SECTION 15.5 RAPIDLY VARIED FLOW

Finally, it can be seen in Fig. 15.8 that a point will be reached where the specific energy is
minimum and only a single depth occurs. At this point, the flow is termed critical. Thus one
definition of critical flow is the flow that occurs when the specific energy is minimum for a
given discharge. The flow for which the depth is less than critical (velocity is greater than
critical) is termed supercritical flow, and the flow for which the depth is greater than critical
(velocity is less than critical) is termed subcritical flow. Therefore, subcritical flow occurs
upstream and supercritical flow occurs downstream of the sluice gate in Fig. 15.9. Subcritical
flows corresponds to a Froude number less than one (Fr < 1), and supercritical flow corre-
sponds to (Fr > 1). Some engineers refer to subcritical and supercritical flow as tranquil and
rapid flow, respectively. Other aspects of critical flow are shown in the next section.

Characteristics of Critical Flow

Critical flow occurs when the specific energy is minimum for a given discharge. The depth
for this condition may be determined by solving for dE/dy from E = y + Q*/2gA” and setting
dE/dy equal to zero:

dE Q* dA

—_—=] - — s — .

& A dy {15.21)
However, dA = T dy, where T is the width of the channel at the water surface, as shown in
Fig. 15.10. Then Eq. (15.21), with dE/dy = 0, will reduce to

Q’T,

= 15.
7E 1 (15.22)
or
A_Q 15.23
T, gAl '
If the hydraulic depth, D, is defined as
A
D=— .24
T (15.24)
then Eq. (15.23) will yield a critical hydraulic depth D, given by
2 V2
D. = Q—z =— (15.25)
gA: 8
Dividing Eq. (15.25) by D, and taking the square root yields
\4
1= 15.26
VgD. 1324

Note: V/V/gD, is the Froude number. Therefore, it has been shown that the Froude number is
equal to unity when critical flow prevails.

i: v ! 1"5' —-J|

FIGURE 15.10
Open-channel relatio
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If a channel is of rectangular cross section, then A/T is the actual depth, and Q¥/A? = ¢/y
so the condition for critical depth (Eq. 15.23) for a rectangular channel becomes

2\1/3
q)

e =\ = {15.27

% (g

where ¢ is the discharge per unit width of channel.

EXAMPLE 15.9

Calculating Critical Depth in a Channel

Problem Statement

Determine the critical depth in this trapezoidal channel for a
discharge of 500 cfs. The width of the channel bottom is
B = 20 ft, and the sides slope upward at an angle of 45°.

Define the Situation

Water flows in a trapezoidal channel with known geometry.

State the Goal
Calculate the critical depth.

Generate Ideas and Make a Plan
1. For critical flow, Eq. (15.22) must apply.

2. Relate this channel geometry to width T and area A in
Eq.(15.22).

3. By iteration (choose y and compute A*/T), find y that
will yield A%/ T equal to 7764 ft?. This y will be critical
depth y..

Take Action (Execute the Plan)
1. Apply Eq. (15.22) or Eq. (15.23).

Q'T. QA

— =lor— = —

gA; g T.
2. For Q = 500 cfs,

Al 5002

= =T7764f

T. 322

For this channel, A = y(B+ y)and T = B + 2y.
3. Iterate to find y..

y.=|257ft

Critical flow may also be examined in terms of how the discharge in a channel varies witt
depth for a given specific energy. For example, consider flow in a rectangular channel where

or

2

E=y+
Yy ZgAZ

2

E=y+——
y ZgyZBZ

If one considers a unit width of the channel and lets ¢ = Q/B, then the foregoing equatior

becomes

If one determines how g varies with y for a constant value of specific energy, one sees tha
critical flow occurs when the discharge is maximum (see Fig. 15.11).
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E = constant

I

Originally, the term critical flow probably related to the unstable character of the flow for
this condition. Referring to Fig. 15.8, one can see that only a slight change in specific energy will
cause the depth to increase or decrease a significant amount; this is a very unstable condition. In
fact, observations of critical flow in open channels show that the water surface consists of a series
of standing waves. Because of the unstable nature of the depth in critical flow, designing canals so
that normal depth is either well above or well below critical depth is usually best. The flow in canals
and rivers is usually subcritical; however, the flow in steep chutes or over spillways is supercritical.

In this section, various characteristics of critical flow have been explored. The main ones
can be summarized as follows:

1. Critical flow occurs when specific energy is minimum for a given discharge (Fig. 15.8).

2. Critical flow occurs when the discharge is maximum for a given specific energy.
3. Critical flow occurs when

A3 QZ
T g

4, Critical flow occurs when Fr = 1. Subcritical flow occurs when Fr < 1. Supercritical flow
occurs when Fr > 1.

5. For rectangular channels, critical depth is given as y, = (¢%/g)"".

Common Occurrence of Critical Flow

Critical flow occurs when a liquid passes over a broad-crested weir (Fig, 15.12). The principle of
the broad-crested weir is illustrated by first considering a closed sluice gate that prevents water
from being discharged from the reservoir, as shown in Fig. 15.12a. If the gate is opened a small
amount (gate position a’-a’), the flow upstream of the gate will be subcritical, and the flow down-
stream will be supercritical (as in the condition shown in Fig. 15.9). As the gate is opened further,
a point is finally reached where the depths immediately upstream and downstream of the gate are
the same. This is the critical condition. At this gate opening and beyond, the gate has no influence
on the flow; this is the condition shown in Fig, 15.12b, the broad-crested weir. If the depth of flow
over the weir is measured, the rate of flow can easily be computed from Eq. (15.27):

5

q =
or
Q=LVg? (15.28)

where L is the length of the weir crest normal to the flow direction.

FIGURE 15.11

Variation of g and y v
constant specific ener
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EGL

FIGURE 15.12 a' Water surface with & Weir crest
Flow over a broad- partly open gate v
crested weir. F S X
(a) Depth of flow controlled o

by sluice gate. g:;::d

{b) Depth of flow is e

controlled by weir,
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Because y /2 = (Vf/Zg), from Eq. (15.25), it can be shown that y, = (2/3E), where E is th
total head above the crest (H + Vﬁppmch/Zg); hence Eq. (15.28) can be rewritten as

2 3/2
Q= L\@(g) E¥?
or

Q = 0.385L\V/2gE>? (15.29
g

For high weirs, the upstream velocity of approach is almost zero. Hence Eq. (15.29) can b«
expressed as

Quneor = 0.385LV2g H? (15.30
If the height P of the broad-crested weir is relatively small, then the velocity of approach may be

significant, and the discharge produced will be greater than that given by Eq. (15.30). Also, heac
loss will have some effect. To account for these effects, a discharge coefficient C is defined as

C = Q/Queor (15.31
Then
Q = 0.385CLV2gH?*"? (15.32

where Q is the actual discharge over the weir. An analysis of experimental data by Raju (15
shows that C varies with H/(H + P) as shown in Fig. 15.13. The curve in Fig. 15.13 is for a weil
with a vertical upstream face and a sharp corner at the intersection of the upstream face anc
the weir crest. If the upstream face is sloping at a 45° angle, the discharge coefficient should be
increased 10% over that given in Fig. 15.13. Rounding of the upstream corner will also produce
a coefficient of discharge as much as 3% greater.

Equation (15.32) reveals a definite relationship for Q as a function of the head, H
This type of discharge-measuring device is in the broad class of discharge meters called

FIGURE 15.13 1.05

Discharge coefficient for /

a broad-crested weir for 1.00

0.1 <H/L<08. /
C 095

/

0.90 /

0.85 L=
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critical-flow flumes. Another very common critical-flow flume is the venturi flume, which
was developed and calibrated by Parshall (8). Figure 15.14 shows the essential features of the
venturi flume. The discharge equation for the venturi flume is in the same form as Eq. (15.32),
the only difference being that the experimentally determined coefficient C will have a different
value from the C for the broad-crested weir. For more details on the venturi flume, you may
refer to Roberson et al. (9), Parshall (8), and Chow (5). The venturi flume is especially useful
for discharge measurement in irrigation systems because little head loss is required for its use,
and sediment is easily flushed through if the water happens to be silty.

Venturi flume FIGURE 15.14

Flow through a venturi
Channel w1dth flume.
(a) Plan CI'CSt Throat section
. \
= FI v
5¥ s =

(b) Profile

The depth also passes through a critical stage in channel flow where the slope changes from
a mild one to a steep one. A mild slope is defined as a slope for which the normal depth y, is
greater than y,. Likewise, a steep slope is one for which y, < y.. This condition is shown in
Fig. 15.15. Note that y, is the same for both slopes in the figure because y, is a function of the
discharge only. However, normal depth (uniform-flow depth) for the mild upstream channel is
greater than critical, whereas the normal depth for the steep downstream channel is less than
critical; hence it is obvious that the depth must pass through a critical stage. Experiments show
that critical depth occurs a very short distance upstream of the intersection of the two channels.

Another place where critical depth occurs is upstream of a free overfall at the end of a chan-
nel with a mild slope Fig. 15.16. Critical depth will occur at a distance of 3y, to 4y, upstream of

FIGURE 15.15

Critical depth at a bre
in grade.

FIGURE 15.16

Critical depth at a free
overtall.
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FIGURE 15.17

Change in depth with
change in bottom elevation
of a rectangular channel.

the brink. Such occurrences of critical depth (at a break in grade or at a brink) are useful i
computing surface profiles because they provide a point for starting surface-profile calculations.

Channel Transitions

Whenever a channels cross-sectional configuration (shape or dimension) changes along it
length, the change is termed a transition. Concepts previously presented are used to show hov
the flow depth changes when the floor of a rectangular channel is increased in elevation o
when the width of the channel is decreased. In these developments negligible energy losses ar
assumed. First, the case where the floor of the channel is raised (an upstep) is considered. Late
in this section, configurations of transitions used for subcritical flow from a rectangular to :
trapezoidal channel are presented.

Consider the rectangular channel shown in Fig. 15.17, where the floor rises an amount Az
To help in evaluating depth changes, one can use a diagram of specific energy versus deptt
which is similar to Fig. 15.8. This diagram is applied both at the section upstream of the transitior
and at the section just downstream of the transition. Because the discharge, Q, is the same at bott
sections, the same diagram is valid at both sections. As noted in Fig. 15.17, the depth of flow a
section 1 can be either large (subcritical) or small (supercritical) if the specific energy E, is greate
than that required for critical flow. It can also be seen in Fig. 15.17 that when the upstream flov
is subcritical, a decrease in depth occurs in the region of the elevated channel bottom. This occur.
because the specific energy at this section, E, is less than that at section 1 by the amount Az
Therefore, the specific-energy diagram indicates that y, will be less than y,. In a similar manne
it can be seen that when the upstream flow is supercritical, the depth as well as the actual water
surface elevation increases from section 1 to section 2. A further note should be made about th
effect on flow depth of a change in bottom-surface elevation. If the channel bottom at section 2 i;
at an elevation greater than that just sufficient to establish critical flow at section 2, then there i
not enough head at section 1 to cause flow to occur over the rise under steady-flow conditions
Instead, the water level upstream will rise until it is just sufficient to reestablish steady flow.

® @
7
RS 1 =
1 (subcritical) ¥ (subcritical) T
= A /"+"F' _____ RN s &
i
T s Een = N R );c fz (supercritigal) [
e — /
— supercritical Az Ey—— Az
| T Gupercriical ¥ |'—— : [‘—
! E |

When the channel bottom is kept at the same elevation but the channel is decreased ir
width, then the discharge per unit of width between sections 1 and 2 increases, but the specific
energy E remains constant. Thus when utilizing the diagram of g versus depth for the given
specific energy E, one notes that the depth in the restricted section increases if the upstream
flow is supercritical and decreases if it is subcritical (see Fig. 15.18).

*The procedure for making these computations starts on p. 588 (water-surface profiles).
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Elevation view

The foregoing paragraphs describe gross effects for the simplest transitions. In practice, it
is more common to find transitions between a channel of one shape (rectangular cross section,
for example) and a channel having a different cross section (trapezoidal, for example). A very
simple transition between two such channels consists of two straight vertical walls joining the
two channels, as shown by half section in Fig. 15.19.

This type of transition can work, but it will produce excessive head loss because of the abrupt
change in cross section and the ensuing separation that will occur. To reduce the head losses, a
more gradual type of transition is used. Figure 15.20 is a half section of a transition similar to that
of Fig, 15.19, but with the angle 6 much greater than 90°. This is called a wedge transition.

The warped-wall transition shown in Fig. 15.21 will yield even smoother flow than
either of the other two, and it will thus have less head loss. In the practical design and analysis
of transitions, engineers usually use the complete energy equation, including the kinetic
energy factors a; and a; as well as a head loss term h;, to define velocity and water-surface

Transition wall

Rectangular channel

Trapezoidal channel

Tz

FIGURE 15.18

Change in depth with
change in channel wid

FIGURE 15.19

Simplest type of transiti
between a reclangular
channel and @ trapezo
channel.

FIGURE 15.20

Half section of @ wedc
transition.

FIGURE 15.21

Half section of a warp
wall transition.
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FIGURE 15.22

Solitary wave
{exaggerated vertical
scale).

[a) Unsteady flow.
b} Steady flow.

elevation through the transition. Analyses of transitions utilizing the one-dimensional for
of the energy equation are applicable only if the flow is subcritical. If the flow is supercritic:
then a much more involved analysis is required. For more details on the design and analysis -
transitions, you are referred to Hinds (10), Chow (5), U.S. Bureau of Reclamation (11), ar
Rouse (12).

Wave Celerity

Wave celerity is the velocity at which an infinitesimally small wave travels relative to the velo
ity of the fluid. It can be used to characterize the velocity of waves in the ocean or propagatic
of a flood wave following a dam failure. A derivation of wave celerity, , follows.

Consider a small solitary wave moving with velocity ¢ in a calm body of liquid «
small depth (Fig. 15.22a). Because the velocity in the liquid changes with time, this is
condition of unsteady flow. However, if one referred all velocities to a reference fran
moving with the wave, the shape of the wave would be fixed, and the flow would be stead
Then the flow is amenable to analysis with the Bernoulli equation. The steady-flow cond
tion is shown in Fig. 15.22b. When the Bernoulli equation is written between a point o
the surface of the undisturbed fluid and a point at the wave crest, the following equatio
results:

2 2
£-+y=1+y+Ay (15.3.
4 4
4
v L
Yy

(b)

In Eq. (15.33), V is the velocity of the liquid in the section where the crest of the wave i
located. From the continuity equation, cy = V(y + Ay). Hence

L4

Syt by

and

C2y2
Vie —2 (15.34
(y + Ay)y
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When Eq. (15.34) is substituted into Eq. (15.33), it yields
Cz C2y2
oty= 2 2
2 2ly* + 2yAy + (Ay)°]

Solving Eq. (15.35) for c after discarding terms with (Ay)? assuming an infinitesimally small
wave, yields the wave celerity equation

¢~ Vg

+y+ Ay (15.35)

(15.36)

It has thus been shown that the speed of a small solitary wave is equal to the square root of the
product of the depth and g.

15.6 Hydraulic Jump

Occurrence of the Hydraulic Jump

An interesting and important case of rapidly varied flow is the hydraulic jump. A hydraulic
jump occurs when the flow is supercritical in an upstream section of a channel and is then
forced to become subcritical in a downstream section (the change in depth can be forced by
a sill in the downstream part of the channel or just by the prevailing depth in the stream
further downstream), resulting in an abrupt increase in depth, and considerable energy loss.
Hydraulic jumps (Fig. 15.23) are often considered in the design of open channels and spill-
ways of dams. If a channel is designed to carry water at supercritical velocities, the designer
must be certain that the flow will not become subcritical prematurely. If it did, overtopping
of the channel walls would undoubtedly occur, with consequent failure of the structure.
Because the energy loss in the hydraulic jump is initially not known, the energy equation is
not a suitable tool for analysis of the velocity-depth relationships. Because there is a signifi-
cant difference in hydrostatic head on both sides of the equation causing opposing pressure
forces, the momentum equation can be applied to the problem, as developed in the following
sections.

_EGL ____ T
\\

\\\\ h’- VZ
r? TN~ 2
£ -7~ ——=

2g =

.)___)
5 =L
A "
» L X

Derivation of Depth Relationships in Hydraulic Jumps

Consider flow as shown in Fig. 15.23. Here it is assumed that uniform flow occurs both
upstream and downstream of the jump and that the resistance of the channel bottom over the
relatively short distance L is negligible. The derivation is for a horizontal channel, but
experiments show that the results of the derivation will apply to all channels of moderate slope

FIGURE 15.23

Definition sketch for
the hydraulic jump
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FIGURE 15.24

Controkvolume analysis
for the hydraulic jump.

EXAMPLE 15.10

Hydrostatic
pressure at
section
Hydrostatic @
pressure at
section (1)

(So < 0.02). The derivation is started by applying the momentum equation in the x-directic
to the control volume shown in Fig. 15.24:

2 F, = mV, — mV,
The forces are the hydrostatic forces on each end of the system; thus the following is obtaine
PA1 — A, = pVa AV, — pVIALY,
or
PiA1 + pQV: = poA; + pQV; (153

In Eq. (15.37), p; and p, are the pressures at the centroids of the respective areas A, and A,.

A representative problem (e.g., Example 15.10) is to determine the downstream depth
given the discharge and upstream depth. The left-hand side of Eq. (15.37) would be know
because V; A, and p are all functions of y and Q, and the right-hand side is a function of 3
therefore, ¥, can be determined.

State the Goal

Calculating Downstream Depth for a Hydraulic Jump

Problem Statement

Water flows in a trapezoidal channel at a rate of 300 cfs. The
channel has a bottom width of 10 ft and side slopes of 1 vertical
to 1 horizontal. If a hydraulic jump is forced to occur where the
upstream depth is 1.0 ft, what will be the downstream depth
and velocity? What are the values of Fr, and Fr,?

- Ay i A5 Aic
{ \ ! / v /
=y

e oa—

Define the Situation

A hydraulic jump is forced in a trapezoidal channel.
Properties: Water (50°F), Table A.5:

v = 624 Ibf/ft’, and p = 1.94 slugs/ft’.

1. Downstream depth and velocity
2. Values of Fr, and Fr,

Generate Ideas and Make a Plan

1. Find cross section, velocity, and hydraulic depth in the
upstream section.

2. Find pressure in the upstream section to use for left-hand
side of Eq. (15.37).

3. Use channel geometry information to solve for y, in
right-hand side of Eq. (15.37).

4. Use Eq. (15.2) to solve for the Froude number at both

sections.

Take Action (Execute the Plan)

1. By inspection, for the upstream section, the cross-sectional
flow area is 11 ft%.
Therefore, the mean velocity is V, = Q/A, = 27.3 ft/s.
The hydraulic depth is D, = A,/T, = 11 ft¥/12 ft = 0.9167 ft.
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2. The location of the centroid () of the area A, can be i Using B = 10 ft, Q = 300 ft’/s, and material properties
obtained by taking moments of the subareas about the assumed earlier,
: ¥ =

water surface (see example sketch).
Ay = Ay X 0333ft + 4, X 0500 ft + Ay X 0333 ft 4. Froude numbers at both sections are

(11 ft¥)y, = (0.333 £t)(0.500 ft* X 2) + (0.50 ft)(10.00 ft?)

v, 27.3ft/s
5 = : Fr, = = = [5.02]
ool , 3 ' VED,  \/322f/s x 09167 ft
Pressure p, = 62.4 Ibf/ft’ X 0.485 ft = 30.26 Ibf/ft’. : Q 350
Therefore, : Vi=—=———"—-=331fts
) : A, 575+ 575
30.26 X 11 + 1.94 X 300 X 27.3 = p,A, + pQV, : A 9056
3. Using right-hand side of Eq. (15.37), solve for y,. b, = T, 215 421t
D2A; + pQV; = 16,221 Ibf 1% 3.31
: Fr, = = = [0.284]
2 : TG VA2 x4zl

Yy, A, + PQ _ 16221
A;

_ DAy BRI+ 3
A, A,

Hydraulic Jump in Rectangular Channels

If one writes Eq. (15.37) for a unit width of a rectangular channel where p, = vy,/2,p, = yy,/2,
Q 9 Al Y and Az Y this will Yleld
2 2
V}‘l" + pqV, = vy + pqV, (15.384q)

but g = V¥, s0 Eq. (15.38a) can be rewritten as

“(}’ -y = (Vz)’z - Vin) (15.38b)

The preceding equation can be further manipulated to yield

2 2
2vi _ (y_2> Ny 15.39)
441 4! N

The term on the left-hand side of Eq. (15.39) will be recognized as twice Fr}. Hence Eq. (15.39)
is written as

( ) gl — 2Frf =0 (15.40)
4 4!

By use of the quadratic formula, it is easy to solve for y,/y, in terms of the upstream Froude
number. This yields an equation for depth ratio across a hydraulic jump:

L l(\/1 + 8Fr? — 1) (15.41)

»n 2

or

= 3'2—‘(\/1 T 8Fr? - 1) (15.42)
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EXAMPLE 15.11

The other solution of Eq. (15.40) gives a negative downstream depth, which is not physi-
cally possible. Hence the downstream depth is expressed in terms of the upstream deptt
and the upstream Froude number. In Egs. (15.41) and (15.42), the depths y, and y, are saic
to be conjugate or sequent (both terms are in common use) to each other, in contrast tc
the alternate depths obtained from the energy equation. Numerous experiments show thal
the relation represented by Egs. (15.41) and (15.42) is valid over a wide range of Froude
numbers.

Although no theory has been developed to predict the length of a hydraulic jump, experi-
ments [see Chow (5)] show that the relative length of the jump, L/y,, is approximately 6 for Fr
ranging from 4 to 18.

Head Loss in a Hydraulic Jump

In addition to determining the geometric characteristics of the hydraulic jump, it is often desir-
able to determine the head loss produced by it. This is obtained by comparing the specific en-
ergy before the jump to that after the jump, the head loss being the difference between the twc
specific energies. It can be shown that the head loss for a jump in a rectangular channel is

— 3
P b s (15.43

L3202

For more information on the hydraulic jump, see Chow (5). The following example shows tha
Eq. (15.43) yields a magnitude that equals the difference between the specific energies at the
two ends of the hydraulic jump.

Generate Ideas and Make a Plan

Calculating Head Loss in a Hydraulic Jump © 1. To calculate h; using Eq. (15.43), one calculates y, from the

Problem Statement

Water flows in a rectangular channel at a depth of 30 cm with

depth ratio equation (Eq. 15.42). This requires Fr;.
2. Check validity of head loss by comparing to E; — E,.

a velocity of 16 m/s, as shown in the sketch that follows. If a Take Action (Execute the Plan)
d9wnstream sill (not ShOWI.l) forces a hydraulic jump, what 'L Calculate Fry,ys Vs and by from Egs. (Eq. 15.42)
will be the depth and velocity downstream of the jump? What  : and (15.43).
head loss is produced by the jump? : a v 6
Fr, = = = 9.33
0em  Vel6mis TR < Ovsgg:. 1/9.81(0.30)
S oy A S y =5 V148033 — 1] =[381m]
T : :
q (16 m/s)(0.30 m)
=—= =11.26
2= = asim
ituati 3.81 — 0.30)°
Define the Situation b, = ( ) i @
A hydraulic jump is occurring in a rectangular 4(0.30)(3.81)
channel. 2. Compare the head loss to E, — E,.
1.26°
State the Goal h =1030 + ——— ) —1(3.81 + e | =94
ate fleto k (0 2><9.81) ( . 2><9.81) sm

« Calculate downstream depth and velocity.
« Calculate head loss produced by the jump.

The value is the same, so |validity of h; equation is verified.
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Use of Hydraulic Jump on Downstream End of Dam Spillway

Previously it was shown that the transition from supercritical to subcritical flow produces a
hydraulic jump, and that the relative height of the jump (y,/y) is a function of Fr,. Because
flow over the spillway of a dam invariably results in supercritical flow at the lower end of the
spillway, and because flow in the channel downstream of a spillway is usually subcritical, it is
obvious that a hydraulic jump must form near the base of the spillway (see Fig. 15.25). The
downstream portion of the spillway, called the spillway apron, must be designed so that the
hydraulic jump always forms on the concrete structure itself. If the hydraulic jump were
allowed to form beyond the concrete structure, as in Fig. 15.26, severe erosion of the founda-
tion material as a result of the high-velocity supercritical flow could undermine the dam and
cause its complete failure. One way to solve this problem might be to incorporate a long, slop-
ing apron into the design of the spillway, as shown in Fig. 15.27. A design like this would work

Hydraulic jump
v

Apron ——s

Possible undermining of
dam due to severe erosion
in this region

FIGURE 15.25

Spillway of dam and
hydraulic jump.

FIGURE 15.26

Hydraulic jump occurri
downstream of spillwa
apron.

FIGURE 15.27
long sloping apron.



582 CHAPTER 15 = FLOW IN OPEN CHANNELS

FIGURE 15.28
Spillway with sfilling basin
Type Il as recommended

by the USBR {13).

very satisfactorily from the hydraulics point of view. For all combinations of Fr, and water
surface elevation in the downstream channel, the jump would always form on the slopin
apron. However, its main drawback is cost of construction. Construction costs will be reduce:
as the length, L, of the stilling basin is reduced. Much research has been devoted to the desig:
of stilling basins that will operate properly for all upstream and downstream conditions an
yet be relatively short to reduce construction cost. Research by the U.S. Bureau of Reclamatio:
(13) has resulted in sets of standard designs that can be used. These designs include sills, baffl
piers, and chute blocks, as shown in Fig. 15.28.

Spillway Chute blocks
Baffle piers
End still

Naturally Occurring Hydraulic Jumps

Hydraulic jumps can occur naturally in creeks and rivers, providing spectacular standin
waves, called rollers. Kayakers and white-water rafters must exercise considerable skill whe
navigating hydraulic jumps because the significant energy loss that occurs over a short dis
tance can be dangerous, potentially engulfing the boat in turbulence. A special case of hydrauli
jump, referred to as a submerged hydraulic jump, can be deadly to white-water enthusiast
because it is not easy to see. A submerged hydraulic jump occurs when the downstream dept
predicted by conservation of momentum is exceeded by the tailwater elevation, and the jum
cannot move upstream in response to this disequilibrium because of a buried obstacle [se
Valle and Pasternak (14)]. Thus, the visual markers of a hydraulic jump, particularly the rollin
waves depicted in Figs. 15.23 and 15.24, are hidden.

A surge, or tidal bore, is a moving hydraulic jump that may occur for a high tide entering
bay or river mouth. Tides are generally low enough that the waves they produce are smooth an
nondestructive. However, in some parts of the world the tides are so high that their entry into shal
low bays or mouths of rivers causes a surge to form. Surges may be very hazardous to small boat:
The same analytical methods used for the jump can be used to solve for the speed of the surge.

15.7 Gradually Varied Flow

For gradually varied flow, channel resistance is a significant factor in the flow process. There
fore, the energy equation is invoked by comparing Sy and Sy
Basic Differential Equation for Gradually Varied Flow

There are a number of cases of open-channel flow in which the change in water-surface profil
is so gradual that it is possible to integrate the relevant differential equation from one sectio



