PREDICTING
SHEAR FORCE

[Chapter Road Map t
This chapter describes how to predict shear stress
and shear force on a flat surface. The emphasis is ¢
the theory because this theory provides the foundati
for more advanced study in fluid mechanics.

1éarning OBiectives]

STUDENTS WILL BE ABLE TO

® Describe Couette flow. Show how to derive and apply the
working equations. (§9.1)

® Describe Hele-Shaw flow. Show how to derive and apply
the working equations. (§9.1)

* Sketch the development of the boundary layer on a flat
plate. Label and explain the main features. {§9.2)

* Define the local shear stress coefficient, ¢;, and the
average shear stress coefficient, C;. {§9.3)

* Define or calculate Re, and Re,. (§9.3)

* For the laminar boundary, calculate the boundary layer
thickness, the shear stress, and the shear force using
suitable correlations. (§9.3)

® Describe the fransition Reynolds number. (§9.4)

® Describe or apply the power law equation for the turbulen
boundary layer. {§9.5)

e Sketch a turbulent boundary layer. label and describe the
three zones of flow. {§9.5)

® For the turbulent boundary layer, calculate the boundary
layer thickness, the shear stress, and the shear force using
suitable correlations. [§9.5)

FIGURE 9.1

When engineers design sailboats for racing, they consider
the drag force on the hull. This drag force is caused by
the pressure and shear stress distributions. This chapter

is concerned with the shear stress and the shear force.
[Foucras G./Stockimage/Getty Images. )
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SECTION 9.1 UNIFORM LAMINAR FLOW 3

9.1 Uniform Laminar Flow

In this section, Newton’s second law of motion is used to derive a differential equation that
governs a 1-D, steady, viscous flow. Then, the equation is solved for two classic problems: Couette
flow (see Section 2.6) and Hele-Shaw flow (fully developed laminar flow between two parallel
plates). The rationale for this section is to introduce fundamentals that are useful for analyzing
viscous flows.

The equation derived in this section is a special case of the Navier-Stokes equation. The
Navier-Stokes equation is probably the single most important equation in fluid mechanics.

The Equation of Motion for Steady and Uniform Laminar Flow

Consider a CV (Fig. 9.2), which is aligned with the flow direction s. The streamlines are
inclined at an angle 6 with respect to the horizontal plane. The control volume has dimensions
As X Ay X unity; that is, the control volume has a unit length into the page. By application of
the momentum equation, the sum of the forces acting in the s-direction is equal to the net
outflow of momentum from the control volume. The flow is uniform, so the outflow of
momentum is equal to the inflow and the momentum equation reduces to

>SFE=0 (9.1)

FIGURE 9.2
Control volume for analysis of uniform flow with parallel streamlines.

=
i -Az

There are three forces acting on the matter in the control volume: the forces due to pres-
sure, shear stress, and gravity. The net pressure force is

dp > dp
= + — i
pAy (p s As )Ay A AsAy
The net force due to shear stress is

dr dr
+ — - e
(’T dyAy)As TAs & AyAs



FIGURE 9.3

Flow generated by a
moving plate {Couetle
flow).

The component of gravitational force is pgAsAy sin 8. However, sin 0 can be related to the r
at which the elevation, z, decreases with increasing s and is given by —dz/ds. Thus the gravi
tional force becomes

pgAsAysing = —'yAyAs-Z—:

Summing the forces and dividing by volume (AsAy) results in

v d

== + 9

&y~ Pt (
where it is noted that the gradient of the shear stress is equal to the gradient in piezometric pre
sure in the flow direction. The shear stress is equal to duldy, so the basic equation becomes

du 1d

o P (9.

where . is constant. Eq. (9.3) is the Navier-Stokes equation applied to a uniform and steac
flow. The general form of this equation is introduced in Chapter 16. This equation is no
applied to the two flow configurations.

v CHECKPOINT PROBLEM 9.1

The sketch identifies terms that appear in the Navier-Stokes equation. du d(p + vz)
a. What are the secondary dimensions of each term? Primary » dy? - ds
dimensions?

Tt A Te B
b. What does Term A mean? erm erm

¢. What does Term B mean?
d. What does this equation mean holistically? That is, what is the physical interpretation?

Flow Produced by a Moving Plate (Couette Flow)

Consider the flow between the two plates shown in Fig. 9.3. The lower plate is fixed, and th
upper plate is moving with a speed U. The plates are separated by a distance L. In this probler
there is no pressure gradient in the flow direction (dp/ds = 0), and the streamlines are in th
horizontal direction (dz/ds = 0), so Eq. (9.3) reduces to
2
4% o
dy?

The two boundary conditions are

u=0 at y=90
u=U at y=1

—U
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Integrating this equation twice gives
u= Cly 18 C3

Applying the boundary conditions results in

u==-U {9.4)

Y
L
which shows that the velocity profile is linear between the two plates. The shear stress is con-
stant and equal to
du U
=p-=p 9.5
TE R o wI (9.5)
This flow is known as a Couette flow after a French scientist, M. Couette, who did pioneering
work on the flow between parallel plates and rotating cylinders. It has application in the design
of lubrication systems.
Example 9.1 illustrates the application of Couette flow in calculating shear stress.

EXAMPLE 9.1 State the Goal

Shear Stress in Couette Flow © Find: Shear stress (in N/m?) on top plate.

Problem Statement Generate Ideas and Make a Plan

SAE 30 lubricating oil at T = 38°C flows between two i Calculate shear stress using Eq. (9.5).

parallel plates, one fixed and the other moving at 1.0 m/s. :

Plates are spaced 0.3 mm apart. What is the shear stress on i Take Action (Execute the Plan)

the plates? : du U
: TEpe— =

Define the Situation b I; .
: = (1.0 X 107" N + s/m?)(1.0 m/s)/(3 X 10~

SAE 30 lubricating oil is flowing between parallel plates : ( st )t mis)i( m)

. . 5 : T = {333 N/m’
Properties: From Table A4, p = 1.0 X 107" N+ s/m :

Review the Solution and the Process

— 1 : . N
™ Knowledge. Because the velocity gradient is constant, the she
0.3 mm H . .
. stress is constant throughout the flow. Thus, the magnitude ¢
the shear stress is the same for the bottom plate as the top pl

Flow Between Stationary Parallel Plates (Hele-Shaw Flow)

Consider the two parallel plates separated by a distance B in Fig. 9.4. In this case, the flow
velocity is zero at the surface of both plates, so the boundary conditions for Eq. (9.3) are

u=0 at y=0
u=0 at y=8B

Because the flow is uniform (i.e., there is no change in velocity in the streamwise direction), u
is a function of y only. Therefore, d’u/dy” in Eq. (9.3), as well as the gradient in piezometric
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FIGURE 9.4

Uniform flow between
two stationary plates
{Hele-Shaw flow).

pressure, must also be equal to a constant in the streamwise direction. Integrating Eq. (9.3
twice gives
2
Yy d
u= P+ Gy G
To satisfy the boundary condition at y = 0, set C, = 0. Applying the boundary condition a
y = Brequires that C, be

B d

=—-——(p+
so the final equation for the velocity is
1.d 1 d(p + vz)
= ——— —+ — y2 = e — — gyt 9_
U= s P T YA ) L AP (9.6

which is a parabolic profile with the maximum velocity occurring on the centerline betweer
the plates, as shown in Fig. 9.3. The maximum velocity is

B>\ d
= —|—]—(p + 9.7q,
Unma (&L) 2P+ 2) (9.74
or in terms of piezometric head
Bz'y> dh
=——])= 9.7b
Hmax (su ds (970

The fluid always flows in the direction of decreasing piezometric pressure or piezometric head,
so dh/ds is negative, giving a positive value for u,,,,.
The discharge per unit width, g, is obtained by integrating the velocity over the distance

between the plates:
B 3 3
B*\d B y\dh
E— = —| — |— + = —|—]— g
1 Jo udy <12p,> PACRRD) (12») ds 0.8

The average velocity is

_1___591 _2
V= B (12“. dS(P o ‘YZ) - 3 Umax (9-9)
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Note that flow is the result of a change of the piezometric head, not just a change of p or z alone.
Experiments reveal that if the Reynolds number (VB/v) is less than 1000, the flow is laminar.
For a Reynolds number greater than 1000, the flow may be turbulent, and the equations devel-
oped in this section are invalid.

The flow between parallel plates is often called Hele-Shaw flow. It has application in flow
visualization studies and in microchannel flows.

A significant difference between Couette flow and Hele-Shaw flow is that the motion of a
plate is responsible for Couette flow, whereas a gradient in piezometric pressure provides the
force to move a Hele-Shaw flow.

Example 9.2 illustrates how to calculate the pressure gradient required for flow between
two parallel plates.

EXAMPLE 9.2 Take Action (Execute the Plan)

Pressure Gradient for Flow Between Parallel Plates : 1. Check for laminar flow

Problem Statement Re = VB o VBp _»

Oil having a specific gravity of 0.8 and a viscosity of 2 X 1077 : Y H u

N - s/m’ flows downward between two vertical smooth plates  : (001 m’/s) X 800 kg/m’
spaced 10 mm apart. If the discharge per meter of width is - 0.02N - s/m? 400

0.01 m?/s, what is the pressure gradient dp/ds for this flow?
VB/v < 1000. Flow is laminar, equations apply.

Define the Situation © 2, Kinematic viscosity:

Oil flows downward between two vertical smooth plates : ) 2

. - : 2X 10 °N - s/m
spaced 10 mm apart. The discharge per meter of width : v=pplp = =
is 0.01 (m?/s). : 0.8 X 1000 kg/m

=25 X 10" ms

Piezometric head gradient is

dh 126 12y
: ds B’y 1 Bg 1
\ L dh . 12X 25X 10°mY
P S - T % 0.01 m¥s = ~0.306
ds (0.01 m)® X 9.81 m*/s
5 3. Plates are oriented vertically, s is positive downward, so
dz/ds = —1. Thus
dh _ i(l_’) L&
ds ds\y ds
State the Goal %(ﬂ) = %}1 = % = —0.306 + 1 = 0.6%4
s
Find: Pressure gradient dp/ds (in Pa/m) for this flow. : v ’
Properties: S = 0.8, u = 2 X 10 *N - s/m". iooor
P4 (5450 N/ per met
Generate Ideas and Make a Plan : ;5 = (0.8 X 9810 N/m*) X 0.694 = |5450 N/m’ per met
1. Check to see if the flow is laminar using VB/v < 1000.If it :
is laminar, continue. . Review the Solution and the Process
2. Calculate piezometric head gradient using Eq. (9.8). : Note that the pressure increases in the downward direction,
3. Subtract elevation gradient to obtain the pressure i which means that the pressure, in part, supports the weight

gradient. i the fluid.
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FIGURE 9.5

Development of boundary
layer and shear stress
along a thin, flat plate.

(a) Flow pattern above
and below the plate.

(b) Shear-stress distribution
on either side of plate.

9.2 Qualitative Description of the Boundary Layer

The purpose of this section is to provide a qualitative description of the boundary layer, whi
is the region adjacent to a surface over which the velocity changes from the free-stream val
(with respect to the object) to zero at the surface. This region, which is generally very thj
occurs because of the viscosity of the fluid. The velocity gradient at the surface is responsit
for the viscous shear stress and shear force.

The boundary-layer development for flow past a thin plate oriented parallel to the flc
direction shown in Fig. 9.5a. The thickness of the boundary layer, 8, is defined as the distan
from the surface where the velocity is 99% of the free-stream velocity. The actual thickness
a boundary layer may be 2% to 3% of the plate length, so the boundary-layer thickness shov
in Fig. 9.5a is exaggerated at least by a factor of five to show details of the flow field. Fluid pass
over the top and underneath the plate, so two boundary layers are depicted (one above and o1
below the plate). For convenience, the surface is assumed to be stationary, and the free-strea
fluid is moving at a velocity U,

Turbulent
boundary layer

Laminar

Thin flat boundary layer
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The development and growth of the boundary layer occurs because of the “no-slip” condi
tion at the surface; that is, the fluid velocity at the surface must be zero. As the fluid particle
next to the plate pass close to the leading edge of the plate, a retarding force (from the shea
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stress) begins to act on the particles to slow them down. As these particles progress farther
downstream, they continue to be subjected to shear stress from the plate, so they continue to
decelerate. In addition, these particles (because of their lower velocity) retard other particles
adjacent to them but farther out from the plate. Thus the boundary layer becomes thicker, or
“grows,” in the downstream direction. The broken line in Fig. 9.5a identifies the outer limit of
the boundary layer. As the boundary layer becomes thicker, the velocity gradient at the wall
becomes smaller and the local shear stress is reduced.

The initial section of the boundary layer is the laminar boundary layer. In this region
the flow is smooth and steady. Thickening of the laminar boundary layer continues smoothly
in the downstream direction until a point is reached where the boundary layer becomes
unstable. Beyond this point, the critical point, small disturbances in the flow will grow and
spread, leading to turbulence. The boundary becomes fully turbulent at the transition
point. The region between the critical point and the transition point is called the transition
region.

In most problems of practical interest, the extent of the laminar boundary layer is small
and contributes little to the total drag force on a body. Still it is important for flow of very vis-
cous liquids and for flow problems with small length scales.

The turbulent boundary layer is characterized by intense cross-stream mixing as turbulent
eddies transport high-velocity fluid from the boundary layer edge to the region close to the
wall. This cross-stream mixing gives rise to a high effective viscosity, which can be three orders
of magnitude higher than the actual viscosity of the fluid itself. The effective viscosity, due to
turbulent mixing is not a property of the fluid but rather a property of the flow, namely, the
mixing process. Because of this intense mixing, the velocity profile is much “fuller” than the
laminar-flow velocity profile as shown in Fig. 9.5a. This situation leads to an increased velocity
gradient at the surface and a larger shear stress.

The shear-stress distribution along the plate is shown in Fig. 9.4b. It is easy to visualize that
the shear stress must be relatively large near the leading edge of the plate where the velocity
gradient is steep, and that it becomes progressively smaller as the boundary layer thickens in
the downstream direction. At the point where the boundary layer becomes turbulent, the shear
stress at the boundary increases because the velocity profile changes producing a steeper gradient
at the surface.

These qualitative aspects of the boundary layer serve as a foundation for the quantitative
relations presented in the next section.

9.3 Laminar Boundary Layer

This section summarizes the equations for the velocity profile and shear stress in a laminar
boundary layer and describes how to calculate shear stress and shear forces on a surface. This
information can be used to estimate drag forces on surfaces in low Reynolds-number flows.

Boundary-Layer Equations

In 1904 Prandtl (1) first stated the essence of the boundary-layer hypothesis, which is that
viscous effects are concentrated in a thin layer of fluid (the boundary layer) next to solid
boundaries. Along with his discussion of the qualitative aspects of the boundary layer, he also
simplified the general equations of motion of a fluid (Navier-Stokes equations) for application
to the boundary layer.

In 1908, Blasius, one of Prandtl’s students, obtained a solution for the flow in a laminar
boundary layer (2) on a flat plate with a constant free-stream velocity. One of Blasius’s key
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assumptions was that the shape of the nondimensional velocity distribution did not vary frc
section to section along the plate. That is, he assumed that a plot of the relative velocity, u/!
versus the relative distance from the boundary, y/8, would be the same at each section. W
this assumption and with Prandtl’s equations of motion for boundary layers, Blasius obtain
a numerical solution for the relative velocity distribution, shown in Fig. 9.6.* In this plot, x
the distance from the leading edge of the plate, and Re, is the Reynolds number based on t
free-stream velocity and the length along the plate (Re, = Uyx/v). In Fig. 9.6 the outer limit
the boundary layer (u/U, = 0.99) occurs at approximately yRel?/x = 5. Because y = 8 at tl
point, the following relationship is derived for the boundary-layer thickness in laminar flow

a flat plate:
) 5x
z Re*=5 or &= Rl (9.1
FIGURE 9.6 ol
Velocity distribution in ‘
laminar boundary layer.
[After Blasius {2).] 40}
"
30 Up
yVRe, i
20
1.0 -
0 02 04 06 08 )
The Blasius solution also showed that
d(u/U,
(—")m = 0332
d[(y/x)Rex ] y=0
which can be used to find the shear stress at the surface. The velocity gradient at the bounda
becomes
d U
L = 0332-2Re!2
d}/ y=0 x
0 (9.1
du 0
E; -0 = 0'332x1/2v1/2

*Experimental evidence indicates that the Blasius solution is valid except very near the leading edge of the plate.
the vicinity of the leading edge, an error results because of certain simplifying assumptions. However, the discrepan
is not significant for most engineering problems.
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Equation (9.11) shows that the velocity gradient (and shear stress) decreases with increasing
distance x along the plate.

Shear Stress
The shear stress at the boundary is obtained from

du

- - U 1/2
T = ;Ldy o = 0332 . Re} (9.12)

Equation (9.12) is used to obtain the local shear stress at any given section (any given value of x)
for the laminar boundary layer.

Example 9.3 illustrates the application of the laminar boundary layer equations for calcu-
lating boundary layer thickness and shear stress.

Shear Force

Consider one side of a flat plate with width B and length L. Because the shear stress at the
boundary, 7,, varies along the plate, it is necessary to integrate this stress over the entire surface
to obtain the total shear force, F..

L
E = J ToB dx {9.13)
0
EXAMPLE 9.3 State the Goal
Laminar Boundary-Layer Thickness and Shear Stress i Surface shear stress, 7, as function of x.

Boundary-layer thickness, 8, as function of x.
Problem Statement :
Crude oil at 70°F (v = 10™* fi¥/s, S = 0.86) with a free-stream : Generate Ideas and Make a Plan

velocity of 1 ft/s flows past a thin, flat plate thatis 4 ft wideand : 1. Calculate boundary-layer thickness with Eq. (9.10).
6 ft long in a direction parallel to the flow. 'The flowislaminar. 5 1o chear-stress distribution with E g (9.12).
Determine and plot the boundary-layer thickness and the ) .

shear stress distribution along the plate. 3. Summarize results using a table and a plot.

Define the Situation Take Action (Execute the Plan)
Crude oil flows past a thin, flat plate. Free-stream velocity 1. Reynolds-number variation with distance
is 1 fi/s. : Ux 11X
: Re,= — = _f = 10%
— | fiis v 10
— : Boundary-layer thickness
: 5x 5x -2 152
* 5 —'Fyz=loz—m=5><10 x2 ft
£ . 2. Shear-stress distribution
| : Uy,
| 6 | S 0.332,;L;9Re,t’l
Oil. v = 107* ft¥/s, S = 0.86 © p=pv = 194 slugs/ft® X 0.86 X 107 ft¥/s
Assumptions: = 1.67 X 10 * Ibf-s/ft
1. Plate is smooth, flat with sharp leading edge. : 1 5.54 X 107°
. : P g8 To = 0.332(1.67 X 107%) = (10°x"?) = =————psf
2. Boundary layer is laminar. x x
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3. Summary (make a plot and build a table).

1.8
1.6

0.4

: TABLE 9.1 Results: & and 14 for Different Values of x

x=01ft x=10ft x=2ft x=4ft x=6ft

T
\
\
1
\
\
\
\
\
\
.

Boundary-layer
thickness

S ./— Surface shear stress

P 0.316 1.00 1.414 2.00 2.45

T psf 0018 0.0055  0.0037 0.0028 0.0023

8, ft 0.016 0.050 0.071 0.10 0.122
8, in 0.190 0.600 0.848 1.200 1.470

=i Review the Solution and the Process
~—acao_.

1. Notice that the boundary-layer thickness increases with

T T T T T distance. At the end of the plate 8/x = 0.02, or the
6 7 boundary-layer thickness is 2% of the distance from
Distance, ft leading edge.

2. Notice also that shear stress decreases with distance from
leading edge of the plate.

Substituting in Eq. (9.12) for 7yand integrating gives

UuU(l)llelz

F‘ 12

L
J 0.332Bn dx
o

XV

(l)/ZLl/Z
0.664BuUy—— 57— (9.1
14

= 0.664Bp.U,Re}?

where Re; is the Reynolds number based on the approach velocity and the length of the plat

Shear-Stress Coefficients

It is convenient to express the shear stress at the boundary, 7y, and the total shearing force F, i

terms of w-groups involving the kinetic pressure of the free stream, pU3/2. The local shea
stress coefficient, ¢y, is defined as

= (9.1
Cr = — . 3
T pUdn2

Substituting Eq. (9.12) into Eq. (9.15) gives c; as a function of Reynolds number based on t}
distance from the leading edge.

0.664
= —R:}:’Z— where Re, = — (9.1
The total shearing force, as given by Eq. (9.13), can also be expressed as a w-group

C= b 9.1:
T~ (pUiN2)A .
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where A is the plate area. This w-group is called the average shear-stress coefficient. Substitut-
ing Eq. (9.14) into Eq. (9.17) gives C:

1.33 UL

G = where Re, = ~ {9.18)

Re}?

Example 9.4 shows how to calculate the total shear force for a laminar boundary layer on
a flat plate.

EXAMPLE 9.4 State the Goal

Resistance Calculation for Laminar Boundary Layer © Find: Shear force (in Ibf) on one side of plate.
on a Flat Plate :

Generate Ideas and Make a Plan

Problem Statement 1. Calculate the Reynolds number based on plate length.

Crude oil at 70°F (v = 10" fi¥/s, S = 0.86.) with a free-stream  : 2. Evaluate C using Eq. (9.18).
velocity of 1 ft/s flows past a thin, flat plate that is 4 ft wide and :
6 ft long in a direction parallel to the flow. The flow is laminar.

3. Calculate the shear force using Eq. (9.17).

Determine the resistance on one side of the plate. Take Action (Execute the Plan)

Define the Situation 1. Reynolds number.

Crude oil flows past a thin, flat plate. Free-stream velocity Re, = Ul g 1 fi/s X 6 ft =6 % 10°
is 1 ft/s. : v 107 ft/s

Properties: For oil, v = 10 * ft¥s, S = 0.86. 2. Value for Cy:

Assumptions: Flow is laminar. C = .13 0.0054

" Rel? (6 x 1042

—_— i fis 3. Shear force.

C/BLpU;

; : F==L
) ; 2
: 0.0054 X 4ft X 6 ft X 0.86

1 (ft/s)’
X 1.94 slugs/ft* X - o= 0.108 Ibf

6f

9.4 Boundary Layer Transition

Transition is the zone where the laminar boundary layer changes into a turbulent boundary
layer as shown in Fig. 9.5a. As the laminar boundary layer continues to grow, the viscous
stresses are less capable of damping disturbances in the flow. A point is then reached where
disturbances occurring in the flow are amplified, leading to turbulence. The critical point
occurs at a Reynolds number of about 10° (Re,, = 10°) based on the distance from the leading
edge. Vortices created near the wall grow and mutually interact, ultimately leading to a fully
turbulent boundary layer at the transition point, which nominally occurs at a Reynolds num-
ber of 3 X 10° (Re,, = 3 X 10°). For purposes of simplicity in this text, it will be assumed that
the boundary layer changes from laminar to turbulent flow at a Reynolds number 500,000. The
details of the transition region can be found in White (3).

Transition to a turbulent boundary layer can be influenced by several other flow condi-
tions, such as free-stream turbulence, pressure gradient, wall roughness, wall heating, and wall
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FIGURE 9.7

Sketch of zones in turbulent
boundary layer.

cooling. With appropriate foughness elements at the leading edge, the boundary layer ¢
become turbulent at the very beginning of the plate. In this case it is said that the bound:
layer is “tripped” at the leading edge.

v CHECKPOINT PROBLEM 9.2

Suppose the roof of an automobile is idealized as a flat plate. Given the data in the figure, what is th
speed V of the car in mph? Assume T = 20°Cand p = 1 atm.

a. 126 The cnitical Reynoids
b. 14.1 number occurs at

x = 0.6 m. The length of
c. 169 the roofis L= 1.2 m
d.28.1
focid - @) () 9990

9.5 Turbulent Boundary Layer

Understanding the mechanics of the turbulent boundary layer is important because in t
majority of practical problems, the turbulent boundary layer is primarily responsible for she
force. In this section the velocity distribution in the turbulent boundary layer on a flat pk
oriented parallel to the flow is presented. The correlations for boundary-layer thickness a
shear stress are also included.

Velocity Distribution

The velocity distribution in the turbulent boundary layer is more complicated than the lan
nar boundary layer. The turbulent boundary has three zones of flow that require differe
equations for the velocity distribution in each zone, as opposed to the single relationship
the laminar boundary layer. Figure 9.7 shows a portion of a turbulent boundary layer
which the three different zones of flow are identified. The zone adjacent to the wall is the v
cous sublayer; the zone immediately above the viscous sublayer is the logarithmic region; a

Yo
Turbulent velocity
»; defect law
/‘))/ e
D ) Logarithmic distribution

_ 225227 P
\3 ;3 \_) —B < _‘b

o) \\3 7 v

O 7 a8

Y— ¥ X

Viscous sublayer



finally, beyond that region is the velocity defect region. Each of these velocity zones will be
discussed separately.

Viscous Sublayer The zone immediately adjacent to the wall is a layer of fluid that is essen-
tially laminar because the presence of the wall dampens the cross-stream mixing and turbulent
fluctuations. This very thin layer is called the viscous sublayer. This thin layer behaves as a
Couette flow introduced in Section 9.1. In the viscous sublayer, 7 is virtually constant and
equal to the shear stress at the wall, 7. Thus du/dy = 1o/, which on integration yields

To)

u= " (9.19}

Dividing the numerator and denominator by p gives

To/p
u=—l;/;y
R (9.20)
Valp v 7

The combination of variables V/7,/p has the dimensions of velocity and recurs again and again
in derivations involving boundary-layer theory. It has been given the special name shear
velocity. The shear velocity (which is also sometimes called friction velocity) is symbolized as u..

Thus, by definition,
e = 2 (9.21)
p

Now, substituting u. for V74/p in Eq. (9.20), yields the nondimensional velocity distribution
in the viscous sublayer:

{9.22)

Experimental results show that the limit of viscous sublayer occurs when yu./v is approxi-
mately 5. Consequently, the thickness of the viscous sublayer, identified by &, is given as

_ 5
_u.

&' {9.23)
The thickness of the viscous sublayer is very small (typically less than one-tenth the thickness
of a dime). The thickness of the viscous sublayer increases as the wall shear stress decreases in
the downstream direction.

The Logarithmic Velocity Distribution The flow zone outside the viscous sublayer is turbu-
lent; therefore, a completely different type of flow is involved. The mixing action of turbulence
causes small fluid masses to be swept back and forth in a direction transverse to the mean flow
direction. A small mass of fluid swept from a low-velocity zone next to the viscous sublayer
into a higher-velocity zone farther out in the stream has a retarding effect on the higher-velocity
stream. Similarly, a small mass of fluid that originates farther out in the boundary layer in a
high-velocity flow zone and is swept into a region of low velocity has the effect of accelerating
the lower-velocity fluid. Although the process just described is primarily a momentum ex-
change phenomenon, it has the same effect as applying a shear stress to the fluid; thus in tur-
bulent flow these “stresses” are termed apparent shear stresses, or Reynolds stresses after the
British scientist-engineer who first did extensive research in turbulent flow in the late 1800s.



FIGURE 9.8

Velocity fluctuations
in turbulent flow.

The mixing action of turbulence causes the velocities at a given point in a flow to fluctuat.
with time. If one places a velocity-sensing device, such as a hot-wire anemometer, in a turbu
lent flow, one can measure a fluctuating velocity, as illustrated in Fig. 9.8. It is convenient t
think of the velocity as composed of two parts: a mean value, u, plus a fluctuating part, u’. Th
fluctuating part of the velocity is responsible for the mixing action and the momentun
exchange, which manifests itself as an apparent shear stress as noted previously. In fact, th
apparent shear stress is related to the fluctuating part of the velocity by

Tapp = —PU'V' (9.24
A
u'
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where u' and v' refer to the x and y components of the velocity fluctuations, respectivel
and the bar over these terms denotes the product of u'v’ averaged over a peric
of time.* The expression for apparent shear stress is not very useful in this form, ¢
Prandt] developed a theory to relate the apparent shear stress to the temporal mean veloci
distribution.

The theory developed by Prandt! is analogous to the idea of molecular transport creatii
shear stress presented in Chapter 2. In the turbulent boundary layer, the principal flow is pare
lel to the boundary. However, because of turbulent eddies, there are fluctuating componer
transverse to the principal flow direction. These fluctuating velocity components are asso
ated with small masses of fluid, as shown in Fig. 9.8, that move across the boundary layer. .
the mass moves from the lower-velocity region to the higher-velocity region, it tends to reta
its original velocity. The difference in velocity between the surrounding fluid and the trar
ported mass is identified as the fluctuating velocity component u', For the mass shown
Fig. 9.8, u’ would be negative and approximated by'

u' = €d—u

dy

where du/dy is the mean velocity gradient and £ is the distance the small fluid mass travels
the transverse direction. Prandt] identified this distance as the “mixing length” Prandtl :
sumed that the magnitude of the transverse fluctuating velocity component is proportional
the magnitude of the fluctuating component in the principal flow direction: |v'| =u
which seems to be a reasonable assumption because both components arise from the same

*Equation (9.24) can be derived by considering the momentum exchange that results when the transverse compor
of turbulent flow passes through an area parallel to the x-z plane. Or, by including the fluctuating velocity compont
in the Navier-Stokes equations, one can obtain the apparent shear stress terms, one of which is Eq. (9.24). Detail
these derivations appear in Chapter 18 of Schlichting (4).

*For convenience, the bar used to denote time-averaged velocity is deleted.
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of eddies. Also, it should be noted that a positive v' will be associated with a negative u’, so the
product u’v’ will be negative. Thus the apparent shear stress can be expressed as

2
Tapp = —PU'V = p«’fz(z—;> (9.25)
A more general form of Eq. (9.25) is
g
app P dy dy

which ensures that the sign for the apparent shear stress is correct.

The theory leading to Eq. (9.25) is called Prandtl's mixing-length theory and is used
extensively in analyses involving turbulent flow.* Prandtl also made the important and
clever assumption that the mixing length is proportional to the distance from the wall
(€ = ky) for the region close to the wall. If one considers the velocity distribution in a
boundary layer where du/dy is positive, as is shown in Fig. 9.9, and substitutes ky for ¢, then

Eq. (9.25) reduces to
du '\
Tapp = pK2y2<'d;>

Fluid mass
(initial position) ] Y
x

! =]

For the zone of flow near the boundary, it is assumed that the shear stress is uniform and
approximately equal to the shear stress at the wall. Thus the foregoing equation becomes

du\2
To = psz;‘(a;) {9.26)

Taking the square root of each side of Eq. (9.26) and rearranging yields

_ \V, To/ p i}_’_
u=— )
Integrating the above equation and substituting u. for V7,/p gives

u 1
i Elny +C (9.27)

*Prandtl published an account of his mixing-length concept in 1925. G. L Taylor (5} published a similar concept in
1915, but the idea has been traditionally attributed to Prandtl.

FIGURE 9.9
Concept of mixing leng
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FIGURE 9.10
Velocily distribution in @
turbulent boundary layer.

Experiments on smooth boundaries indicate that the constant of integration C can be given
terms of u«, v, and a pure number as
v

1
C =556 —~In
K U

When this expression for C is substituted into Eq. (9.27), the result is

1 Ux
2?4 56 (9.:
Us K v
In Eq. (9.28), k has sometimes been called the universal turbulence constant, or Karman's consta
Experiments show that this constant is approximately 0.41 (3) for the turbulent zone next to t
viscous sublayer. Introducing this value for k into Eq. (9.28) gives the logarithmic velocity distributi

< = 2441n Z{Iu— + 5.56 (9.5
Obviously the region where this model is valid is limited because the mixing length cann
continuously increase to the boundary layer edge. This distribution is valid for values of Yl
ranging from approximately 30 to 500.

The region between the viscous sublayer and the logarithmic velocity distribution is t
buffer zone. There is no equation for the velocity distribution in this zone, although vario
empirical expressions have been developed (6). However, it is common practice to extrapols
the velocity profile for the viscous sublayer to larger values of yu./v and the logarithmic veloci
profile to smaller values of yu./v until the velocity profiles intersect as shown in Fig. 9.10.
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The intersection occurs at yu./v = 11.84 and is regarded as the demarcation between the viscous
sublayer and the logarithmic profile. The “nominal” thickness of the viscous sublayer is

8y = 11.84 ul (9.30)

The combination of the viscous and logarithmic velocity profile for the range of yu./v
from 0 to approximately 500 is called the law of the wall.
_ Making a semilogarithmic plot of the velocity distribution in a turbulent boundary layer,
as shown in Fig. 9.10, makes it straightforward to identify the velocity distribution in the viscous
sublayer and in the region where the logarithmic equation applies. However, the logarithmic
nature of this plot accentuates the nondimensional distance yu»/v near the wall. A better per-
spective of the relative extent of the regions is obtained by plotting the graph on a linear scale,
as shown in Fig. 9.11. From this plot one notes that the laminar sublayer and buffer zone are a
very small part of the thickness of the turbulent boundary layer.

700 -
600 -
500 |
400 -
Yy
v
u
30 e Logarithmic
velocity
distribution
200 - |
s Viscous
sublayer
Bufferzone § ¢
0 10 20 ! 30

Velocity Defect Region For y/8 > 0.15 and yu./v > 500 the velocity profile corresponding
to the law of the wall becomes increasingly inadequate to match experimental data, so a
third zone, called the velocity defect region, is identified. The velocity in this region is repre-
sented by the velocity defect law, which for a flat plate with zero pressure gradient is simply

expressed as
Up —u =f(%> (9.31)

Us

and the correlation with experimental data is plotted in Fig. 9.12. At the edge of the boundary
layer y = 8 and (U, — u)/us = 0, so u= Uy, or the free-stream velocity. This law applies to
rough as well as smooth surfaces. However, the functional relationship has to be modified for
flows with free-stream pressure gradients.

FIGURE 9.11

Velocity distribution in ¢
turbulent boundary laye
linear scales.



FIGURE 9.12

Velocity defect law
for boundary layers
on flat plate (zero
pressure gradient),
[After Rouse {6).]
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As shown in Fig. 9.9, the demarcation between the law of the wall and the velocity defect 1
gions is somewhat arbitrary, so there is considerable overlap between the two regions. The thr
zones of the turbulent boundary layer and their range of applicability are summarized in Table 9

TABLE 9.2 Zones for Turbulent Boundary Layer on Flat Plate

Zone Velocity Distribution Range
o Us Us
Viscous Sublayer u _yu 0< 2 < 1184
U« v v
ey o e ) ' ”_ " -
Logarithmic Velocity Distribution :‘li -y 441n}'7 + 556 11.84 < ZV_ < 500
- ' S / o U
Velocity Defect Law Up—u _ f(z) 500 < y_’ 24 > 0.15
Us ) v 3

Power-Law Formula for Velocity Distribution Analyses have shown that for a wide range
Reynolds numbers (10° < Re < 107), the velocity profile in the turbulent boundary layer on
flat plate is approximated reasonably by the power-law equation

u y\7
Fo = (g) (9.3:

Comparisons with experimental results show that this formula conforms to those result
very closely over about 90% of the boundary layer (0.1 < ¥/8 < 1). Obviously it is not valid
the surface because (du)/(dy)|,-o— =, which implies infinite surface shear stress. For th
inner 10% of the boundary layer, one must resort to equations for the law of the wall (se
Fig. 9.10) to obtain a more precise prediction of velocity. Because Eq. (9.32) is valid ove
the major portion of the boundary layer, it is used to advantage in deriving the overall thicknes
of the boundary layer as well as other relations for the turbulent boundary layer.
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Example 9.5 illustrates the application of various equations to calculate the velocity in the

turbulent boundary layer.

EXAMPLE 9.5

Turbulent Boundary-Layer Properties

Problem Statement

Water (60°F) flows with a velocity of 20 ft/s past a flat plate.
The plate is oriented parallel to the flow. At a particular section

downstream of the leading edge of the plate, the boundary layer

is turbulent, the shear stress on the plate is 0.896 Ibf/ft?, and the
boundary-layer thickness is 0.0880 ft. Find the velocity of the
water at a distance of 0.0088 ft from the plate as determined by

a. The logarithmic velocity distribution
b. The velocity defect law
c. The power-law formula

Also, what is the nominal thickness of the viscous sublayer?

Define the Situation

Water flows past a flat plate oriented parallel to the flow. At a
point downstream of the leading edge of the plate, shear stress
on the plate is 0.896 Ibf/ft’, and boundary layer thickness is
0.0880 ft.

U, =20 firs
———

—

8=0.088

T, = 0.896 psf

f v=10.0088 ft

Properties:
From Table A.5,p = 1.94 slugs/f’, v = 1.22 X 107° ft’/s.

State the Goal

1. V(ft/s) 4m Velocity at y = 0.0088 ft using:
a. Logarithmic velocity distribution
b. Velocity defect law
¢. Power-law formula

2. Calculate the nominal thickness of the viscous sublayer

Generate Ideas and Make a Plan
1. Calculate shear velocity, u., from Eq. (9.21).
2. Calculate u using Eq. (9.29) for logarithmic profile.

3. Calculate y/8 and find (U, — u)/u. from Fig. 9.12.

4. Calculate u from (U, — u)/u. for velocity defect law.
5. Calculate u from Eq. (9.32) for power law.

6. Calculate 8, from Eq. (9.30).

Take Action (Execute the Plan)
1. Shear velocity

Us = (,ro/p)lﬂ

= [(0.896 Ibf/ft*)/(1.94 slugs/ft*)] "> = 0.680 ft/s
2. Logarithmic velocity distribution
yu./v = (0.0088 £t)(0.680 ft/s)/(1.22 X 1075 ft*/s) = 490
ulu. = 2.44In(yu./v) + 5.56
= 2.44 X In(490) + 5.56 = 20.7
u = 20.7 X 0.680 ft/s =
3. Nondimensional distance
y/8 = 0.0088 ft/0.088 ft = 0.10
From Fig. 9.12

U—-
0 "% 52

Us
4. Velocity from defect law
u=U; — 82u.

= 20 ft/s — (8.2)(0.68) ft/s

-
5. Power-law formula

ulU, = (y/8)"”

u = (Up)(0.10)"”
= (20 ft/5)(0.7197)

- [t

6. Nominal sublayer thickness
8y = 11.84v/u. = (11.84)(1.22 X 107° ft*/s)/(0.68 ft/s)

=212X1074ft =|2.54 X 10 %in

Review the Solution and the Process

Notice that the velocity obtained using logarithmic
distribution and defect law are nearly the same, which
indicates that the point is in the overlap region.
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Boundary-Layer Thickness and Shear-Stress Correlations

Unlike the laminar boundary layer, there is no analytically derived equation for the thickn
of the turbulent boundary layer. There is a way to obtain an equation by using moment:
principles and empirical data for the local shear stress and by assuming the 1/7 power veloc
profile (3). The result is

0.16.
8 = Re“’,‘ (9.
X

where x is the distance from the leading edge of the plate and Re, is U x/v.
Many empirical expressions have been proposed for the local shear-stress distribution :
the turbulent boundary layer on a flat plate. One of the simplest correlations is

T 0.027

= =— 9.34
T pUd2 T Rel (
and the corresponding average shear-stress coefficient is
0.032
f = Rel” (9.3

where Re; is the Reynolds number of the plate based on the length of the plate in the strear
wise direction.

Even though the variation of ¢; with Reynolds number given by Eq. (9.34a) provides
reasonably good fit with experimental data for Reynolds numbers less than 107, it tends
underpredict the skin friction at higher Reynolds numbers. Several correlations have be:
proposed in the literature; see the review by Schlichting (4). A correlation proposed by White (
that fits the data for turbulent Reynolds numbers up to 10" is

0.455
= o 9.3
7~ In’(0.06Re,) (
The corresponding average shear-stress coefficient is
0.523
9.3

/™ 1n*(0.06Re,)

These are the correlations for shear-stress coefficients recommended here,

The boundary layer on a flat plate is composed of both a laminar and turbulent pa
The purpose here is to develop a correlation valid for the combined boundary layer. ¢
noted in Section 9.3, the boundary layer on a flat plate consists first of a laminar bounda
layer that grows in thickness, develops instability, and becomes turbulent. A turbule;
boundary layer develops over the remainder of the plate. As discussed earlier in Section 9.
the transition from a laminar to turbulent boundary layer is not immediate but tak:
place over a transition length. However for the purposes of analysis here it is assumed th
transition occurs at a point corresponding to a transition Reynolds number, Re,, of abo
500,000.

The idea here is to take the turbulent shear force for length L, F; w(L), assuming tt
boundary layer is turbulent from the leading edge, subtract the portion up to the transitic
point, F; (L) and replace it with the laminar shear force up to the transition poir
F; jam(L,). Thus the composite shear force on the plate is

Fs = Fs,turb(L) 3= Fs, turb(Ltr) + Fs.lam(Ltr)
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Substituting in Eq. (9.18) for laminar flow and Eq. (9.36) for turbulent flow over a plate of
width B gives

1.33 U3
)

where Re,, is the Reynolds number at the transition, Re, is the Reynolds number at the end of
the plate, and L,, is the distance from the leading edge of the plate to the transition zone.

Expressing the resistance force in terms of the average shear-stress coefficient, C; =
F,/(BLpU3/2), gives

_ 0523
In*(0.06 Rey,)

BL, + (9.37)

F _( 0.523
* \In%0.06Re;)

_ 0523 5_,(1.33 _ 0523 )
/7 In%(0.06Re;) L \Rel2 In?(0.06Re,)
Here L,/L = Re,/Re;. Therefore,
0.523 Re, [ 1.33 0.523
f = 12 + o 2 .2
In(0.06Re;)  Re; \Re}>  In*(0.06Re,)

Finally, for Re,. = 500,000, the equation for average shear-stress coefficient becomes

_ 0.523 _ 1520
ln2(006Re,_) Re,_

G {9.38)

The variation of C; with Reynolds number is shown by the solid line in Fig. 9.13. This
curve corresponds to a boundary layer that begins as a laminar boundary layer and then
changes to a turbulent boundary layer after the transition Reynolds number. This is the normal
condition for a flat-plate boundary layer. Table 9.3 summarizes the equations for boundary-
layer thickness, and for local shear-stress and average shear-stress coefficients for the boundary
layer on a flat plate.

0.01
0.009 S
t
0.008 |- e 5
0032
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S o
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g ~ )
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Example 9.6 shows the calculation of shear force due to a boundary layer on a flat plate.

FIGURE 9.13

Average shear-stress
coefficients.



TABLE 9.3 Summary of Equations for Boundary Layer on a Flat Plate

Laminar Flow Turbulent Flow

Re,, Re; < 5 X 10° Re,, Re; = 5 X 10°
Boundary-Layer Thickness, 8 5 = 5x _ 0.16x

" Rel? ~ ReY
Loc_al_Shear-Stréss Coefficient, ¢, ] _ 0.664 _ 0455

&=L §=13
Re} In®(0.06Re,)
Average Shear-Stress Coefficient, G _ 133 _ 0.523 _ 1520
(mixed boundary layer) f Re}” I In*(0.06Re;)  Re,

Average Shear-Stress Coefficient, G - 0.032

(tripped boundary layer) ! Re}”

EXAMPLE 9.6 i 4. Using value for transition Reynolds number, find transition

= point.
Calculating Shear Force on a Flat Plate

5. Use Eq. (9.18) to find average shear-stress coefficient for
laminar portion.

Problem Statement

6. Calculate shear force for laminar portion.
Assume that air 20°C and normal atmospheric pressure flows P

over a smooth, flat plate with a velocity of 30 m/s. The initial
boundary layer is laminar and then becomes turbulent at a
transitional Reynolds number of 5 X 10°. The plate is 3 m long

7. Subtract laminar portion from total shear force.

Take Action (Execute the Plan)

and 1 m wide. What will be the average resistance coefficient 1. Reynolds number based on plate length
Cyfor the plate? Also, what is the total shearing resistance of _ 30m/s X3m s
one side of the plate, and what will be the resistance due to the : Rey = 1.51 X 10  m¥s 3.6 310

i ?
turbulent part and the laminar part of the boundary layer? 2. Average shear-stress coefficient

Define the Situation 0.523 1520
: C=— - 2= = [0.00294
Air flows past a flat plate : In*(0.06Re;)  Re,

30m/s
/

I
] 3m

Assumptions: The leading edge of the plate is sharp, and the : . .
boundary is not tripped on the leading edge. ;4. Transition point

Properties: From Table A.3,
p=12kg/m’ v = 1.51 X 107° m¥s.

3. Total shear force
F, = C;BLp(U}/2)

30m/s)
= 0.00294 X1m X 3m X 1.2 kg/m’ X(T) =[4.76 N |

Ux,
o = 500,000

_ 500,000 X 1.51 X 10°°

State the Goal *u 30 %0252 m
1. Average shear-stress coefficient, C, for the plate 5. Laminar average shear-stress coefficient
2. Total shear force (in newtons) on one side of plate : 1.33
3. Shear force (in newtons) due to laminar part : G= Rﬁ,"’ = 0.00188
4. Shear force (in newtons) due to turbulent part 6. Laminar shear force
: 2
GeneratelldeasiandiMakeaiPlan | Fuan = 000188 X 1m X 0.252m X 12 kg/m® x o/
1. Calculate the Reynolds number based on plate length, Re;.
o P ghute | = [0.256 N
2. Calculate Crusing Eq. (9.38). :

3. Calculate the shear force on one side of plate using : 7. Turbulent shear force
F, = (1/2)pU} C/BL. : Fiun =476 N — 026 N = (450 N



If the boundary layer is “tripped” by some roughness or leading-edge disturbance (suchas
a wire across the leading edge), the boundary layer is turbulent from the leading edge. This is
shown by the dashed line in Fig. 9.13. For this condition the boundary layer thickness, local
shear-stress coefficient, and average shear-stress coefficient are fit reasonably well by Egs. (9.33),
(9.34a), and (9.34b).

0.16x 0.027 0.032
8= Rel”? &g= Rel”? f = Rel” (9.39)
X X

which are valid up to a Reynolds number of 107. For Reynolds numbers beyond 107, the aver-
age shear-stress coefficient given by Eq. (9.36) can be used. It is of interest to note that marine
engineers incorporate tripping mechanisms for the boundary layer on ship models to produce
a boundary layer that can be predicted more precisely than a combination of laminar and tur-
bulent boundary layers.

Example 9.7 illustrates calculating shear force with a tripped boundary layer.

EXAMPLE 9.7

Generate Ideas and Make a Plan

Shear Force with a Tripped Boundary Layer

Problem Statement

Air at 20°C flows past a smooth, thin plate with a free-stream
velocity of 20 m/s. Plate is 3 m wide and 6 m long in the
direction of flow, and boundary layer is tripped at the leading
edge.

Define the Situation

Air flows past a smooth, thin plate. Boundary layer is tripped
at leading edge.

/— “Tripping” wire

P 6m |

Properties: From Table A.3,
p=12kg/m’, =181 %10 °N -s/m”.

State the Goal
Find: Total shear force (in newtons) on both sides of plate.

1. Calculate the Reynolds number based on plate length.

2. Find average shear-stress coefficient from Eq. (9.39).
i 3. Calculate shear force for both sides of plate.

Take Action (Execute the Plan)

1. Reynolds number
pUL 12X 20X 6

Re, = = - =796 X 10°
" 1.81 X 10
Reynolds number is less than 107
2. Average shear-stress coefficient
_ 002
77 Re 17
= 0.032 = 0.0033
(7.96 % 10%)!
3. Shear force
2
F,=2X c,A-plz]-‘Z

= 0.0033 X 3m X 6m X 1.2kg/m® X (20 m/s)

-mon

Even though the equations in this chapter have been developed for flat plates, they are use-

ful for engineering estimates for some surfaces that are not truly flat plates. For example, the
skin friction drag of the submerged part of the hull of a ship can be estimated with Eq. (9.38).

9.6 Pressure Gradient Effects on Boundary Layers

In the preceding sections the features of a boundary layer on a flat plate where the external
pressure gradient is zero have been presented. The boundary layer begins as laminar, goes
through transition, and becomes turbulent with a “fuller” velocity profile and an increase in



FIGURE 9.14
Surface pressure

distribution on airfoil
section.

local shear stress. The purpose of this section is to present some features of the boundary la
over a curved surface where the external pressure gradient is not zero.

The flow over an airfoil section is shown in Fig. 9.14. The variation in static pressure w
distance, s, along the surface is also shown on the figure. The point corresponding to s = (
the forward stagnation point where the pressure is equal to the stagnation pressure. The pr
sure then decreases toward a minimum value at the midsection. This minimum presst
corresponds to the location of maximum speed as predicted by the Bernoutli equation. ']
pressure then rises again as the flow decelerates toward the trailing edge. When the presst
decreases with increasing distance (dp/ds < 0), the pressure gradient is referred to as a favi
able pressure gradient as introduced in Chapter 4. This means that the direction of the fo1
due to the pressure gradient is in the flow direction. In other words, the effect of the presst
gradient is to accelerate the flow. This is the condition between the forward stagnation po.
and the point of minimum pressure. A rise in pressure with distance (dp/ds > 0) is called
adverse pressure gradient and occurs between the point of minimum pressure and the traili
edge. The pressure force due to the adverse pressure gradient acts in the direction opposite
the flow direction and tends to decelerate the flow.

Favorable

P
pressure gradient l Adverse
' pressure gradient

= Direction of pressure force -

The external pressure gradient effects the properties of the boundary layer. Compared 1
a flat plate, the laminar boundary layer in a favorable pressure gradient grows more slowly an
is more stable. This means that the boundary-layer thickness is less and the local shear stress
increased. Also the transition region is moved downstream, so the boundary layer becom
turbulent somewhat later. Of course, free-stream turbulence and surface roughness will sti
promote the early transition to a fully turbulent boundary layer.

The effect of external pressure gradient on the boundary layer is most pronounced for th
adverse pressure gradient. The development of the velocity profiles for the laminar and turbu
lent boundary layers in an adverse pressure gradient are shown in Fig. 9.15. The retarding forc
associated with the adverse pressure gradient decelerates the flow, especially near the surfac
where the velocities are the lowest. Ultimately there is a reversal of flow at the wall, which give
rise to a recirculatory pattern and the formation of an eddy. This phenomenon is called boundary
layer separation. The point of separation is defined where the velocity gradient du/d
becomes zero as indicated on the figure. The separation point for the turbulent boundary laye
occurs farther downstream because the velocity profile is much fuller (higher velocities persis
closer to the wall) than the laminar profile, and it takes longer for the adverse pressure gradien
to decelerate the flow. Thus the turbulent boundary layer is less affected by the adverse pressur
gradient.
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(@

Separation point —

~——— Direction of pressure force

Even though shear stresses on a body in a flow may not contribute significantly to the total
drag force, the effect of boundary-layer separation can be very important. When boundary-
layer separation takes place on airfoils at a high angle of attack, “stall” occurs, which means the
airfoil loses its capability to provide lift. A photograph illustrating boundary-layer separation
on an airfoil section is shown in Fig. 4.26. Boundary-layer separation on a cylinder was dis-
cussed and illustrated in Section 4.8. Understanding and controlling boundary-layer separa-
tion is important in the design of fluid dynamic shapes for maximum performance.

(b)

!

Separation point

9.7 Summarizing Key Knowledge

Uniform Laminar Flow

e The variation in velocity for a planar, viscous, steady flow with parallel streamlines is
governed by the equation

& = .1_ i( + Z)
dyZ m d s P Y
where the distance y is normal to the streamlines and the distance s is along the streamlines.
e In this chapter, this equation is used to analyze two flow configurations:
» Couette flow (flow generated by a moving plate)

» Hele-Shaw flow (flow between stationary parallel plates).

Boundary Layer
e The boundary layer is the region where the viscous stresses are responsible for the velocity
change between the wall and the free stream.

e The boundary-layer thickness is the distance from the wall to the location where the
velocity is 99% of the free-stream velocity.

e The laminar boundary layer is characterized by smooth (nonturbulent) flow where the
momentum transfer between fluid layers occurs because of viscosity.

o As the boundary layer thickness grows, the laminar boundary layer becomes unstable, and
a turbulent boundary layer ensues.

FIGURE 9.15

Velocity distribution anc
streamlines for bounda
layer separation.

{a) Laminar boundary |
(b) Turbulent boundary
layer.



® The transition point for a boundary layer on a flat plate occurs at a nominal Reynolds
number of 5 X 10° based on the free stream velocity and the distance from the leading edg

® The turbulent boundary layer is characterized by an unsteady flow where the momentur
exchange between fluid layers occurs because of the mixing of fluid elements normal to
the direction of fluid motion. This effect, known as the Reynolds stress, significantly
enhances the momentum exchange and leads to a much higher “effective” shear stress.

Predicting Shear Stress and Shear Force
® The local shear-stress coefficient is defined as

To
=1
UG
where 7, is the wall shear stress and Uy is the free-stream velocity.

® The value for the local shear-stress coefficient on a flat plate depends on the Reynolds
number based on the distance from the leading edge.

® The average shear-stress coefficient is

C =
" eU3A
where F; is the force due to shear-stress, or shear force, on a surface with area A.
® The value for the average shear-stress coefficient for a flat plate depends on the nature of
the boundary layer as related to the Reynolds number based on the length of the plate in
the flow direction.

® The laminar boundary layer near the leading edge and the subsequent turbulent boundar
layer contribute to the average shear stress on a flat plate.

® Through leading-edge roughness or other flow disturbance, the boundary layer can be
“tripped” at the plate’s leading edge, effecting a turbulent boundary layer over the entire plate

Effects of Pressure Gradient
¢ The boundary layer for flow over a curved body is subjected to an external pressure
gradient.

® A favorable pressure gradient produces a force in the flow direction and tends to keep the
boundary layer stable.

® An adverse pressure gradient decelerates the flow and can lead to boundary layer
separation.
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PROBLEMS

BTU’s Problem available in WileyPLUS at instructor’s discretion.

Uniform Laminar Flow {§9.1)

9.1 FU's In which case is the flow caused by a pressure gradient?
a. Couette flow
b. Hele-Shaw flow

9.2 The velocity distribution in a Couette flow is linear if the
viscosity is constant. If the moving plate is heated and the
viscosity of the liquid is decreased near the hot plate, how will
the velocity distribution change? Give a qualitative description
and the rationale for your argument.

9.3 Consider the flow of various fluids between two parallel plates.

a. Assume the fluid is a liquid, its viscosity is constant along
the flow direction, and the pressure gradient is linear
with distance. How would the pressure gradient differ if
the viscosity of the fluid decreased (due to temperature
rise) along the flow direction. The density is unchanged.
Give a qualitative description of pressure distribution and
provide rationale for your answer.

&

Assume the fluid is a gas flowing between two parallel
plates. If there were an increase in temperature due to
heat transfer along the flow direction, the gas density
would decrease. Assume the viscosity is unaffected. How
will the velocity and pressure distribution change from
the case with constant density? Sketch the pressure
distribution and give the rationale for your result.

9.4 @S The cube shown weighing 110 N and measuring 39 cm
on a side is allowed to slide down an inclined surface on which
there is a film of oil having a viscosity of 102N + s/m’ What is
the velocity of the block if the oil has a thickness of 0.11 mm?

Oil thickness
=0.10 mm

10°
PROBLEM 9.4

9.5 FtU's A board 3 ft by 3 ft that weighs 40 Ibf slides down an
inclined ramp with a velocity of 0.5 fps. The board is separated
from the ramp by a layer of oil 0.02 in. thick. Neglecting the
edge effects of the board, calculate the approximate dynamic
viscosity . of the oil.

9.6 A board 1 m by 1 m that weighs 30 N slides down an
inclined ramp with a velocity of 17 cm/s. The board is separated
from the ramp by a layer of oil 0.8 mm thick. Neglecting the
edge effects of the board, calculate the approximate dynamic
viscosity p of the oil.

PROBLEMS

:t;bm' Guided Online (GO) Problem, available in WileyPLUS
instructor’s discretion.

/V
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PROBLEMS 9.5,9.6

9.7 /FL'U's Uniform, steady flow is occurring between horizos
parallel plates as shown.

a. The flow is Hele-Shaw; therefore, what is causing the
to move?

b. Where is the maximum velocity located?
¢. Where is the maximum shear stress located?

d. Where is the minimum shear stress located?

—1

=

PROBLEM 9.7

9.8 Uniform, steady flow is occurring between horizontal
parallel plates as shown.

a. In a few words, tell what other condition must be pre
to cause the odd velocity distribution.
b. Where is the minimum shear stress located?

G

9.9 'FLUS Under certain conditions (pressure decreasing in
x-direction, the upper plate fixed, and the lower plate movin
to the right in the positive x-direction), the laminar velocity
distribution will be as shown. For such conditions, indicate
whether each of the following statements is true or false.

a. 'The shear stress midway between the plates is zero.

b. The minimum shear stress in the liquid occurs next
the moving plate.

¢. The shear stress is greatest where the velocity is the
greatest. '

d. The minimum shear stress occurs where the velocit
the greatest.

PROBLEMS 9.8,9.9



9.10 /66 ° A flat plate is pulled to the right at a speed of 30 cm/s.
Oil with a viscosity of 4 N - s/m” fills the space between the plate
and the solid boundary. The plate is 1 m long (L =1 m) by 30 cm
wide, and the spacing between the plate and boundary is 2.0 mm.

a. Express the velocity mathematically in terms of the
coordinate system shown.

b. By mathematical means, determine whether this flow is
rotational or irrotational.

¢. Determine whether continuity is satisfied, using the
differential form of the continuity equation.

d. Calculate the force required to produce this plate motion.

L

1, y
= |
| =l x

PROBLEM 9.10

iy

~ e b

9.11 'FLU’s The velocity distribution that is shown represents

laminar flow. Indicate which of the following statements are true.

a. The velocity gradient at the boundary is infinitely large.

b. The maximum shear stress in the liquid occurs midway
between the walls.

¢. The maximum shear stress in the liquid occurs next to
the boundary.

d. The flow is irrotational.
e. The flow is rotational.

Moving plate
AN
y
TR
x
—u

PROBLEM 9.11

9.12 The upper plate shown is moving to the right with a
velocity V, and the lower plate is free to move laterally under
the action of the viscous forces applied to it. For steady-state
conditions, derive an equation for the velocity of the lower plate.
Assume that the area of oil contact is the same for the upper
plate, each side of the lower plate, and the fixed boundary.

V\
E A—» Upper plate !
]
;r, Oil: $=09
L l Lower plate ?
1 Oil: p, $=09

PROBLEM 9.12

9.13 FLUs A circular horizontal disk with a 27 cm diameter
has a clearance of 3.0 mm from a horizontal plate. What torque
is required to rotate the disk about its center at an angular
speed of 31 rad/s when the clearance space contains oil

(n =8N s/m?)?

9.14 @s A plate 2 mm thick and 1 m wide (normal to the
page) is pulled between the walls shown in the figure at a speec
of 0.40 m/s. Note that the space that is not occupied by the plat
is filled with glycerine at a temperature of 20°C. Also, the plate
is positioned midway between the walls. Sketch the velocity
distribution of the glycerine at section A-A. Neglecting the
weight of the plate, estimate the force required to pull the

plate at the speed given.

Glycerine

PROBLEM 9.14

9.15 FiuUs A bearing uses SAE 30 oil with a viscosity of
0.1 N - s/m’. The bearing is 30 mm in diameter, and the gap
between the shaft and the casing is 1 mm. The bearing has a
length of 1 cm. The shaft turns at w = 200 rad/s. Assuming
that the flow between the shaft and the casing is a Couette
flow, find the torque required to turn the bearing.

I mm

r 30 mm
PROBLEM 9.15

9.16 An important application of viscous flow is found in
lubrication theory. Consider a shaft that turns inside a stationary
cylinder, with a lubricating fluid in the annular region. By
considering a system consisting of an annulus of fluid of radius r
and width Ar, and realizing that under steady-state operation the
net torque on this ring is zero, show that d(r?r)/dr = 0, where

7 is the viscous shear stress. For a flow that has a tangential
component of velocity only, the shear stress is related to the



velocity by T = prd(V/r)/dr. Show that the torque per unit
length acting on the inner cylinder is given by T = ampord
(1 — r¥r?), where o is the angular velocity of the shaft.

o)

PROBLEM 9.16

9.17 Using the equation developed in Prob. 9.16, find the power
necessary to rotate a 2 cm shaft at 60 rad/s if the inside diameter
of the casing is 2.2 cm, the bearing is 3 ¢cm long, and SAE 30 oil

at 38°C is the lubricating fluid.

9.18 The analysis developed in Prob. 9.16 applies to a device
used to measure the viscosity of a fluid. By applying a known

torque to the inner cylinder and measuring the angular velocity

achieved, one can calculate the viscosity of the fluid. Assume

you have a 4 cm inner cylinder and a 4.5 cm outer cylinder. The

cylinders are 10 cm long. When a force of 0.6 N is applied to

the tangent of the inner cylinder, it rotates at 20 rpm. Calculate

the viscosity of the fluid.

9.19 FLUs Two horizontal parallel plates are spaced 0.015 ft apart.

The pressure decreases at a rate of 25 psf/ft in the horizontal

x-direction in the fluid between the plates. What is the maximum
fluid velocity in the x direction? The fluid has a dynamic viscosity

of 1072 Ibf-s/ft* and a specific gravity of 0.80.

9.20 A viscous fluid fills the space between these two plates, and

the pressures at A and B are 150 psf and 100 psf, respectively.

The fluid is not accelerating. If the specific weight of the fluid is

100 Ibf/f2, then one must conclude that (a) flow is downward,
(b) flow is upward, or (c) there is no flow.

30°

Horizontal

PROBLEM 9.20

9.21 Glycerine at 20°C flows downward between two vertical
parallel plates separated by a distance of 0.4 cm. The ends are
open, so there is no pressure gradient. Calculate the discharge
per unit width, g, in m%s.

PROBLEMS

9.22 FLU's Two vertical parallel plates are spaced 0.01 ft apai
If the pressure decreases at a rate of 60 psf/ft in the vertica
z-direction in the fluid between the plates, what is the maxin
fluid velocity in the z-direction? The fluid has a viscosity of
1073 Ibf-s/ft* and a specific gravity of 0.80.

9.23 5" Two parallel plates are spaced 0.09 in. apart, and mc
oil (SAE 30) with a temperature of 100°F flows at a rate of 0.00
per foot of width between the plates. What is the pressure grad
in the direction of flow if the plates are inclined at 60° with the
horizontal and if the flow is downward between the plates?

9.24 E(;‘ Glycerin at 20°C flows downward in the annular r
between two cylinders. The internal diameter of the outer

cylinder is 3 cm, and the external diameter of the inner cylin
2.8 cm. The pressure is constant along the flow direction. The
is laminar. Calculate the discharge. (Hint: The flow between t.
two cylinders can be treated as the flow between two flat plat

28 mm

]

30 mm

PROBLEM 9.24

9.25 FL'Us One type of bearing that can be used to support
large structures is shown in the accompanying figure. Here |
under pressure is forced from the bearing midpoint (slot A)
to the exterior zone B. Thus a pressure distribution occurs a
shown. For this bearing, which is 43 cm wide, what discharg
of oil from slot A per meter of length of bearing is required
Assume a 190 kN load per meter of bearing length with a
clearance space ¢ between the floor and the bearing surface
1.5 mm. Assume an oil viscosity of 0.20 N « s/m?. How muc
oil per hour would have to be pumped per meter of bearing
length for the given conditions?

|

4
B B
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PROBLEM 9.25



9.26 Often in liquid lubrication applications there is a
heat generated that is transferred across the lubricating
layer. Consider a Couette flow with one wall at a higher
temperature than the other. The temperature gradient
across the flow affects the fluid viscosity according to the
relationship.

Y
i = pgexp (MO.IZ)

where 4 is the viscosity at y = 0 and L is the distance between
the walls. Incorporate this expression into the Couette flow
equation, integrate and express the shear stress in the form

Upo
= C —_
TN
where C is a constant and U is the velocity of the moving wall.
Analyze your answer. Should the shear stress be greater or less
than that with uniform viscosity?

9.27 Gases form good insulating layers. Consider an application
in which there is a Couette flow with the moving plate at a higher
temperature than the fixed plate. The viscosity varies between the

plates as
y 112
B = p,0<1 + 0.1 Z)

where p, is the viscosity at y = 0 and L is the distance
between the plates. Incorporate this expression into the
Couette flow equation, integrate and express the shear
stress in the form

_ U
T=C L
where Cis a constant and U is the velocity of the moving plate,
Analyze your answer. Should the shear stress be greater or less
than that with uniform viscosity?

9.28 :G—I‘J\ An engineer is designing a very thin, horizontal
channel for cooling electronic circuitry. The channel is 2 cm
wide and 5 cm long. The distance between the plates is

0.2 mm. The average velocity is 5 cm/s. The fluid used has a
viscosity of 1.2 cp and a density of 800 kg/m>. Assuming no
change in viscosity or density, find the pressure drop in the
channel and the power required to move the flow through
the channel.

9.29 Consider the channel designed for electronic cooling in
Prob. 9.28. Because of the heating, the viscosity will change
through the channel. Assume the viscosity varies as

s
[T T exp(—O.l i)

where i, is the viscosity at s = 0 and L is the length of the
channel. Find the percentage change of the pressure drop
due to viscosity variation.

Scm/s

PROBLEMS 9.28,9.29

Describing the Boundary Layer {§9.2) -

9.30 a. Explain in your own words what is meant by “boundan
layer” b. Define “boundary layer thickness”

9.31 'ELU's Which of the following are features of a laminar
boundary layer? (Select all that are correct.)

a. Flow is smooth.

b. The boundary layer thickness increases in the down-
stream direction.

¢. A decreasing boundary layer thickness correlates with
decreased shear stress.

d. An increasing boundary layer thickness correlates witt
decreased shear stress.

Laminar Boundary Layer {§9.3)

9.32 Assume the wall adjacent to a liquid laminar boundary is
heated and the viscosity of the fluid is lower near the wall and
increases the free-stream value at the edge of the boundary layer.
How would this variation in viscosity affect the boundary-layer
thickness and local shear stress? Give the rationale for your answer:

9.33 55" A thin plate 6 ft long and 3 ft wide is submerged and
held stationary in a stream of water (T = 60°F) that has a veloci
of 5 fi/s. What is the thickness of the boundary layer on the platy
for Re, = 500,000 (assume the boundary layer is still laminar),
and at what distance downstream of the leading edge does this
Reynolds number occur? What is the shear stress on the plate at
this point?

9.34 What is the ratio of the boundary-layer thickness on a
smooth, flat plate to the distance from the leading edge just
before transition to turbulent flow?

9.35 @5 A model airplane has a wing span of 3.1 ft and a
chord (leading edge-trailing edge distance) of 5 in. The model
flies in air at 60°F and atmospheric pressure. The wing can be
regarded as a flat plate so far as drag is concerned. (a) At what
speed will a turbulent boundary layer start to develop on the
wing? (b) What will be the total drag force on the wing just
before turbulence appears?

9.36 Oil ( = 107*N - s/m% p = 900 kg/m”) flows past a plate
in a tangential direction so that a boundary layer develops.

If the velocity of approach is 4 m/s, then at a section 30 cm
downstream of the leading edge the ratio of 7; (shear stress at
the edge of the boundary layer) to 7, (shear stress at the plate
surface) is approximately (a) 0, (b) 0.24, (c) 2.4, or (d) 24.



9.37 A liquid (p = 1000 kg/m* p = 2 X 102N+ s/m% v =

2 X 1075 m%/s) flows tangentially past a flat plate. If the approach
velocity is 2 m/s, what is the liquid velocity 1 m downstream
from the leading edge of the plate, at 0.8 mm away from

the plate?

9.38 The plate of Prob. 9.37 has a total length of 3 m (parallel to
the flow direction), and it is 1 m wide. What is the skin friction
drag (shear force) on one side of the plate?

9.39 Oil (v = 10 * m?/s) flows tangentially past a thin plate.

If the free-stream velocity is 5 m/s, what is the velocity 1 m
downstream from the leading edge and 3 mm away from

the plate?

9.40 FiUs Ol (v = 10" m¥s; S = 0.9) flows past a plate ina
tangential direction so that a boundary layer develops. If the
velocity of approach is 0.85 m/s, what is the oil velocity 1.6 m
downstream from the leading edge, 10 cm away from the plate?
9.41 A thin plate 0.7 m long and 1.5 m wide is submerged and
held stationary in a stream of water (T = 10°C) that has a
velocity of 1.5 m/s. What is the thickness of the boundary layer
on the plate for Re, = 500,000 (assume the boundary layer is still
laminar), and at what distance downstream of the leading edge
does this Reynolds number occur? What is the shear stress on
the plate on this point?

9.42 E‘?ﬂ"s A flat plate 1.5 m long and 1.0 m wide is towed in
water at 20°C in the direction of its length at a speed of 15 cm/s.
Determine the resistance of the plate and the boundary layer
thickness at its aft.end.

9.43 Transition from a laminar to a turbulent boundary layer
occurs between the Reynolds numbers of Re, = 10° and Re, =
3 X 10° The thickness of the turbulent boundary layer based on
the distance from the leading edge is 8 = 0.16x/(Re,)"”. Find the
ratio of the thickness of the laminar boundary layer at the
beginning of transition to the thickness of the turbulent
boundary layer at the end of transition.

Turbulent Boundary Layer (§9.5)

9.44 FLUSs Classify each of the following features into one of two

categories: laminar boundary layer (L), or turbulent boundary
layer (T).

a. Flow is smooth

b. Three differently shaped velocity distributions in 3 zones
¢. Velocity profile that follows a power law

d. Velocity profile that is a function of VRe

e. Logarithmic velocity distribution

f. Thickness is inversely related to the 7th root of Re

g. Thickness is inversely related to V/Re

h. Velocity defect region

-

Mixing action causes locally unsteady velocities
j. Shear stress is a function of a natural log
k. Shear stress is a function of VRe

PROBLEMS

9.45 Assume that a turbulent gas boundary layer was adjac
a cool wall and the viscosity in the wall region was reduced.
may this affect the features of the boundary layer? Give somr
rationale for your answers.

9.46 @@:S An element for sensing local shear stress is
positioned in a flat plate 1 meter from the leading edge. Th:
element simply consists of a small plate, 1 cm X 1 cm, mou
flush with the wall, and the shear force is measured on the
The fluid flowing by the plate is air with a free-stream veloc
V = 30 m/s, a density of 1.2 kg/m’, and a kinematic viscosi
1.5 X 107* m%/s. The boundary layer is tripped at the leadii
edge. What is the magnitude of the force due to shear stres:
acting on the element?

lcm—-l |<1

[ |iem

I

25 m/s

L Plan view
Tripping
wire Fs
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PROBLEM 9.46

9.47 For the conditions of Prob. 9.46, what is the shearing
resistance on one side of the plate for the part of the plate ti
has a Reynolds number, Re,, less than 500,000? What is the
of the laminar shearing force to the total shearing force on !
plate?

9.48 " An airplane wing of 2 m chord length (leading e«
trailing edge distance) and 11 m span flies at 200 km/hr in:
30°C. Assume that the resistance of the wing surfaces is like
of a flat plate.

a. What is the friction drag on the wing?
b. What power is required to overcome this?
c. How much of the chord is laminar?

d. What will be the change in drag if a turbulent bou:
layer is tripped at the leading edge?

9.49 @5 A turbulent boundary layer exists in the flow of
at 20°C over a flat plate. The local shear stress measured at t
surface of the plate is 0.2 N/m* What is the velocity at a poi
0.52 cm from the plate surface?

9.50 A liquid flows tangentially past a flat plate. The fluid
properties are . = 107> N + s/m? and p = 1.5 kg/m’. Find t
skin friction drag on the plate per unit width if the plate is :
long and the approach velocity is 16 m/s. Also, what is the
velocity gradient at a point that is 1 m downstream of the
leading edge and just next to the plate (y = 0)?

9.51 For the hypothetical boundary layer on the flat plate
shown, what is the shear-stress on the plate at the downstre
end (point A)? Here p = 1.2kg/m’ and p = 1.8 X 10N -
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9.52 Assume that the velocity profile in a boundary layer is
replaced by a step profile, as shown in the figure, where the velocity
is zero adjacent to the surface and equal to the free-stream velocity
(U) at a distance greater than 8. from the surface. Assume also
that the density is uniform and equal to the free-stream density
(p=). The distance 8. (displacement thickness) is so chosen that
the mass flux corresponding to the step profile is equal to the
mass flux through the actual boundary layer. Derive an integral
expression for the displacement thickness as a function of u, U, y,
and 8.

9.53 Because of the reduction of velocity associated with the
boundary layer, the streamlines outside the boundary layer are
shifted away from the boundary. This amount of displacement of
the streamlines is defined as the displacement thickness 3.. Using
the expression developed in Prob. 9.52, evaluate the displacement
thickness of the boundary layer at the downstream edge of the
plate (point A) in Prob. 9.51.

l .!

Free-stream

i/velocity =40 m/s
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—
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PROBLEMS 9.51,9.53

9.54 Use the expression developed in Prob. 9.52 to find the ratio
of the displacement thickness to the boundary layer thickness for
the turbulent boundary layer profile given by

u y 17
5" ()

ye |
1
|
! Actual profile
| Step profile
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u |
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PROBLEM 9.52

9.55 ?‘%}5 What is the ratio of the skin friction drag of a

plate 30 m long and 5 m wide to that of a plate 10 m long and
5 m wide if both plates are towed lengthwise through water
(T = 20°C) at 10 m/s?

9.56 @s Estimate the power required to pull the sign shown
if it is towed at 41 m/s and if it is assumed that the sign has the
same resistance characteristics as a flat plate. Assume standard
atmospheric pressure and a temperature of 10°C.

PROBLEM 9.56

9.57 Ts-;’ A thin plastic panel (3 mm thick) is lowered from a
ship to a construction site on the ocean floor. The plastic panel
weighs 300 N in air and is lowered at a rate of 3 m/s. Assuming
that the panel remains vertically oriented, calculate the tension i
the cable.

PROBLEM 9.57

9.58 The plate shown in the figure is weighted at the bottom so
it will fall stably and steadily in a liquid. The weight of the plate
in air is 23.5 N, and the plate has a volume of 0.002 m>. Estimate
its falling speed in freshwater at 20°C. The boundary layer is
normal; that is, it is not tripped at the leading edge.

In this problem, the final falling speed (terminal velocity)
occurs when the weight is equal to the sum of the skin friction
and buoyancy.

1
W=B+F=y¥+ ECpr%S

Hints: Find the final falling speed. This problem requires an itera
tive solution.

l*— I'm ——4
Side view

PROBLEM 9.58

Edge view



9.59 @ 5 A turbulent boundary layer develops from the leading
edge of a flat plate with water at 20°C flowing tangentially past
the plate with a free-stream velocity of 7.7 m/s. Determine the
thickness of the viscous sublayer, 8', at a distance 7.8 m downstream
from the leading edge.

9.60 A model airplane descends in a vertical dive through air at
standard conditions (1 atmosphere and 20°C). The majority of
the drag is due to skin friction on the wing (like that on a flat
plate). The wing has a span of 1 m (tip to tip) and a chord length
(leading edge to trailing edge distance) of 10 cm. The leading
edge is rough, so the turbulent boundary layer is “tripped.” The
model weighs 3 N. Determine the speed (in meters per second)
at which the model will fall.

9.61 FLu:

FLUS A flat plate is oriented parallel to a 24 m/s airflow
at 20°C and atmospheric pressure. The plate is L = 3 m in
the flow direction and 0.5 m wide. On one side of the plate,
the boundary layer is tripped at the leading edge, and on the
other side there is no tripping device. Find the total drag force
on the plate.

/ Trip strip

U / //,{
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PROBLEM 9.61

9.62 An engineer is designing a horizontal, rectangular conduit
that will be part of a system that allows fish to bypass a dam.
Inside the conduit, a flow of water at 40°F will be divided into
two streams by a flat, rectangular metal plate. Calculate the
viscous drag force on this plate, assuming boundary-layer flow
with free-stream velocity of 10 fi/s and plate dimensions of
L=6ftand W=4.0ft.

Water
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PROBLEM 9.62

9.63 A model is being developed for the entrance region
between two flat plates. As shown in the figure, it is assumed
that the region is approximated by a turbulent boundary layer
originating at the leading edge. The system is designed such that
the plates end where the boundary layers merge. The spacing
between the plates is 4 mm, and the entrance velocity is 10 m/s.
The fluid is water at 20°C. Roughness at the leading edge trips
the boundary layers. Find the length L where the boundary
layers merge, and find the force per unit depth (into the paper)
due to shear stress on both plates.

PROBLEMS

PROBLEM 9.63

9.64 An outboard racing boat “planes” at 70 mph over wat:
60°F. The part of the hull in contact with the water has an a
width of 3 ft and a length of 8 ft. Estimate the power requir
overcome its shear force.

9.65 A motor boat pulls a long, smooth, water-soaked log |
in diameter and 50 m long) at a speed of 1.7 m/s. Assuming
submergence, estimate the force required to overcome the s
force of the log. Assume a water temperature of 10°C and tl
boundary layer is tripped at the front of the log,

9.66 @s High-speed passenger trains are streamlined to 1
shear force. The cross section of a passenger car of one suct
is shown. For a train 81 m long, (a) estimate the shear force
speed of 81.1 km/hr and (b) for one of 204 km/hr. What po
is required for just the shear force at these speeds? These
power calculations will be answers (c) and (d) respective
Assume T = 10°C and that the boundary layer is tripped at
front of the train.

PROBLEM 9.66

9.67 Consider the boundary layer next to the smooth hull «
ship. The ship is cruising at a speed of 45 ft/s in 60°F freshw.
Assuming that the boundary layer on the ship hull develops
same as on a flat plate, determine

a. The thickness of the boundary layer at a distance
x = 100 ft downstream from the bow.

b. The velocity of the water at a point in the boundary
layer at x = 100 ft and y/8 = 0.50.

¢. The shear stress, 7,, adjacent to the hull at x = 100 :

9.68 A wind tunnel operates by drawing air through a
contraction, passing this air through a test section, and then
exhausting the air using a large axial fan, Experimental data
recorded in the test section, which is typically a rectangular
section of duct that is made of clear plastic (usually acrylic).
the test section, the velocity should have a very uniform
distribution; thus, it is important that the boundary layer be
very thin at the end of the test section. For the pictured wing
tunnel, the test section is square with a dimension of W = 457



on each side and a length of L = 914 mm. Find the ratio of
maximum boundary-layer thickness to test section width
[8(x = L)/ W] for two cases: minimum operating velocity
(1 m/s) and maximum operating velocity (70 m/s). Assume
air properties at 1 atm and 20°C.

9.69 A ship 600 ft long steams at a rate of 25 ft/s through still
freshwater (T = 50°F). If the submerged area of the ship is
50,000 ft?, what is the skin friction drag of this ship?

9.70 A river barge has the dimensions shown. It draws 2 ft of
water when empty. Estimate the skin friction drag of the barge
when it is being towed at a speed of 10 ft/s through still
freshwater at 60°F.
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PROBLEM 9.70

9.71 Fivsa supertanker has length, breadth, and draught (fully
loaded) dimensions of 325 m, 48 m, and 19 m, respectively.

In open seas the tanker normally operates at a speed of 18 kt

(1 kt = 0.515 m/s). For these conditions, and assuming that
flat-plate boundary-layer conditions are approximated, estimate
the skin friction drag of such a ship steaming in 10°C water.
What power is required to overcome the skin friction drag?
What is the boundary-layer thickness at 300 m from the bow?

9.72 A model test is needed to predict the wave drag on a ship.
The ship is 500 ft long and operates at 30 ft/s in seawater at
10°C. The wetted area of the prototype is 25,000 ft*. The model/
prototype scale ratio is 1/100. Modeling is done in freshwater
at 60°F to match the Froude number. The viscous drag can be
calculated by assuming a flat plate with the wetted area of the
model and a length corresponding to the length of the model.
A total drag of 0.1 1bf is measured in model tests. Calculate the
wave drag on the actual ship.

9.73 A ship is designed so that it is 250 m long, its beam
measures 30 m, and its draft is 12 m. The surface area of the ship
below the water line is 8800 m>. A 1/40 scale model of the ship i
tested and is found to have a total drag of 26.0 N when towed at
speed of 1.45 m/s. Using the methods outlined in Section 8.9,
answer the following questions, assuming that model tests are
made in freshwater (20°C) and that prototype conditions are
seawater (10°C).

a. To what speed in the prototype does the 1.45 m/s
correspond?

b. What are the model skin friction drag and wave drag?

¢. What would the ship drag be in saltwater correspondin
to the model test conditions in freshwater?

9.74 A hydroplane 3 m long skims across a very calm lake
(T = 20°C) at a speed of 15 m/s. For this condition, what will be
the minimum shear stress along the smooth bottom?

9.75 Estimate the power required to overcome the shear force ¢
a water skier if he or she is towed at 30 mph and each ski is 4 ft
by 6 in. Assume the water temperature is 60°F.

9.76 If the wetted area of an 80 m ship is 1500 m?, approximate
how great is the surface drag when the ship is traveling at a spee
of 15 m/s. What is the thickness of the boundary layer at the
stern? Assume seawater at T = 10°C.



