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FIGURE 4.1

This photo shows flow over a model truck in a wind-unnel.
The purpose of the study was to compare the drag force on
various designs of tonneau covers. The study was done by
Stephen lyda while he was an undergraduate engineering
student. (Photo by Stephen lyda)

Chapter Road Map

This chapter describes flowing fluids, introduces
Bernoulli equation, and describes pressure variat
in owing fluids.

- |Learning Objectives

STUDENTS WILL BE ABLE TO

Describe sireamlines, streaklines, and pathlines. Explai
how these ideas differ. {§4.1)

Describe velocity and the velocity field. {§4.2)
Describe the Eulerian and Lagrangian approaches. (§.

Describe flowing fluids using the concepts infroduced |
section §4.3.

Define acceleration. Sketch the direction of the accele
vector of a fluid particle. Define local acceleration anc
convective accelerafion. {§4.4)

Apply Euler's equation to describe pressure variations.
Apply the Bernoulli equation along a streamline. (§4.¢

Define static pressure and kinetic pressure. Explain ho
measure velocity using a Pitotstatic tube. (§4.7)

Define the rate-of-rotation and vorticity. Define an irrotc

flow. (§4.8)
Apply the Bernoulli equation in an irrotational How. (8-

Define the pressure coefficient. Skeich the pressure var
for flow around a circular cylinder. (§4.10)

Calculate the pressure variation in a rotating flow. (§4



FIGURE 4.2

{a) Flow through an
opening in a tank.

(b} Flow over an airfoil
section,

4.1 Describing Streamlines, Streaklines, and Pathlines

To visualize and describe flowing fluids, engineers use the streamline, streakline, and pathli
Hence, these topics are introduced in this section.

Pathlines and Streaklines

The pathline is the path of a fluid particle as it moves through a flow field. For example, wt
the wind blows a leaf, this provides an idea about what the flow is doing. If we imagine that
leaf is tiny and attached to a particle of air as this particle moves, then the motion of the 1
will reveal the motion of the particle. Another way to think of a pathline is to imagine atta
ing a light to a fluid particle. A time exposure photograph taken of the moving light would
the pathline. One way to reveal pathlines in a flow of water is to add tiny beads that are n
trally buoyant so that bead motion is the same as motion of fluid particles. Observing th
beads as they move through the flow reveals the pathline of each particle.

The streakline is the line generated by a tracer fluid, such as a dye, continuously inject
into a flow field at a starting point. For example, if smoke is introduced into a flow of air, 1
resulting lines are streaklines. Streaklines are shown in Fig. 4.1. These streaklines were pi
duced by vaporizing mineral oil on a vertical wire that was heated by passing an electri
current through the wire,

Streamlines

The streamline is defined as a line that is everywhere tangent to the local velocity vector.

i EXAMPLE. The flow pattern for water draining through an opening in a tank (Fig. 4.,
i can be visualized by examining streamlines. Notice that velocity vectors at points a, b, an:
: are tangent to the streamlines. Also, the streamlines adjacent to the wall follow the contc
i of the wall because the fluid velocity is parallel to the wall. The generation of a flow patte
i is an effective way of illustrating the flow field.

Streamlines for flow around an airfoil (Fig. 4.2b) reveal that part of the flow goes over t
airfoil and part goes under. The flow is separated by the dividing streamline. At the locati
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where the dividing streamline intersects the body, the velocity will be zero with respect to the
body. This is called the stagnation point,

Streamlines for flow over an Volvo ECC prototype (Fig. 4.3) allow engineers to assess
aerodynamic features of the flow and possibly change the shape to achieve better performance,
such as reduced drag.

Predicted sireamline patiern over the Volvo ECC profolype.
(Courtesy of Analytical Methods, VSAERO software, Volvo
Concept Center,)

Comparing Streamlines, Streaklines, and Pathlines

When flow is steady, the pathline, streakline, and streamline look the same so long as they all pass
through the same point. Thus, the streakline, which can be revealed by experimental means,
will show what the streamline looks like. Similarly, a particle in the flow will follow a line
traced out of a streakline.

When flow is unsteady, then the streamline, streaklines, and pathlines look different. A cap-
tivating film entitled Flow Visualization (1) shows how and why the streamline, streakline, and
pathline differ in unsteady flow.

i EXAMPLE. To show how pathlines, streaklines, and streamlines differ in unsteady flow,
i consider a two-dimensional flow that initially has horizontal streamlines (Fig. 4.4). At a
: given time, t,, the flow instantly changes direction, and the flow moves upward to the right
: at 45° with no further change. A fluid particle is tracked from the starting point, and up to
{ time f,, the pathline is the horizontal line segment shown on Fig. 4.4a. After time t,, the
i particle continues to follow the streamline and moves up the right as shown in Fig. 4.4b.
i Both line segments constitute the pathline. Notice in Fig. 4.4b that the pathline (black dotted
i line) differs from an streamline for (t < ty) and any streamline for (t > to). Thus, the pathline
i and the streamline are not the same,

Next consider the streakline by introducing black tracer fluid as shown in Figures 4.4c
i and d. As shown, the streakline in Fig. 4.4d differs from the pathline and from any
i streamline.



FIGURE 4.4
Streamlines, pathlines, and
streakline for an unsteady

flow field.

FIGURE 4.5

Water draining out of

a fank. (o) The velocity

of Particle A is the time
derivative of the position.

(b) The velocity field
represents the velocity of
each fluid particle throughout
the region of flow
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4.2 Characterizing Velocity of a Flowing Fluid
This section introduces velocity and the velocity field. Then, these ideas are used to introdv

two alternative methods for describing motion.

e Lagrangian approach: Describes motion of a specified collection of matter.

e Eulerian approach. Describes motion at locations in space.

Describing Velocity

Velocity, a property of a fluid particle, gives the speed and direction of travel of the particle
an instant in time. The mathematical definition of velocity is:

.
ATt
where V, is the velocity of particle A, and r, is the position of particle A at time .

{4

i EXAMPLE. When water drains from a tank (Fig. 4.5a), V, gives the speed and directior
: travel of the particle at point A. The velocity V4 is the time rate of change of the vectorr,

B
‘,I
A Velacity Velocity field: Description
\ Position of the velocity at each
x spatial location

(2




Velocity Field

A description of the velocity of each fluid particle in a flow is called a velocity field. In general
each fluid particle in a flow has a different velocity. For example, particles A and B in Fig 4.5a
have different velocities. Thus, the velocity field describes how the velocity varies with position
(see Fig. 4.5b).

A velocity field can be described visually (Fig. 4.5b) or mathematically as shown by the
following example.

i EXAMPLE. A steady, two-dimensional velocity field in a corner is given by

V= (2xs7"i - (2ys7h)j (4.2)

where x and y are position coordinates measured in meters, and i and j are unit vectors in
: the x and y directions, respectively.

When a velocity field is given by an equation, a plot can help one visualize the flow. For

example, select the location (x, ) = (1, 1) and then substitute x = 1.0 meter and y = 1.0 meter
into Eq. (4.2) to give the velocity as

V = (2m/s)i — (2 m/s)j (4.3)

Plot this point and repeat this process at other points to create Fig. 4.6a. Last, one can use

definition of the streamline (line that is everywhere tangent to the velocity vector) to create a
streamline pattern (Fig. 4.6b).

FIGURE 4.6

The velocity field specified by Eq. (4.2): (q) velocity vectors,
and (b) the sireamline pattern.
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Summary The velocity field describes the velocity of each fluid particle in a spatial region,
The velocity field can be shown visually as in Figs. 4.5 and 4.6 or described mathematically as
in Eq.4.2.

The concept of a field can be generalized. A field is a mathematical or visual description
of a variable as a function of position and time.

: EXAMPLES. A pressure field describes the distribution of pressure at various points in

space and time. A temperature field describes the distribution of temperature at various
i points in space and time.



FIGURE 4.7

This figure shows small
particles released from rest
and falling under the action
of gravity. Equations on the
left side of the image show
how motion is described
using a Lagrangian
approach. Equations on
the right side show an
Eulerian approach.

A field can be scalar valued (e.g., temperature field, pressure field) or a field can be vect«
valued (e.g., velocity field, acceleration field).

v CHECKPOINT PROBLEM 4.1

A velocity field is given as V = (ax + by)i wherea = b =2s "'and (x, y) is the position in the fielc
in meters. A particle moving in this field

a. Moves in the x -direction only
b. Moves in the y-direction only
¢. Moves in both the x- and y -directions.

The Eulerian and Lagrangian Approaches

In solid mechanics, it is straightforward to describe the motion of a particle or a rigid bo«
In contrast, the particles in a flowing fluid move in more complicated ways and it is not pra
tical to track the motion of each particle. Thus, researchers invented a second way to descri
motion.

The first way to describe motion (called the Lagrangian approach) involves selecti
a body and then describing the motion of this body. The second way (called the Euleri
approach) involves selecting a region in space and then describing the motion that is ¢
curring at points in space. In addition, the Eulerian approach allows properties to be eval
ated at spatial locations as a function of time. This is because the Eulerian approach u:
fields.

EXAMPLE. Consider falling particles (Fig. 4.7). The Lagrangian approach uses equatic
that describe an individual particle. The Eulerian approach uses an equation for the -
locity field. Although the equations of the two approaches are different, they predict
same values of velocity. Note that the equation v = V2g|z| in Fig. 4.7 was deriv
by letting the kinetic energy of the particle equal the change in gravitational potent
energy.

Eulerian: Describe the
motion at spatial locations

Lagrangian: Select a body and
describe its motion.

E.g., for this particle

the equations are Y
v=gt

. / E.g., at any location in
space, the speed of a
= . particle is given by
5=

v=+2gl]

v = speed at location = (m/s)

v = speed of particle (m/s)
s = position from origin (m) °
t = time to fall a distance s (s) 2 = vertical location (m)

g= gravitational constant (9.81 m/s’)

When the ideas in Fig. 4.7 are generalized, the independent variables of the Lagrang
approach are initial position and time. The independent variable of the Eulerian appro
are position in the field and time. Table 4.1 compares the Lagrangian and the Euler
approaches.



TABLE 4.1 Comparison of the Lagrangian and the Eulerian Approaches

Feature Lagrangian Approach Eulerian Approach

Basic idea Observe or describe the motion of a body Observe or describe the motion of matter at
of matter of fixed identity. spatial locations.

Solid mechanics (application) | Used in dynamics. Used in elasticity. Can be used to model the f

Fluid mechanics (application)

Independent variables

Mathematical complexity

Field concept

Types of systems used

Fluid mechanics uses Eulerian ideas

(e.g., fluid particle, streakline, acceleration of a
fluid particle). Equations in fluid mechanics are
often derived from an Lagrangian viewpoint.

Initial position (xg, yo, 2p) and time (#).

Simpler.

Not used in the Lagrangian approach.

Closed systems, particles, rigid bodies,
system-of-particles.

of materials.

Nearly all mathematical equations in fluid
mechanics are written using the Eulerian
approach.

Spatial location (x, y, z) and time (¢).

More complex; e.g., partial derivatives and
nonlinear terms appear.

The field is an Eulerian concepts. When fields
are used, the mathematics often includes the
divergence, gradient, and curl.

Control volumes.

Representing Velocity Using Components

When the velocity field is represented in Cartesian components the mathematical form is

V=ulxpzt)i+uxyzt)j+ ulxyz, Hk

(4.4)

where u = u(x, y, z, t) is the x-component of the velocity vector in and i is a unit vector in the
x direction. The coordinates (x, , z) give the spatial location in the field and t is time. Similarly,
the components v and w give the y- and z-components of the velocity vector.

Another way to represent a velocity is to use normal and tangential components. In this
approach (Fig. 4.8), unit vectors are attached to the particle and move with the particle, The
tangential unit vector u, is tangent to the path of the particle and the normal unit vector u,, is
normal to path and directed inward toward the center of curvature, The position coordinate s
measures distance traveled along the path. The velocity of a fluid particle is represented as
V = V(s, t)u, where V is the speed of the particle and ¢ is time.

4.3 Describing Flow

Engineers use many words to describe flowing fluids. Speaking and understanding this language
is seminal to professional practice. Thus, this section introduces concepts for describing flowing
fluids. Because there are many ideas, a summary table is presented (see Table 4.4 on page 153).

FIGURE 4.8

Describing motion of
a fluid particle using
normal and tangential
components.



FIGURE 4.11

Flow patterns for
nonuniform flow.

(a) Converging flow.
{b} Vortex flow.

Uniform and Nonuniform Flow
To introduce uniform flow, consider a velocity field of the form
V = V(s 1)

where s is distance traveled by a fluid particle along a path, and ¢ is time (Fig. 4.9). This mat
ematical representation is called normal and tangential components. This approach is usel
when the path of a particle is known.

In a uniform flow, the velocity is constant in magnitude and direction along a streamli
at each instant in time. In uniform flow the streamlines must be rectilinear, which mea
straight and parallel (see Fig. 4.10). Uniform flow can be described by an equation.

(a_v_) v _ (uniform flow) (4
as /,

Regarding notation in this text, we omit the variables that are held constant when writing p
tial derivatives. For example, in Eq. (4.5), the leftmost terms show the formal way to writ
partial derivative, and the middle term shows a simpler notation. The rationale for the simp
notation is that variables that are held constant can be inferred from the context.

In nonuniform flow, the velocity changes along a streamline either in magnitude, dir
tion, or both. It follows that any flow with streamline curvature is nonuniform. Also, any fl
in which the speed of the flow is changing spatially is also nonuniform.

%\sl # 0 (nonuniform flow)
EXAMPLES. Nonuniform flow occurs in the converging duct in Fig. 4.11a because
speed increases as the duct converges. Nonuniform flow occurs for the vortex in Fig. 4..
because the streamlines are curved.

FIGURE 4.9 FIGURE 4.10
Fluid particle moving along a Uniform flow in a pipe
pathline.
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Steady and Unsteady Flow

In general, a velocity field V depends of position r and time t: V = V(r, t). However, in many
situations, the velocity is constant with time, so V = V(r). This is called steady flow. Steady
flow means that velocity at each location in space is constant with time. This idea can be writ-
ten mathematically as:

av

ot all points in velocity field

=0

In an unsteady flow the velocity is changing, at least at some points, in the velocity field.
This idea can be represented with an equation.

i EXAMPLE. If the flow in a pipe changed with time due to a valve opening or closing, the
i flow would be unsteady; that is, the velocity at locations in the velocity field would be in-
i creasing or decreasing with time.

v CHECKPOINT PROBLEM 4.2

As shown, water drains out of a small opening in a container.
Which statement is true? '
a. The flow in the container is steady.

Flow

Laminar and Turbulent Flow

In a famous experiment, Osborne Reynolds showed that there are two different kinds of flow
that can occur in a pipe.* The first type, called laminar flow, is a well-ordered state of flow in
which adjacent fluid layers move smoothly with respect to each other. The flow occurs in layers
or laminae. An example of laminar flow is the flow of thick syrup (Fig. 4.12a).

FIGURE 4.12

Examples of laminar and turbulent flow (a) the flow of maple syrup is laminar (Louri Patterson/The Agency
Collection/Getty Images) (b} the flow of steam out of @ smokestack is turbulent (Photo by Donald Elger)

*Reynolds experiment is described in Chapter 10.



FIGURE 4.13

Laminar and turbulent
flow in a straight pipe.
(a) Laminar flow.

{b} Turbulent flow

Both sketches assume
fully developed flow.

The second type of flow identified by Reynolds is called turbulent flow, which is an ur
steady flow characterized by eddies of various sizes and intense cross-stream mixing. Turbt
lent flow can be observed in the wake of a ship. Also, turbulent flow can be observed for
smokestack (Fig. 4.12b). Notice that the mixing of the turbulent flow is apparent because tt
plume widens and disperses.

Laminar flow in a pipe (Fig. 4.13a) has a smooth parabolic velocity distribution. Turbule:
flow (Fig. 4.13b) has a plug-shaped velocity distribution because eddies mix the flow, whic
tends to keep the distribution uniform. In both laminar and turbulent flow, the no-slip cond
tion applies.

—

L

LR

(a) (b)

e

Time-Averaged Velocity

Turbulent flow is unsteady, so the standard approach is to represent the velocity as a tim
averaged velocity # plus a fluctuating component u’. Thus, the velocity is expressed
u = u + u’' (see Fig. 4.13b). Thus, the fluctuating component is defined as the difference t
tween the local velocity and the time-averaged velocity. A turbulent flow is designated
“steady” if the time-averaged velocity is unchanging with time. For an interesting look at turb
lent flows, see the film entitled Turbulence (3). Table 4.2 compares laminar and turbulent floy

TABLE 4.2 Comparison of the Laminar and Turbulent Flow

Feature

Laminar Flow

Turbulent Flow

Basic description
Velocity profile in a pipe

Mixing of materials added
to the flow

Variation with time
Dimensionality of flow

Availability of
mathematical solutions

Smooth flow in layers (laminae).

Parabolic; ratio of mean velocity to centerline
velocity is 0.5 for fully developed flow.

Low levels of mixing. Difficult to get a
material to mix with a fluid in laminar flow.

Can be steady or unsteady.
Can be 1D, 2D, or 3D.

In principle, any laminar flow can be solved
with an analytical or computer solution.
There are many existing analytical solutions.
Solutions are very close to what would be
measured with an experiment.

The flow has many eddies of various sizes. The
flow appears random, chaotic, and unsteady.

Pluglike; ratio of mean velocity to centerline
velocity is between 0.8 and 0.9.

High levels of mixing. Easy to get a material to
mix; e.g., visualize cream mixing with coffee.

Always unsteady.
Always 3D.

There is no complete theory of turbulent flow.
There are a limited number of semiempirical
solution approaches. Many turbulent flows
cannot be accurately predicted with computer
models or analytical solutions. Engineers ofter
rely on experiments to characterize turbulent
flow.



SECTION 4.3 DESCRIBING FLOW

Feature Laminar Flow

Turbulent Flow

Practical importance Although many problems of practical
problems involve laminar flow, these problems
are not nearly as common as problems that

involve turbulent flow.

Occurs at lower values of Reynolds numbers.
(Reynolds number is introduced in Chapter 8.)

Occurrence
(Reynolds number)

The majority of practical problems involve
turbulent flow. Typically, the flow of air and
water in piping systems is turbulent. Most flc
of water in open channels are turbulent.

Occurs at higher values of Reynolds number

One-Dimensional and Multidimensional Flows

The dimensionality of a flow field can be illustrated by example. Fig. 4.14a shows the velocity
distribution for an axisymmetric flow in a circular duct. The flow is uniform, or fully devel-
oped, so the velocity does not change in the flow direction (z). The velocity depends on only
one spatial dimension, namely the radius r, so the flow is one-dimensional or 1D. Fig. 4.14b
shows the velocity distribution for uniform flow in a square duct. In this case the velocity de-
pends on two dimensions, namely x and y, so the flow is two dimensional. Figure 4.14c also
shows the velocity distribution for the flow in a square duct but the duct cross-sectional area is
expanding in the flow direction so the velocity will be dependent on z as well as x and ». This
flow is three-dimensional, or 3-D.

Another good example of three-dimensional flow is turbulence because the velocity com-
ponents at any one time depend on the three coordinate directions. For example, the velocity
component 4 at a given time depends on x, y, and z; that is, u(x, y z). Turbulent flow is un-
steady, so the velocity components also depend on time.

Another definition frequently used in fluid mechanics is quasi-one-dimensional flow. By
this definition it is assumed that there is only one component of velocity in the flow direction
and that the velocity profiles are uniformly distributed; that is, constant velocity across the

duct cross section.
,
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Flow dimensionality,
(o) one-dimensional flor
(b} two-dimensional floy
and {c} three-dimension
flow



FIGURE 4.15

Flow pattern around a

sphere when the Reynolds
number is high. The skeich
shows the regions of flow.

FIGURE 4.16

Flow pattern past a square
rod illustrating separation
at the edges.

Viscous and Inviscid Flow

In a viscous flow the forces associated with viscous shear stresses are large enough to effect t
dynamic motion of the particles that comprise the flow. For example, when a fluid flows ir
pipe as shown in Fig, 4.13, this is a viscous flow. Indeed, both laminar and turbulent flows a
types of viscous flows.

In a inviscid flow the forces associated with viscous shear stresses are small enough
that they do not affect the dynamic motion of the particles that comprise the flow. Thus,
inviscid flow, the viscous stresses can be neglected in the equations for motion.

Boundary Layer, Wake, and Potential Flow Regions

To idealize many complex flows, engineers use ideas that can be illustrated by flow over
sphere (Fig. 4.15). As shown, the flow is divided into three regions: an inviscid flow region
wake, and a boundary layer.

Inviscid Flow: Region of flow in which
viscous forces can be neglected when
solving the equations of motion.

Flow separation: Where the flow
moves away from the wall.

Wake: The region
of separated flow
behind a body.

k Boundary Layer: A thin region
of viscous flow near a wall.

Flow Separation

Flow separation (Fig. 4.15) occurs when the fluid particles adjacent to a body deviate from t
contours of the body. Fig. 4.16 shows flow separation behind a square rod. Notice that the flc
separates from the shoulders of the rod and that the wake region is large. In both Figs.4.15 a
4.16 the flow follows the contours of the body on the upstream sides of the objects. The regi:
in which a flow follows the body contour is called attached flow.

/
\f

When flow separates (Fig. 4.16), the drag force on the body is usually large. Thus, design
strive to reduce or eliminate flow separation when designing products such as automobiles a
airplanes. In addition, flow separation can lead to structural failure because the wake is u
steady due to vortex shedding, and this creates oscillatory forces. These forces cause structu

j
S
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SECTION 4.4 ACCELERATION

vibrations, which can lead to failure when the structure’s natural frequency is closely matched
to the vortex shedding frequency. In a famous example, vortex shedding associated with flow
separation caused the Tacoma Narrows Bridge near Seattle, Washington, to oscillate wildly and
to fail catastrophically.

Fig. 4.17 shows flow separation for an airfoil (an airfoil is a body with the cross sectional
shape of a wing). Flow separation occurs when the airfoil is rotated to an angle of attack that is
too high. Flow separation in this context causes an airplane to stall, which means that the lift-
ing force drops dramatically and the wings can no longer keep the airplane in level flight. Stall
is to be avoided.

Flow separation can occurs inside pipes. For example, flow passing through an orifice in a
pipe will separate (see Fig. 13.14 in Section 13.2). In this case, the zone of separated flow is
usually called a recirculating zone. Separating flow within a pipe is usually undesirable because
it causes energy losses, low pressure zones that can lead to cavitation and vibrations.

Summary Attached flow means that flow is moving parallel to walls of a body. Flow separa-
tion, which occurs in both internal and external flows, means the flow moves away from the
wall. Flow separation is related to phenomenon of engineering interest such as drag, structural
vibrations, and cavitation.

4.4 Acceleration

Predicting forces is important to the designer. Because forces are related to acceleration, this
section describes what acceleration means in the context of a flowing fluid.

Definition of Acceleration

Acceleration is a property of a fluid particle that characterizes the change in speed of the par-

ticle and the change in the direction of travel at an instant in time. The mathematical definition

of acceleration is:

_dv
dt

where V is the velocity of the particle and t is time.

a (4.6)

FIGURE 4.17

Smoke traces showin,
separation on an airf
section at a large ang
attack. (Courtesy Edu
Development Center,
Waltham, MA}



FIGURE 4.18

This figure shows flow
over a sphere. The blue
sphere is a fluid particle
that is moving along the
stagnation streamline.

FIGURE 4.19

This figure shows a particle
moving on a curved
streamline.

Physical Interpretation of Acceleration

Acceleration occurs when a fluid particle is changing its speed, changing its direction of trav:
or both.

EXAMPLE. As a particle moves along the straight streamline in Fig 4.18, it is slowing dow
Because the particle is changing speed, it is accelerating (actually decelerating in this case
Anytime a particle is changing speed, there must be a component of the acceleration vects
tangent to the path. This component of acceleration is called the tangential component «
acceleration.

When a particle is changing speed
there is a component of acceleration

tangent to path.
—_—
—
a Vv
— U
— Stagnation
Flow Streamline

EXAMPLE. As a particle moves along a curved streamline (see Fig 4.19), the particle mu
have a component of acceleration directed inward as shown. This component is called tl
normal component of the acceleration vector. In addition, if the particle is changing spee
the tangential component will also be present.

it & ==
pathline

If a particle is moving on a curved
pathline there must be a component

of acceleration inward toward the center
of curvature of the pathline at

that point.

If a particle is also changing
speed there must be a
component of acceleration
tangent to the pathline.

(a)

Summary Acceleration is a property of a fluid particle. The tangential component of tl
acceleration vector is associated with a change in speed. The normal component is assoc
ated with a change in direction. The normal component will be nonzero anytime a partic
is moving on a curved streamline because the particle is continually changing its directic
of travel.

Describing Acceleration Mathematically

Because the velocity of a flowing fluid is described with a velocity field (i.e., an Euleri:
approach), the mathematical representation of acceleration is different from what is presents
in courses like physics and dynamics. This subsection develops the ideas.



SECTION 4.4 ACCELERATION

To begin, picture a fluid particle on a streamline as shown in Fig. 4.20. Write the velocity
using normal-tangential components:

V= V(s Hu,

In this equation, the speed of the particle V is a function of position s and time ¢. The di-
rection of travel of the particle is given by the unit vector u, which, by definition, is tangent to
the streamline.

FIGURE 4.20
Particle moving on a pathline. (a} Velocity. {b) Acceleration.

Vis.u, a

Using the definition of acceleration,

dv dv du,>
= — = — + — i
T (dt )“' V( dt 4.7)
To evaluate the derivative of speed in Eq. (4.7), the chain rule for a function of two variables
can be used.
dvis, t) (av)( ds> v
——=l—=)=)+= .
dt ds /\dt ot 14.8)

In a time dt, the fluid particle moves a distance ds, so the derivative ds/dt corresponds to the
speed V of the particle, and Eq. (4.8) becomes

v oV 2%
—=vyl=}+Z :
dt V( ds ) ot s

In Eq. (4.7), the derivative of the unit vector du,/dt is nonzero because the direction of the unit
vector changes with time as the particle moves along the pathline. The derivative is

da, V
i {4.10)

where u, is the unit vector perpendicular to the pathline and pointing inward toward the center
of curvature (2).
Substituting Egs. (4.9) and (4.10) into Eq. (4.7) gives the acceleration of the fluid

particle:
vV 3V v?
a= (Vg + E-)u‘ + (";_—)u,, 4.11)

The interpretation of this equation is as follows. The acceleration on the left side is acceleration
of the fluid particle. The terms on the right side represent a way to evaluate this acceleration by
using the velocity, the velocity gradient, and the velocity change with time.



FIGURE 4.21

Measuring convective
acceleration by two
different approaches.
{Sketch by Chad Crowe)

Eq. (4.11) shows that the magnitude of the normal component of acceleration is V*/1
The direction of this acceleration component is normal to the streamline and inward towarc
the center of curvature of the streamline. This term is sometimes called the centripeta
acceleration, where the centripetal means center seeking.

Convective and Local Acceleration

In Eq. (4.11), the term dV/9t means the time rate of change of speed while holding posi
tion (x, y, z) constant. Time derivative terms in Eulerian formulation for acceleration ar
called local acceleration because position is held constant. All other terms are called con
vective acceleration because they typically involve variables associated with flui
motion.

: EXAMPLE. The concepts of Eq. (4.11) can be illustrated by use of the cartoon in Fig. 4.2
: ‘The carriage represents the fluid particle, and the track, the pathline. A direct way to mea
: sure the acceleration is to ride on the carriage and read the acceleration off an accelerom
: eter. This gives the acceleration on the left side of Eq. (4.11). The Eulerian approach is t
: record data so terms on the right side of Eq. (4.11) can be calculated. One would measur
i the carriage velocity at two locations separated by a distance As and calculate the convec
i tive term using
vV _ VAV

3 As
Next, one would measure V and r and then calculate V2/r. The local acceleration, for th:

: example, would be zero. When one did the calculations on the right side of Eq. (4.11), th
i calculated value would match the value recorded by the accelerometer.
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Summary The physics of acceleration are described by considering changing speed ar
changing direction of a fluid particle. Local and convective acceleration are labels for the mat
ematical terms that appear in the Eulerian formulation of acceleration.

When a velocity field is specified, this denotes an Eulerian approach, and one can calcula
the acceleration by substituting into an appropriate formula. Example 4.1 illustrates tk
method.



EXAMPLE 4.1

Calculating Acceleration when a Velocity Field is Specified

Problem Statement

A nozzle is designed such that the velocity in the nozzle
varies as

O

“9 T 10— 0sxL

where the velocity u, is the entrance velocity and L is the nozzle
length. The entrance velocity is 10 m/s, and the length is 0.5 m.
The velocity is uniform across each section. Find the acceleration
at the station halfway through the nozzle (x/L = 0.5).

Define the Situation
A velocity distribution is specified in a nozzle.

X

Q :
|
[
lOmsII 3 20m/s
%
I
e L !

Assumptions: Flow field is quasi one-dimensional (negligible
velocity normal to nozzle centerline).

State the Goal

Calculate the acceleration at nozzle midpoint.

Generate Ideas and Make a Plan
1. Select the pathline along the centerline of the nozzle.
2. Evaluate the terms in Eq. (4.11).

Take Action (Execute the Plan)

The distance along the pathline is x, so s in Eq. (4.11) becomes
xand V becomes u. The pathline is straight, so r — co.

4.5 Adpplying Euler’s Equation
to Understand Pressure Variation

}. Term-by-term analysis:

« Convective acceleration

du u ( 0.5)
— e — x ———
ox (1 — 0.5x/L)? L

l 0.5“0
L (1 = 0.5x/L)

du u 1

52—
ax L (1 - 05x/L)

Evaluation at x/L = 0.5:

du 10° 1
U —=05X—X —:
ax 0.5 075
= 237 m/s’

o Local acceleration

— =9
at

« Centripetal acceleration (also a convective acceleration

=

/

=0

-« |

2. Combine the terms

a, = 237m/s* + 0

- [

a, (normal to pathline) = @

Review the Solution and the Process

Knowledge. Because a, is positive, the direction of the
acceleration is positive; that is, the velocity increases in the
x-direction, as expected. Even though the flow is steady,
the fluid particles still accelerate.

Euler’s equation, the topic of this section, is used by engineers to understand pressure variation.

Derivation of Euler’s Equation

Euler’s equation is derived by applying ZF = ma to a fluid particle. The derivation is similar to
the derivation of the hydrostatic differential equation (Chapter 3).



To begin, select a fluid particle (Fig. 4.22a) and orient the particle in an arbitrary directic
€ and at an angle o with respect to the horizontal plane (Fig. 4.22b). Assume that viscous forc
are zero. Assume the particle is in a flow and that the particle is accelerating. Now, apply Nex
ton’s second law in the {-direction:

EFf = mda

4.1
F pressure + F, gravity = mag
The mass of the particle is
m = pAAAL
The net force due to pressure in the £-direction is
Fpressure = pPAA — (p + Ap)AA = —ApAA
The force due to gravity is
Foraviy = —AW, = —AWsina (4.1

FIGURE 4.22

{a) Forces acting on a fuid
particle, and (b) sketch
showing the geometry.

\
<
+
3
g
—

T

(b)

From Fig. 4.22b note that sin a = Az/A¢, so Eq. (4.13) becomes

Az
The weight of the particle is AW = yA¢AA. Substituting the mass of the particle and the forc
on the particle into Eq. (4.12) yields

A
—ApAA — -yAfAAA—: = pAAAa
Dividing through by the volume of the particle AAA{ results in
_Ap Az

At Tae T P%
Taking the limit as A€ approaches zero (reduce the particle to an infinitesimal size) leads to

ap 9z :

ot Yog  P% 4.

Assume a constant density flow, so v is constant and Eq. (4.14) reduces to

d
——(p +¥9) = pac “.



Equation (4.15) is a scalar form of Euler’s equation. Because this equation is true in any
scalar direction, one can write this in an equivalent vector form:

—Vp.=pa 4.16)

where Vp, is the gradient of the piezometric pressure, and a is the acceleration of the fluid
particle.

Physical Interpretation of Euler’s Equation

Euler’s equation shows that the pressure gradient is colinear with the acceleration vector and
opposite in direction.

-Vp. = pa

LA

gradient of the piezometric
pressure field

mass , .
= (acceleration of particle)
volume

Thus, by using knowledge of acceleration, one can make inferences about the pressure varia-
tion. Three important cases are presented next. At this point, we recommend the film entitled
Pressure Fields and Fluid Acceleration (4) because this film illustrates fundamental concepts
using laboratory experiments.

Case 1: Pressure Variation Due to Changing Speed of a Particle

When a fluid particle is speeding up or slowing down as it moves along a streamline, then pres-
sure will vary in a direction tangent to the streamline. For example Fig. 4.23 shows a fluid
particle moving along a stagnation streamline. Because the particle is slowing down, the ac-
celeration vector points to the left. Therefore the pressure gradient must point to the right.
Thus, the pressure is increasing along the streamline, and the direction of increasing pressure
is to the right. Summary. When a particle is changing speed, then pressure will vary in a direc-
tion that is tangent to the streamline.

FIGURE 4.23

This figure shows flow over a sphere. The blue object is a fluid
particle moving along the stagnation streamline.

Because this particle is slowing down,
the acceleration vector must be tangent
to path and acting to the left.

a _VP m———— -

—

> \ Therefore, the pressure
m_, Stagnation :nut;t be I}r:::reasmg in
Streamline © the right.

Case 2: Pressure Variation Normal to Rectilinear Streamlines

When streamlines are straight and parallel (Fig. 4.24), then piezometric pressure will be con-
stant along a line that is normal to the streamlines. To prove this fact, draw a line that is normal
to the streamlines (see Fig. 4.24). Then recognize that
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FIGURE 4.25

Flow with curved
streamlines. Assume that
the fluid pariicle has
constant speed. Thus, the
acceleration vector points
inward towards the center
of curvature.

FIGURE 4.24

Flow with rectilinear streamlines. The numbered steps give the logic to show that pressure
variation normal to rectilinear streamlines is hydrostatic.

1. Draw a line normal to streamlines. 2. Recognize that the normal component of

acceleration for this particle must be zero.

Floy,

3. Because acceleration is zero, presssure gradient
along this line must be zero.

4. Conclude that piezometric pressure must be
constant along this line. Therefore, pressure
variation normal to rectilinear streamlines is
hydrostatic.

Because a, = 0, Euler’s equation shows that the pressure gradient must be zero: 8(p + v:
an = 0. Thus, conclude that piezometric pressure (p + vyz) is constant along any line that
normal to the streamlines. Summary. Pressure variation normal to rectilinear streamlines
hydrostatic.

Case 3: Pressure Variation Normal to Curved Streamlines

When streamlines are curved (Fig. 4.25), then piezometric pressure will increase along a l
that is normal to the streamlines. The direction of increasing pressure will be outward from t
center of curvature of the streamlines. Fig. 4.25 shows why pressure will vary. A fluid parti
on a curved streamline must have a component of acceleration inward. Therefore, the gradie
of the pressure will point outward. Because the gradient points in the direction of increasi
pressure, we conclude that pressure will increase along the line drawn normal to the strea:
lines. Summary. When streamlines are curved, then pressure increases outward from the ce
ter of curvature* of the streamlines.

v — Direction of increasing pressure is outward
p (away from center of curvature of the streamlines).

/—:\ Acceleration vector points inward

(toward center of curvature of the streamlines).

Calculations Involving Euler’s Equation

In most cases, calculations involving Euler’s equation are beyond the scope of this book. Hc
ever, when a fluid is accelerating as a rigid body, then Euler’s equation can be applied i
simple way. Examples 4.2 and 4.3 show how to do this.

*Each streamline has a center of curvature at each point along the streamline. There is not a single center of curva
of a group of streamlines.



SECTION 4.5 APPLYING EULER'S EQUATION TO UNDERSTAND PRESSURE VARIATION

EXAMPLE 4.2

Applying Euler’s equation to a Column of Fluid being
Accelerated Upward

Problem Statement

A column water in a vertical tube is being accelerated by a
piston in the vertical direction at 100 m/s®. The depth of the

water column is 10 cm. Find the gage pressure on the piston.

The water density is 10’ kg/m’,

Define the Situation

A column of water is being accelerated by a piston.

a, = 100 m/s*

Assumptions:

o Acceleration is constant.

« Viscous effects are unimportant.
» Water is incompressible.

Properties: p = 10" kg/m’

State the Goal
Find: The gage pressure on the piston.

EXAMPLE 4.3

Applying Euler’s Equation to Gasoline in a Decelerating
Tanker

Problem Statement

The tank on a trailer truck is filled completely with gasoline,
which has a specific weight of 42 Ibf/ft® (6.60 kN/m®). The
truck is decelerating at a rate of 10 ft/s? (3.05 m/s?).

a. If the tank on the trailer is 20 ft (6.1 m) long and if the
pressure at the top rear end of the tank is atmospheric,
what is the pressure at the top front?

b. If the tank is 6 ft (1.83 m) high, what is the maximum
pressure in the tank?

Generate Ideas and Make a Plan

1. Apply Euler’s equation, Eq. (4.15), in the z-direction.
2. Integrate between locations 1 and 2.

3. Set pressure equal to zero (gage pressure) at section 2.
4. Calculate the pressure on the piston.

Take Action (Execute the Plan)

1. Because the acceleration is constant, there is no
dependence on time, so the partial derivative in Euler’s
equation can be replaced by an ordinary derivative. Eule
equation becomes:

(o) = —pu.

2. Integration between sections 1 and 2:
2 2

[0+ v = [-oaa:

1 1
(P2 + vz2) = (pr + v&1) = —pa.(z — 2)
3. Algebra:
P = (v + pa,)Az = p(g + a;)Az
4. Evaluation of pressure:

P = 10°kg/m’ X (9.81 + 100) m/s* X 0.1 m

p: =[10.9 X 10’ Pa = 10.9 kPa, gage]|

Define the Situation

Situation: Decelerating tank of gasoline with pressure equa
zero gage at top rear end.
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Assumptions:

1. Deceleration is constant.

2. Gasoline is incompressible.
Properties: v = 42 Ibf/ft® (6.60 kN/m")

State the Goal

Find:

1. Pressure (psfg and kPa, gage) at top front of tank.
2. Maximum pressure (psfg and kPa, gage) in tank.

Make a Plan

1. Apply Euler’s equation, Eq. (4.15), along top of tank.
Elevation, z, is constant.

2. Evaluate pressure at top front.

3. Maximum pressure will be at front bottom. Apply Euler’s
equation from top to bottom at front of tank.

4. Using result from step 2, evaluate pressure at front bottom.

Take Action (Execute the Plan)
1. Euler’s equation along the top of the tank
dp

e~ P%

Integration from back (1) to front (2)

¥
pz - pl = —pa¢A€ = —éa,Ae

2. Evaluation of p, withp, = 0

_ _(42 Ibf/fe
32.2 ft/s?

- [T
In SI units

B _(6.60 kN/m’
’ 9.81 m/s?

=112.5 (kPa gage)

)x( 10 ft/s?) X 20 ft

)X (—3.05m/s’) X 6.1 m

. Euler’s equation in vertical direction

o= o

. For vertical direction, a, = 0. Integration from top of tank

(2) to bottom (3):
Pt ¥z = pst vz,
pi=p+¥(z — 25)
ps = 2611bf/f* + 42 Ibf/f* X 6 ft =|513 psfg]

In SI units
ps = 12.5kN/m? + 6.6 kN/m® X 1.83 m

ps = [206KPa gage]

4.6 Applying the Bernoulli Equation along a Streamline

Because the Bernoulli equation is used frequently in fluid mechanics, this section introduc

this topic.

Derivation of the Bernoulli Equation

Select a particle on a streamline (Fig. 4.26). The position coordinate s gives the particle’s po
tion. The unit vector u, is tangent to the streamline, and the unit vector u, is normal to t
streamline. Assume steady flow so the velocity of the particle depends on position only. That

V= V(s).

FIGURE 4.26

Sketch used for the
derivation of the
Bernoulli equation.

L Streamline



