causes the
liquid fertilizer to flow up the feed tube and mix with the water in
the throat region. The venturi applicator shown uses water at 20°C
to spray a liquid fertilizer with the same density. The venturi
exhausts to the atmosphere, and the exit diameter is 1 cm. The
ratio of exit area to throat area (A,/A;) is 2. The flow rate of water
through the venturi is 8 L/m (liters/min). The bottom of the feed
tube in the reservoir is 5 cm below the liquid fertilizer surface and
10 cm below the centerline of the venturi. The pressure at the
liquid fertilizer surface is atmospheric. The flow rate through the
feed tube between the reservoir and venturi throat is

Q,(L/min) = 0.5VAh

where Ah is the drop in piezometric head (in meters) between
the feed tube entrance and the venturi centerline. Find the flow
rate of liquid fertilizer in the feed tube, Q: Also find the
concentration of liquid fertilizer in the mixture, [QAQ + Q)
at the end of the sprayer.

10 cm

l1cm

PROBLEM 5.97
5.98 S0 Air with a density of 0.0644 Ibm/ft’ is flowing
upward in the vertical duct, as shown. The velocity at the inlet
(station 1) is 80 ft/s,and the area ratio between stations 1 and 2
is 0.5 (A,/A, = 0.5). Two pressure taps, 10 ft apart, are
connected to a manometer, as shown. The specific weight of the

manometer liquid is 120 Ibf/ft>. Find the deflection, Ah, of the
manometer.

i

10 fi
I )
@ Ah
4l T
PROBLEM 5.98

5.99 An atomizer utilizes a constriction in an air duct as shown.
Design an operable atomizer making your own assumptions
regarding the air source.

\/

PROBLEM 5.99

5.100 @ s A suction device is being designed based on the
venturi principle to lift objects submerged in water. The operating
water temperature is 15°C. The suction cup is located 1 m below
the water surface, and the venturi throat is located 1 m above the
water. The atmospheric pressure is 100 kPa. The ratio of the
throat area to the exit area is 1/4,and the exit area is 0.001 m>

The area of the suction cup is 0.1 m’.

a. Find the velocity of the water at the exit for maximum
lift condition.

b. Find the discharge through the system for maximum
lift condition.

c. Find the maximum load the suction cup can support.

Water A=10" m?

A=0.1m’ Im

PROBLEM 5.100

5.101 FLUS A design for a hovercraft is shown in the figure.
A fan brings air at 60°F into a chamber, and the air is exhauste
between the skirts and the ground. The pressure inside the
chamber is responsible for the lift. The hovercraft is 15 ft long
and 7 ft wide. The weight of the craft including crew, fuel, and
load is 2000 Ibf. Assume that the pressure in the chamber is th
stagnation pressure (zero velocity) and the pressure where the
air exits around the skirt is atmospheric. Assume the air is
incompressible, the flow is steady, and viscous effects are
negligible. Find the airflow rate necessary to maintain the
skirts at a height of 3 inches above the ground.
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PROBLEM 5.101

5.102 Water is forced out of this cylinder by the piston. If the
piston is driven at a speed of 6 ft/s, what will be the speed of
efflux of the water from the nozzleif d = 2in.and D = 4 in.?
Neglecting friction and assuming irrotational flow, determine the
force F that will be required to drive the piston. The exit pressure
is atmospheric pressure.

F Water
T=60°F

|

Piston

| AW

PROBLEM 5.102

5.103 Air flows through a constant-area heated pipe. At the
entrance, the velocity is 10 m/s, the pressure is 100 kPa absolute,
and the temperature is 20°C. At the outlet, the pressure is 80 kPa
absolute, and the temperature is 50°C. What is the velocity at the
outlet? Can the Bernoulli equation be used to relate the pressure
and velocity changes? Explain.

Predicting Cavitation (§5.5)

5.104 Sometimes driving your car on a hot day, you may
encounter a problem with the fuel pump called pump cavitation.
What is happening to the gasoline? How does this affect the
operation of the pump?

5.105 What is cavitation? Why does the tendency for cavitation
in a liquid increase with increased temperatures?

5.106 'FLU's The following questions have to do with cavitation.

a. Is it more correct to say that cavitation has to do with
(i) vacuum pressures, or (ii) vapor pressures?

b. Is cavitation more likely to occur on the low presstire
(suction) side of a pump, or the high pressure (dis-
charge) side? Why?

¢. What does the word cavitation have to do with cavities,

like the ones we get in our teeth? Is this aspect of cavita-
tion the (i) cause, or the (ii) result of the phenomenon?

d. When water goes over a waterfall, and one can see lots
of bubbles in the water, is that due to cavitation? Why,

or why not?

5.107 ;Ef;' When gage A indicates a pressure of 130 kPa gage, then

cavitation just starts to occur in the venturi meter, If D = 50 cm

PROBLEMS

and d = 10 cm, what is the water discharge in the system fo.
condition of incipient cavitation? The atmospheric pressure
100 kPa gage, and the water temperature is 10°C. Neglect
gravitational effects.

PROBLEM 5.107

5.108 A sphere 1 ft in diameter is moving horizontally ata ¢
of 12 ft below a water surface where the water temperature is
50°F. Vpoe = 1.5 V,,, where V, is the free stream velocity and
occurs at the maximum sphere width. At what speed in still
water will cavitation first occur?

5.109 /G5 " When the hydrofoil shown was tested, the minim
pressure on the surface of the foil was found to be 70 kPa absc
when the foil was submerged 1.80 m and towed at a speed of
8 m/s. At the same depth, at what speed will cavitation first

occur? Assume irrotational flow for both cases and T = 10°C.

5.110 For the hydrofoil of Prob. 5.109, at what speed will
cavitation begin if the depth is increased to 3 m?

5.111 FLUs When the hydrofoil shown was tested, the
minimum pressure on the surface of the foil was found to
be 2.5 psi vacuum when the foil was submerged 4 ft and towe
at a speed of 25 ft/s. At the same depth, at what speed will
cavitation first occur? Assume irrotational flow for both case:
and T = 50°F

5.112 For the conditions of Prob. 5.111 , at what speed will
cavitation begin if the depth is increased to 10 ft?

s

Water = 10°C (50°F)

|
LC‘_

PROBLEMS 5.109, 5.110,5.111,5.112

v

5.113 A sphere is moving in water at a depth where the absoh
pressure is 18 psia. The maximum velocity on a sphere occurs
from the forward stagnation point and is 1.5 times the free-
stream velocity. The density of water is 62.4 bm/ft®. Calculate |
speed of the sphere at which cavitation will occur. T = 50°E.

5.114 The minimum pressure on a cylinder moving horizont:
in water (T = 10°C) at 5m/s ata depth of 1 m is 80 kPa absolu
At what velocity will cavitation begin? Atmospheric pressure is
100 kPa absolute,



