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Assumptions:

1. Deceleration is constant.

2. Gasoline is incompressible.
Properties: v = 42 Ibf/ft® (6.60 kN/m")

State the Goal

Find:

1. Pressure (psfg and kPa, gage) at top front of tank.
2. Maximum pressure (psfg and kPa, gage) in tank.

Make a Plan

1. Apply Euler’s equation, Eq. (4.15), along top of tank.
Elevation, z, is constant.

2. Evaluate pressure at top front.

3. Maximum pressure will be at front bottom. Apply Euler’s
equation from top to bottom at front of tank.

4. Using result from step 2, evaluate pressure at front bottom.

Take Action (Execute the Plan)
1. Euler’s equation along the top of the tank
dp

e~ P%

Integration from back (1) to front (2)

¥
pz - pl = —pa¢A€ = —éa,Ae

2. Evaluation of p, withp, = 0

_ _(42 Ibf/fe
32.2 ft/s?

- [T
In SI units

B _(6.60 kN/m’
’ 9.81 m/s?

=112.5 (kPa gage)

)x( 10 ft/s?) X 20 ft

)X (—3.05m/s’) X 6.1 m

. Euler’s equation in vertical direction

o= o

. For vertical direction, a, = 0. Integration from top of tank

(2) to bottom (3):
Pt ¥z = pst vz,
pi=p+¥(z — 25)
ps = 2611bf/f* + 42 Ibf/f* X 6 ft =|513 psfg]

In SI units
ps = 12.5kN/m? + 6.6 kN/m® X 1.83 m

ps = [206KPa gage]

4.6 Applying the Bernoulli Equation along a Streamline

Because the Bernoulli equation is used frequently in fluid mechanics, this section introduc

this topic.

Derivation of the Bernoulli Equation

Select a particle on a streamline (Fig. 4.26). The position coordinate s gives the particle’s po
tion. The unit vector u, is tangent to the streamline, and the unit vector u, is normal to t
streamline. Assume steady flow so the velocity of the particle depends on position only. That

V= V(s).

FIGURE 4.26

Sketch used for the
derivation of the
Bernoulli equation.

L Streamline
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Assume that viscous forces on the particle can be neglected. Then, apply Euler’s equation
(Eq. 4.15) to the particle in the u, direction.

3
— (P + ¥2) = pa, 4.17)

Acceleration is given by Eq. (4.11). Because the flow is steady, V/8t = 0, and Eq. (4.11)
gives

av v av

ag=V—+_—=V_— (4.18)

ds ot ds
Because p, z,and V in Egs. (4.17) and (4.18) depend only on position s, the partial derivatives
become ordinary derivatives (i.e., functions only of a single variable). Thus, write the these
derivatives as ordinary derivatives and combine Eqs. (4.17) and (4.18) to give

d dv d(v?
2o+ =i o 2(T) 4.19)
Move all the terms to one side:
d v?
—\p+yz+p—])= -
F (p vz+p 5 > 0 (4.20)

When the derivative of an expression is zero, the expression is equal to a constant. Thus,
rewrite Eq. (4.20) as:

2
ptyz+ pis= C {4.21q)
where C is a constant. Eq. (4.21a) is the pressure form of the Bernoulli equation. This is called
the pressure form because all terms have units of pressure. Dividing Eq. (4.21a) by the specific
weight yields the head form of the Bernoulli equation, which is given as Eq. (4.21b). In the head
form, all terms have units of length.
P v?

—+z+—=0C (4.21b)
Y 2g

Physical Interpretation #1 (Energy Is Conserved)

One way to interpret the Bernoulli equation leads to the idea that when the Bernoulli equation
applies, the total head of the flowing fluid is a constant along a streamline. To develop this inter-
pretation, recall that piezometric head, introduced in Chapter 3, is defined as

piezometric head = h = % +z (4.22)
Introduce Eq. (4.22) into Eq. (4.21b)
V2
h + — = Constant (4.23)
4

Now, velocity head is defined by

VZ
velocity head = -2; {4.24)
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Combine Egs. (4.22) to (4.24) to give
(Piezometric) N (Velocity) B (Constant along>

]
head head streamline 4.2

Eq. (4.25) is shown visually in Fig. 4.27. Notice that piezometric head (blue lines) and th
velocity head (gray lines) are changing, but the sum of the piezometric head plus velocity hea
is everywhere constant. Thus, the total head is constant for all points along a streamline whe

the Bernoulli equation applies.

FIGURE 4.27 Total head = constant
Walter flowing through /

a Venturi nozzle. The
piezomelers shows the
piezometric head at
locations 1, 2, and 3.

W Piezometric head

(streamline)

The previous discussion introduced head. Head is a concept that is used to characteriz
the balance of work and energy in a flowing fluid. As shown in Fig. 4.27, head can be visualize:
as the height of a column of liquid. Each type of head describes a work or energy term. Velocit
head characterizes the kinetic energy in a flowing fluid, elevation head characterizes the grav
itational potential energy of a fluid, and pressure head is related to work done by the pressur.
force. As shown in Fig. 4.27, the total head is constant. This means that when the Bernoull
equation applies, the fluid is not losing energy as it flows. The reason is that viscous effects ar.
the cause of energy loses, and viscous effects are negligible when the Bernoulli equatiol
applies.

Physical Interpretation #2 (Velocity and Pressure Vary Inversely)

A second way to interpret the Bernoulli equation leads to the idea that when velocity increases
then pressure will decrease. To develop this interpretation, recall that piezometric pressure
introduced in Chapter 3, is defined as

piezometric pressure = p, = p + yz (4.26
Introduce Eq. (4.26) into Eq. (4.21a)

2
p. + _p2_ = Constant 4.27

For Eq. (4.27) to be true, piezometric pressure and velocity must vary inversely so that the surr
of p, and (V?/2g) is a constant. Thus, the pressure form of the Bernoulli equation shows tha
piezometric pressure varies inversely with velocity. In regions of high velocity, piezometric pres-
sure will be low; in regions of low velocity, piezometric pressure will be high.



EXAMPLE. Fig. 4.28 shows a Vinturi™ red wine aerator, which is a product that is used
to add air to wine. When wine flows through the Vinturi™, the shape of the device
causes an increase in the wine’s velocity and a corresponding decrease in its pressure. At
the throat, the pressure is below atmospheric pressure so air flows inward through two
inlet ports and mixes with the wine to create aerated wine, which tastes better to most

people.

FIGURE 4.28

(a) The Vinturi™ wine
aerator, and b} a sketc
illustrating the operating
principle. [Photo courte

Nonareated wine

of Vinturi Inc.}
‘Aerated wine
Working Equations and Process
Table 4.3 summarizes the Bernoulli equation.
TABLE 4.3 Summary of the Bernoulli Equation
Description Equation Terms

Bernoulli equation
(head form)

Recommend form
to use for liquids

Bernoulli equation
(pressure form)

Recommend form
to use for gases

.

V2
(&+—l+z
A 4

—
WA
2

V2
)G+
Y X

pV3
pgz | =\p: t EN + pgz;

Eq. (4.21b)

) Eq.(4.21a)

p = static pressure (Pa)
(use gage pressure or abs pressure) (avc
vacuum pressure; will be wrong)

v = specific weight (N/m®)
V = speed (m/s)
g = gravitational constant = 9.81 m/s’

z = elevation or elevation head (m)

— = pressure head (m)

< 2|

2

2—g~ = velocity head (m)

% + z = piezometric head (m)

p + yz = piezometric pressure (Pa)
VZ

B kinetic pressure (Pa)




The process for applying the Bernoulli equation is

Step 1. Selection. Select the head form or the pressure form. Check that the assumpti

are satisfied.

Step 2. Sketching. Select a streamline. Then, select points 1 and 2 where you know inf
mation or where you want to find information. Annotate your documentation to show

streamline and points.

Step 3. General Equation. Write the general form of the Bernoulli equation. Perforn
term-by-term analysis to simplify the general equation to a reduced equation that appl

to the problem at hand.

Step 4. Validation. Check the reduced equation to ensure that it makes physical sense.

Example 4.4 shows how to apply the Bernoulli equation to a draining tank of water.

EXAMPLE 4.4

Applying the Bemoulli Equation to Water Draining out a Tank

Problem Statement

Water in an open tank drains through a port at the bottom of
the tank. The elevation of the water in the tank is 10 m above
the drain. Find the velocity of the liquid in the drain port.

Define the Situation

Water flows out of a tank.

Streamline

Assumptions:
o Steady flow.
* Viscous effects are negligible.

State the Goal
V; (m/s) 4m Velocity at the exit port.

Generate Ideas and Make a Plan
Selection. Select the head form of the Bernoulli equation
because the fluid is a liquid. Document assumptions (see above).

Sketching. Select point 1 where information is known and
point 2 where information is desired. On the situation diagram
(see above), sketch the streamline, label points 1 and 2,and
label the datum.

General Equation.

Y %

) :
(&+Y'—+z,>=<l—;3+—v—’+zz) (o) :

Term-by-term analysis.

e p1 = p, = 0kPagage

o Let V; = O because V, K V,

e Letzy=10mandz,=0m

Reduce Eq. (a) so it applies to the problem at hand.

(0+0+10m)=(0+-‘2§-+0) (b)

Simplify Eq. (b):

V, = V2g(10 m) (c)

Because Eq. (c) has only one unknown, the plan is to use this
equation to solve for V..

Take Action (Execute the Plan)
V, = V2(9.81 m/s*)(10 m)

V, = 14m/s

Review the Solution and the Process

1. Knowledge. Notice that the same answer would be
calculated for an object dropped from the same elevation as
the water in the tank. This is because both problems involve
equating gravitational potential energy at 1 with kinetic
energy at 2.

2. Validate. The assumption of the small velocity at the
liquid surface is generally valid. It can be shown
(Chapter 5) that

Y _Dbi

vV, Di
For example, a diameter ratio of 10 to 1 (D,/D, = 0.1)
results in the velocity ratio of 100 to 1 (V,/V, = 1/100).



When the Bernoulli equation is applied to a gas, it is common to neglect the elevation terms
because these terms are negligibly small as compared to the pressure and velocity terms. An
example of applying the Bernoulli equation to a flow of air is presented in Example 4.5.

EXAMPLE 4.5

Applying the Bernoulli Equation to Air Flowing around a
Bicycle Helmet

Problem Statement

The problem is to estimate the pressure at locations A and B
so these values can be used to estimate the ventilation in a
bicycle helmet that is being designed. Assume an air density
of p = 1.2 kg/m’ and an air speed of 12 m/s relative to the
helmet. Point A is a stagnation point, and the velocity of air
at point B is 18 m/s.

r®
e
e
—_— S—
S
Air ) — Q. f
Ve=12m/s
—
—
Define the Situation

Idealize flow around a bike helmet as flow around the upper
half of a sphere. Assume steady flow. Assume that point B is
outside the boundary layer. Relabel the points as shown in
the situation diagram because this makes application of the
Bernoulli equation easier.

C)n=mms
S m—

Air C)
Vi=V;=12mis
pl2kg-m3

State the Goal

p:(Pa gage) 4m Pressure at the forward stagnation point.
p.(Pa gage) 4m Pressure at the shoulder.

Generate Ideas and Make a Plan

Selection. Select the pressure form of the Bernoulli
equation because the flow is air. Then write the Bernoulli
equation along the stagnation streamline (i.e., from point 1
to point 2).

Conduct a term-by-term analysis.

« p; = 0 kPa gage because the external flow is at atmospheri
pressure.

¢ V,=12m/s

« let z; = z, = 0 because elevation terms are negligibly smal
for a gas flow such as a flow of air
o let V, = 0 because this is a stagnation point.
Now, simplify Eq. (a).
2
1

pVv

0+ +0=p+0+0

Eq. (b) has only a single unknown (p,).

Next, apply the Bernoulli equation to the streamline that
connects points 3 and 4.

pVi pVi
(P; I szs) = <P4 + 50+ gz

Do a term-by-term analysis to give:

V2 %
<o+92—’+0)=<p4+p-2—‘+0>

Eq. (d) has only one unknown (p,). The plan is
1. Calculate (p,) using Eq. (b).
2. Calculate (p,) using Eq. (d).

Take Action (Execute the Plan)
1. Bernoulli equation (point 1 to point 2)

_pVi_ (1.2kg/m’)(12 m/s)’
T2 2
| p. = 864 Pa gage |

2. Bernoulli equation (point 3 to point 4)

p:

p(Vi- V) (12kg/m’)(12} - 18)(mlsy
p=""7 2

| p» = —108 Pa gage |

Review the Solution and the Process

1. Discussion. Notice that where the velocity is high (i.e.,
point 4), the pressure is low (negative gage pressure).

2, Knowledge. Remember to specify pressure units in gage
pressure or absolute pressure.

V2 V2 i
(Pn i P_z Ly pgzl) _ (Pz + P_z 2, pgzz) (a) 3. Knowledge. Theory shows that the velocity at the should

of a sphere is 3/2 the velocity in the free stream.




Example 4.6 involves a venturi. A venturi (also called a venturi nozzle) is a constric
section as shown in this example. As fluid flows through a venturi, the pressure is reducec
the narrow area, called the throat. This drop in pressure is called the venturi effect.

The venturi can be used to entrain liquid drops into a flow of gas as in a carburetor. ’
venturi can also be used to measure the flow rate. The venturi is commonly analyzed with

Bernoulli equation,

EXAMPLE 4.6

Applying the Bernoulli Equation to Flow through a Venturi
Nozzle

Problem Statement

Piezometric tubes are tapped into a venturi section as shown
in the figure. The liquid is incompressible. The upstream
piezometric head is 1 m, and the piezometric head at the
throat is 0.5 m. The velocity in the throat section is twice

as large as in the approach section. Find the velocity in the
throat section.

- = X O\ B
Flow

-

Define the Situation

A liquid flows through a venturi nozzle.

State the Goal
V> (m/s) 4m Velocity at point 2.

Generate Ideas and Make a Plan

Select the Bernoulli equation because the problem involves
flow through a nozzle. Select the head form because a liquid is
involved. Select a streamline and points 1 and 2. Sketch these
choices on the situation diagram.

Write the general form of the Bernoulli equation.

+ vi + z, + 14 (
4 ST T o a
2g g

Introduce piezometric head because this is what the
piezometer measures:
vi Vi
b+ —=h+
2g 2g
2 2

Vi V3
» " g =
(1.0m) + 2% = (0.5m) + 2%

Let Vl = 0.5 V;

(0.5 v,) Vi

(1.0m) + e (0.5m) + % {b)

Plan. Use Eq. (b) to solve for V..

Take Action (Execute the Plan)
Bernoulli equation (i.e., Eq. b):

2g(0.5
v, = [205m)
0.75
g \/2(9.81 m/s%)(0.5 m)
e 0.75

Review the Solution and the Process

Thus,

1. Knowledge. Notice how a piezometer is used to measure
piezometric head in the nozzle.

2. Knowledge. A piezometer could not be used to measure the
piezometric head if the pressure anywhere in the line were
subatmospheric. In this case, pressure gages or manometers
could be used.



SECTION 4.7 MEASURING VELOCITY AND PRESSURE

4.7 Measuring Velocity and Pressure

The piezometer, stagnation tube, and Pitot-static tube have long been used to measure pressure
and velocity. Indeed, many concepts in measurement are based on these instruments. Thus,
this section describes these instruments.

Static Pressure

Static pressure is the pressure in a flowing fluid. A common way to measure static pressure is
to drill a small hole in the wall of a pipe and then connect a piezometer or pressure gage to this
port (see Fig. 4.29). This port is called a pressure tap. The reason that a pressure tap is useful
is that it provides a way to measure static pressure that does not disturb the flow.

FIGURE 4.29

«—_ Piezometer applied to measure A g
H—— static pressure at the pipe center- This figure defines a
Pressure tap: Small hole in line. For this case, the static pressure porr and sho

pressure is given by p, = YAz, how a piezometer is
connecled to a wall ¢
used fo measure static

pressure.

wall for attaching an instru-
ment for measuring pressure

_—
—_—
—_—
 ——
Flow
Static pressure: Pressure in a flowing fluid at any location
(measured in a way that does not alter the pressure value)
v CHECKPOINT PROBLEM 4.3

Restaurants often use large coffee dispensers (see sketch). The sight

glass shows the level of coffee. If the valve is opened, what happens to Sight glass
the level of coffee that is visible in the sight glass? Will the level go up, go
down, or stay the same? Why? Valve

Stagnation Tube

A stagnation tube (also known as a total head tube) is an open-ended tube directed upstream in
a flow (see Fig. 4.30). A stagnation tube measures the sum of static pressure and kinetic pressure.
Kinetic pressure is defined at an arbitrary point A as:

(kinetic pressure) _ pVi
at point A 2

Next, we will derive an equation for velocity in an open channel flow. For the stagnation tube in
Fig. 4.30, select points 0 and 1 on the streamline, and let zy = z;. The Bernoulli equation reduces to

—_— p + — 4.28
2 0 2 ( )

The velocity at point 1 is zero (stagnation point). Hence, Eq. (4.28) simplifies to

ot

2
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FIGURE 4.30 FIGURE 4.31
Stagnation tube. Pitot-stafic fube.

l/— Static pressure tap
= N
Stagnation pressure tap

-

L%

7

e —
/

\=
b—s—

Streamline ﬁ’

Next, apply the hydrostatic equation: py, = «yd and p, = y(I + d). Therefore, Eq. (4.29) can
written as

V3= %(v(l + d) — yd)

which reduces to

Vo = V2gl (4.

Pitot-Static Tube

The Pitot-static tube, named after the eighteenth-century French hydraulic engineer who
vented it, is based on the same principle as the stagnation tube, but it is much more versal
than the stagnation tube. The Pitot-static tube, shown in Fig. 4.31, has a pressure tap at
upstream end of the tube for sensing the kinetic pressure. There are also ports located seve
tube diameters downstream of the front end of the tube for sensing the static pressure in
fluid where the velocity is essentially the same as the approach velocity. When the Berno
equation, Eq. (4.21a), is applied between points 1 and 2 along the streamline shown in Fig. 4.
the result is
vi Vi

P1+721+P—2'L=P2+'Yzz+p_22

But V, = 0, so solving that equation for V, gives an equation for velocity.

2 172
V,= [B(le - PZ.Z)} (4-:
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Here V, = V, where V is the velocity of the stream and p,, and p,, are the piezometric
pressures at points 1 and 2, respectively.

By connecting a pressure gage or manometer between the pressure taps shown in
Fig. 4.31 that lead to points 1 and 2, one can easily measure the flow velocity with the
Pitot-static tube. A major advantage of the Pitot-static tube is that it can be used to mea-
sure velocity in a pressurized pipe; a stagnation tube is not convenient to use in such a
situation.

If a differential pressure gage is connected across the taps, the gage measures the differ-
ence in piezometric pressure directly. Therefore Eq. (4.31) simplifies to

V= V2Aplp (4.32)

where Ap is the pressure difference measured by the gage.

More information on Pitot-static tubes and flow measurement is available in the
Flow Measurement Engineering Handbook (5). Example 4.7 illustrates the application of
the Pitot-static tube with a manometer. Then, Example 4.8 illustrates application with a
pressure gage.

EXAMPLE 4.7 i Assumptions: Pitot-static tube equation is applicable.

: ; ; ies: = 0.81, 4, Sy, = 13.55.
Applying a Pitot-Static Tube (pressure measured Properties: Syer, = 0.81, from Table A4, Sy = 13.55
with a manometer).

State the Goal
Problem Statement Find: Flow velocity (m/s).
A mercury manometer is connected to the Pitot-static tube in  :
a pipe transporting kerosene as shown. If the deflection on the : Generate Ideas and Make a Plan

manometer is 7 in., what is the kerosene velocity in the pipe?

1. Find difference in piezometric pressure using the
Assume that the specific gravity of the kerosene is 0.81.

: manometer equation.
] 2. Substitute in Pitot-static tube equation.
l 1 l l : 3. Evaluate velocity.
: :
n-n . Take Action (Execute the Plan)
: 1. Manometer equation between points 1 and 2 on Pitot-st:
rzg:\ tube:
nt (zl = ZZ)’Ykero + EViero — YY¥Hg — (e - y)yhro =p
¢ or
i‘ 21t Yeeos — (PZ + “/kerOZZ) = y(‘YHg - ‘Ykero)
' g Par = P2 = ¥(Vig ~ Viero)
. T l i 2. Substitution into the Pitot-static tube equation:
.‘"- :I:‘ 2
4. % . 2
\\E‘—{‘/ : V= [__'Y(‘YHg_'Ykero)]
L LJ Pkero
‘YHg 12
Define the Sitvation : =j2N\— -1
Ykero

A Pitot-static tube is mounted in a pipe and connected to a
manometer.



142 CHAPTER 4 » THE BERNOULLI EQUATION AND PRESSURE VARIATION

3. Velocity evaluation:
24 Review the Solution and the Process

7 (1355 e :
V= [2 X 32.2ft/s? X P ﬁ(o"é" - 1)] ¢ Discussion. The —1 in the quantity (16.7 — 1) reflects the effec
2 o of the column of kerosene in the right leg of the manometer,
- [2 X 32.2 X 7 (167 — 1)fe /s’] : which tends to counterbalance the mercury in the left leg.
12 : Thus with a gas-liquid manometer, the counterbalancing

=243 ft/s effect is negligible.

EXAMPLE 4.8 i Assumptions:

Applying a Pitot-Static Tube {pressure measured Pt Airflow is steady.
with a pressure gage) : e Pitot-tube equation applicable.

Properties: Table A.2, R, = 287 J/kg K.

Problem Statement

A differential pressure gage is connected across the taps of a i State the Goal
Pitot-static tube. When this Pitot-static tube is used in a wind
tunnel test, the gage indicates a Ap of 730 Pa. What is the air :
velocity in the tunnel? The pressure and temperature in the Generate Ideas and Make a Plan
tunnel are 98 kPa absolute and 20°C, respectively. :

Find the air velocity (in m/s).

1. Using the ideal gas law, calculate air density.

Define the Situation i 2. Using the Pitot-static tube equation, calculate the velocity.

A differential pressure gage is attached to a Pitot-static tube

. . . T: i th
for velocity measurement in a wind tunnel. ghericsionl(Exectte thelElan)

1. Density calculation:

98 kP P 98 X 10° N/m* 1.17 kg/m®
a . - —= = 1. E]

’ : PTRT T (287)/kgK) X (20 + 273K) 8

T=20°C 2. Pitot-static tube equation with differential pressure gage:

V= V2aplp

V = V(2 X 730 N/m?)/(1.17 kg/m’) =

4.8 Characterizing Rotational Motion of a Flowing Fluid

In addition to velocity and acceleration, engineers also describe the rotation of a fluid. Th
this topic is introduced in this section. At this point, we recommend the online vorticity fi
(6) because this film shows the concepts in this section using laboratory experiments.

Concept of Rotation

Rotation of a fluid particle is defined as the average rotation of two initially mutually p:
pendicular faces of a fluid particle. The test is to look at the rotation of the line that bise
both faces (a-a and b-b in Fig. 4.32). The angle between this line and the horizontal axis
the rotation, 6.



