FLOW IN OPEN
CHANNELS

{Chapter Road Map

The How of water in open channels can be observe
in aqueducts, rivers, flumes, irrigation diiches, and
other contexts. Although these contexts are quite
different, a small set of concepts and a few equatic
generalize to most applications of open channel flc
These ideas are introduced in this chapter.

Learning Objectives

STUDENTS WILL BE ABLE TO

* Define an open channel. Define uniform flow and
nonuniform fow. {§15.1)

® Define the Froude number, the hydraulic radius, and the

Reynolds number. List the criteria for laminar and turbulen
flow. (§15.1)

® For steady flow, explain the physics of the energy
equation and also explain the corresponding HGL and

EGL (§15.2)

® For uniform flow, calculate flow rate with the
{a) Darcy-Weisbach approach, (b} Chezy equation,
and (¢} Manning equation. (§15.3)

* Define and explain the best hydraulic section. (§15.3)

* Describe and compare rapidly varied flow and gradually
varied flow. (§15.4)

® Describe critical depih, specific energy, supercritical flow
and subcritical flow. (§15.5)

* Describe a hydraulic jump. Perform calculations. {§15.6)

* Describe the factors used to classify surface profiles that
occur in gradually varied flow. {§15.7)

FIGURE 15.1

Aerial view of the California Aqueduct at the southwest end
of the Tehachapi Mountains. (Macduff Everion/The Image
Bank/Getty Images).
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SECTION 15.1 DESCRIPTION OF OPEN-CHANNEL FLOW

An open channel is one in which a liquid flows with a free surface. A free surface means that
the liquid surface is exposed to the atmosphere. Examples of open channels are natural creeks
and rivers, artificial channels such as irrigation ditches and canals, and pipelines or sewers
flowing less than full. In most cases, water or wastewater is the flowing liquid.

15.1 Description of Open-Channel Flow

Flow in an open channel is described as uniform or nonuniform, as distinguished in Fig. 15.2. As
defined in Chapter 4, uniform flow means that the velocity is constant along a streamline, which
in open-channel flow means that depth and cross section are constant along the length of a chan-
nel. The depth for uniform-flow conditions is called normal depth and is designated by y,.
For nonuniform flow, the velocity changes from section to section along the channel, thus one
observes changes in depth. The velocity change may be due to a change in channel configuration,
such as a bend, change in cross-sectional shape, or change in channel slope. For example,
Fig. 15.2 shows steady flow over a spillway of constant width, where the water must flow progres-
sively faster as it goes over the brink of the spillway (from A to B), caused by the suddenly steeper
slope. The faster velocity requires a smaller depth, in accordance with conservation of mass {con-
tinuity). From reach B to C, the flow is uniform because the velocity, and thus depth, are constant.
After reach C the abrupt flattening of channel slope requires the velocity to suddenly, and turbu-
lently, slow down. Thus there is a deeper depth downstream of C than in reach B to C.

Nonuniform

Nonuniform

The most complicated open-channel flow is unsteady nonuniform flow. An example of
this is a breaking wave on a sloping beach. Theory and analysis of unsteady nonuniform flow
are reserved for more advanced courses.

Dimensional Analysis in Open-Channel Flow

Open-channel flow results from gravity moving water from higher to lower elevations and is
impeded by friction forces caused by the roughness of the channel. Thus the functional equa-
tion Q = f(w, p, V, L) and dimensional analysis leads to two important 7-groups: the Froude
number and the Reynolds number. The Froude number squared is the ratio of kinetic force to
gravity force:

, _ kinetic force pL?*V? _ v: (15.1)
gravity force  yL’  Lylp .

Fr = (15.2)

a

q)| s

The Froude number is importan if the gravitational force influences the direction of flow,
such as in flow over a spillway, o1 he formation of surface waves. However, it is unimportant
when gravity causes only a hydro :atic pressure distribution, such as in a closed conduit.

FIGURE 15.2
Distinguishing uniform
and nonuniform flow. T
example shows steady
flow over a spillway, st
as the emergency over
channel of a dam.
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FIGURE 15.3
Open-channel relations.

The use of Reynolds number for determining whether the flow in open channels will
laminar or turbulent depends on the hydraulic radius, given by

A
R, =73 (15

where A is the cross-sectional area of flow and P is the wetted perimeter. The characteris
length R, is analogous to diameter D in pipe flow. Recall that for pipe flow (Chapter 10), if t
Reynolds number (VDp/p. = VD/v) is less than 2000, the flow will be laminar, and if it
greater than about 3000, one can expect the flow to be turbulent. The Reynolds number cri
rion for open-channel flow would be 2000 if one replaced D in the Reynolds number by 4.
where Ry, is the hydraulic radius. For this definition of Reynolds number, laminar flow wou
occur in open channels if V(4R;)/v < 2000.

However, the standard convention in open-channel flow analysis is to define the Reynol
number as
_ VR,
Ty

Re (15

Therefore, in open channels, if the Reynolds number is less than 500, the flow is laminar, a:
if Re is greater than about 750, one can expect to have turbulent flow. A brief analysis of tt
turbulent criterion (see Example 15.1) will show that water flow in channels will usually
turbulent unless the velocity and/or the depth is very small.

It should be noted that for rectangular channels (see Fig. 15.3), the hydraulic radius is

_A__ P

P B+2y
For a wide and shallow channel, B>> y and Eq. (15.5) reduces to R, = y which means that t
hydraulic radius approaches the depth of the channel.

R, (15.

v

]
Side view
1 ]
- B
)
End view

v CHECKPOINT PROBLEM 15.1

What is the hydraulic radius for this channel?
a.wR/(4 + 2m) A
b.wR/(2 + ) ‘v
c.R/4
d.R/2

e.R



Most open-channel flow problems involve turbulent flow. If one calculates the conditions
needed to maintain laminar flow, as in Example 15.1, one sees that laminar flow is uncommon.

EXAMPLE 15.1 Take Action (Execute the Plan)

Calculating Reynolds Number and Classifying Flow : 1. Hydraulic radius
for a Rectangular Open Channel :

: By (10 fe)(6 ft)
: R, = = = 2727 ft
Problem Statement : B+2y (10ft) + 2(6ft)
Water (60 °F) flows in a 10-ft-wide rectangular channel at i 2. Reynolds number
a depth of 6 ft. What is the Reynolds number if the mean :
. . ) : VR,  (0.1ft/s)(2.727 ft)
velocity is 0.1 ft/s? With this velocity, at what maximum : Re=—=—— """ 7 _

depth can one be assured of having laminar flow?

3. Laminar Flow Criteria (Re < 500).
Re = VR,/v = (0.10 ft/s)R,/(1.22 X 10" ° ft¥/s) = 500
R, = (500)(1.22 X 107° ft*/s)/(0.10 ft/s) = 0.061 ft

Define the Situation

Water flows in a rectangular channel.

B=10ft,y = 6ft, V= 0.1ft/s.
For a rectangular channel,

R, = (By)/(B + 2y)
(By)/(B + 2y) = (109)/(10 + 2y) = 0.061 ft
State the Goal

=[0.062
1. Re 4m Reynolds number : Im

2. y,(ft) 4= Maximum depth for laminar flow

Properties:
Water (60 °F, 1 atm, Table A.5): v = 1.22 % 10"° ft?/s.

Review the Solution and the Process

Generate Ideas and Make a Plan i 1. Knowledge. Velocity or depth must be very small to yield

laminar flow of i hannel.
To find Re, apply Eq. (15.4). To find y,, apply the criteria that = HOW OF WEter TNl OPEH channg

laminar flow occurs for Re < 500. The plan is: 2. Knowledge. Depth and hydraulic radius are virtually the

hen d i all relati idth,
1. Calculate hydraulic radius using Eq. (15.5). same when depth is very small relative to width

2. Calculate Reynolds number using Eq. (15.4).
3. Let Re = 500, solve for Ry, and then solve for y,,.

15.2 Energy Equation for Steady Open-Channel Flow

To derive the energy equation for flow in an open channel, begin with Eq. (7.29) and let the
pump head and turbine head equal zero: h, = h, = 0. Equation (7.29) becomes

Vi
-+al—+zl=—+a2—+zz+h,_ “5.6)
Y 2g
Use Fig. 15.4 to show that
&+zl=y,+SOAx and &+zz=y2
Y Y
where S, is the slope of the channel bottom, and y is the depth of flow. Assume the flow in the

channel is turbulent, so a; = o, = 1.0. Equation (15.6) becomes

vi Vi
y1+5g—+SoAx=y2+‘£'g'+hL (]5.7)
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FIGURE 15.4

Definition sketch for flow
in open channels.

EXAMPLE 15.2

datum l

L Ax

In addition to the foregoing assumptions, Eq. (15.7) also requires that the channel have
uniform cross section, and the flow be steady.

15.3 Steady Uniform Flow

Uniform flow requires that velocity be constant in the flow direction, so the shape of the cha
nel and the depth of fluid is the same from section to section. Consideration of the foregoir
slope equations shows that for uniform flow, the slope of the HGL will be the same as the cha:
nel slope because the velocity and depth are the same in both sections. The HGL, and thus tl
slope of the water surface, is controlled by head loss. If one restates the Darcy-Weisbach equ
tion introduced in Chapter 10 with D replaced by 4Ry, the head loss is

_ LY h_ 1 v

hy = Lo
TR 2g T L 4R, g

{15.
From Fig. 15.4,S, = [slope of EGL], which is a function of the head loss, so Sy = (h//L), yiel
ing the following equation for velocity:

8g
V= ?R,,so (15.

To solve Eq. (15.9) for velocity, the friction factor f can be found from the Moody diagra
(Fig. 10.14) and can then be used to solve iteratively for the velocity for a given uniform-flc
condition. This is demonstrated in Example 15.2.

_ i Define the Situation
Applying the Darcy-Weisbach Equation to Find the Flow  © « Water flows in a rectangular channel.
Rate in a Rectangular Open Channel . B=10fiy = 6ft, S = 0.0016.
Problem Statement Assumptions. Uniform flow
Estimate the discharge of water that a concrete channel 10 ft Properties.
wide can carry if the depth of flow is 6 ftand the slope of the  © , Water (60 °F, 1 atm, Table A.5): v = 1.22 X 10"° ft¥/s

channel is 0.0016.

1« Concrete (Table 10.4): k, = 0.005 ft
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Use value of k,/4R, = 0.00046 as a guide to estimate

State the Goal £=0016
Qft’/s) 4m Discharge in the channel 2. Calculate V based on guess of f.
Generate Ideas and Make a Plan \/ 8(32.2 ft/s%)(2.73 ft)(0.0016)
Because the goal is Q, apply the flow rate equation V= 0.016
Q=VA (a) : = /706 ft¥/s’ = 839 ft/s
To find V in Eq. (a), apply Eq. (15.9): i 3. Calculate a new value of fbased on V from step 2.
8g 4R, 8.39 ft/s(109 ft)
=./—= : Re=V—= = 7.62 X 10°
V=y RS bl T T 120100 s)
; Using this new value of Re and k,/4R;, = 0.00046, read f as
To find R, in Eq. (b), apply Eq. (15.5). : 8 §
ofind Ryitn Eq. (b), apply Eq. (155) : 0.016. This value of fis the same as the previous estimate.
By (10f)(6ft) : Thus, we conclude that
R, = = = 2.727 ft (e} :
B+2y (10ft) + 2(6 ft) : V = 8.39 fi/s

To find fin Eq. (b), use an iterative approach with the Moody
diagram. This is a Case 2 problem from Chapter 10. The plan is:

1. Calculate relative roughness. Then, guess a value of f. Q = VA = 839 ft/s(60 ft') =
2. Calculate V using Eq. (b). :

3. Calculate Reynolds number, then look up f on the Moody
diagram and compare to the guess in step 1. If needed, go
back to step 2.

4. Flow rate equation

Review the Solution and the Process

1. Notice. The approach to solving this problem parallels the
approach presented in Chapter 10 for solving problems th

4. Caleul ing Eq. () involve flow in conduits.
. t .{a).
aleulate Q using Bq. (a 2. Knowledge. Hydraulic diameter is four times the hydraulic

Take Action (Execute the Plan) .ra:i;x(.zgl;is is why the relative roughness formula in step
18 K, h).

1. Calculate relative roughness.

k. 0005ft _ 0.005ft
4R,  4(60ft?/22ft) 4(2.73 ft)

= 0.00046

Rock-Bedded Channels

For rock-bedded channels such as those in some natural streams or unlined canals, the larger
rocks produce most of the resistance to flow, and essentially none of this resistance is due to
viscous effects. Thus, the friction factor is independent of the Reynolds number. This is analo-
gous to the fully rough region of the Moody diagram for pipe flow. For a rock-bedded channel,
Limerinos (1) has shown that the resistance coefficient f can be given in terms of the size of
rock in the stream bed as

f= ! (15.10)

R\ ?
1.2 + 2.031og i
84

where dy, is a measure of the rock size.*

*Most river-worn rocks are somewhat elliptical in shape, Limerinos (1) showed that the intermediate dimension dy,
correlates best with f. The dg, refers to the size of rock (intermediate dimension) for which 84% of the rocks in the
random sample are smaller than the dj, size. Details for choosing the sample are given by Wolman (3).
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EXAMPLE 15.3 Generate Ideas and Make a Plan S

Resistance Coefficient for Boulders 1. Since the channel is wide, approximate R;, as the depth of
: the channel.

Problem Statement : 2. Use Eq.(15.10) to find f on the basis of the dg, boulder

Determine the value of the resistance coefficient, f, for a : size.

natural rock-bedded channel that is 100 ft wide and has an

average depth of 4.3 ft. The dy, size of boulders in the stream Take Action (Execute the Plan)

bed is 0.72 ft. 1. Ryis4.3 k.

Define the Situation 2. Evaluatef.

A natural channel is lined with boulders. 1 B
S AREE]

State the Goal [ 1.2 + 2.03 108( 075)]

Find the friction factor, f.

The Chezy Equation

Leaders in open-channel research have recommended the use of the methods already pr
sented (involving the Reynolds number and relative roughness k) for channel design (:
However, many engineers continue to use two traditional methods, the Chezy equation ar
the Manning equation.

As noted earlier, the depth in uniform flow, called normal depth, y,, is constant. Cons
quently, h/L is the slope S, of the channel, and Eq. (15.8) can be written as

RySy = éfgvz
or
V = CVR,S, (15.1
where
C = V8glf (15.1
Because Q = VA, the discharge in a channel is given by
Q = CAVRS, (15.1:

This equation is known as the Chezy equation after a French engineer of that name. For pra
tical application, the coefficient C must be determined. One way to determine C is by knowir
an acceptable value of the friction factor fand using Eq. (15.12).

The Manning Equation
The second, and more common, way to determine C in the SI system of units is given as:

R”6
c=—" (15.1.
n
where n is a resistance coefficient called Manning’s n, which has different values for differe
types of boundary roughness. When this expression for C is inserted into Eq. (15.13), the resu
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is a common form of the discharge equation for uniform flow in open channels for SI units,
referred to as the Manning equation:

1.0
Q= TARf,”Sf,” (15.15)

Table 15.1 gives values of n for various types of boundary surfaces. The major limitation
of this approach is that the viscous or relative-roughness effects are not present in the design
formula. Hence, application outside the range of normal-sized channels carrying water is not
recommended.

Manning Equation—Traditional System of Units

The form of the Manning equation depends on the system of units because Manning’s
equation is not dimensionally homogeneous. In Eq. (15.15), notice that the primary di-
mensions on the left side of the equation are L*/T and the primary dimensions on the right
side are L%?,

To convert the Manning equation from SI to traditional units, one must apply a factor
equal to 1.49 if the same value of 7 is used in the two systems. Thus in the traditional system
the discharge equation using Mannings n is

1.49
Q= TARi”S},” (15.16)

TABLE 15.1 Typical Values of Roughness Coefficient, Manning’s n

Lined Canals n
Cement plaster _ 0.011
Untreated gunite : 0.016
Wood, planed 0.012
Wood, unplaned 0.013
Concrete, troweled 0.012
Concrete, wood forms, unfinished 0.015
Rubble in cement 0.020
Asphalt, smooth 0.013
Asphalt, rough 0.016
Corrugated metal 0.024
Unlined Canals

Earth, straight and uniform 0.023
Earth, winding and weedy banks 0.035
Cut in rock, straight and uniform 0.030
Cut in rock, jagged and irregular 0.045
Natural Channels

Gravel beds, straight 0.025
Gravel beds plus large boulders 0.040
Earth, straight, with some grass 0.026
Earth, winding, no vegetation 0.030
Earth, winding, weedy banks 0.050

Earth, very weedy and overgrown 0.080
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In Example 15.4, a value for Manning’s n is calculated from known information about
channel and compared to tabulated values for n in Table 15.1.

EXAMPLE 15.4

Apply the Chezy Equation to find Manning's Value of n
for Flow in a Channel

Problem Statement

If a channel with boulders has a slope of 0.0030, is 100 ft wide,
has an average depth of 4.3 ft, and is known to have a friction

factor of 0.130, what is the discharge in the channel, and what
is the numerical value of Manning's n for this channel?

Define the Situation

Water flows in an channel with boulders
Se = 0.003,B = 100 ft,y = 4.3 ft, f = 0.13
Assumptions. R, = y = 4.3 ft (because the channel is wide).

State the Goal
1. Q(cfs) 4m Discharge in the channel
2. r4m Manning’s n

Generate Ideas and Make a Plan
To find Q, apply the flow rate equation

Q=VA (a)

To find Vin Eq. (a), apply Eq. (15.9):
8g

V=1/=RS, b) :

f

To find n, apply Eq. (15.16):
1.49
QEE=

n

_AR%:JS:)H {cl

Because Egs. (a) to (c) form a set of three equations with three

: unknowns, they can be solved. The plan is:

1. Calculate V using Eq. (b).

2. Calculate Q using Eq. (a).
3. Calculate n using Eq. ().

Take Action (Execute the Plan)

1. Velocity

V= [,/%][W] = 5.06 ft/s

2. Flow Rate Equation

Q = VA = (5.06 ft/s)(100 X 4.3 %) =[ 2180 cfs

3. Manning’s n (traditional units).
149
n==—ARPs}’

Q
n= (i>(l00 X 4.3 f2)(4.3 ft)**(0.003)"2
2176 /s ' ' '

Review the Solution and the Process

1. Validation. This calculated value of n is within the range of
typical values in Table 15.1 under the category of “Unlined
Canals, Cut in rock”

2. Notice. For uniform flow, f in the Darcy-Weisbach
equation can be related to Manning’s n (as shown by this
example).

In Example 15.5 the Chezy equation for traditional units is used to compute discharge.

EXAMPLE 15.5

Discharge Using Chezy Equation

Problem Statement

Using the Chezy equation with Manning’s n, compute the
discharge in a concrete channel 10 ft wide if the depth of flow
is 6 ft and the slope of the channel is 0.0016.

Define the Situation

© Water flows in a concrete channel. Width = 10 ft.

Depth = 6 ft. Slope = 0.0016.
Properties: n = 0.015 for concrete channel (Table 15.1).

State the Goal
Find the discharge, Q.
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: 60
Generate Ideas and Make a Plan R, = = 2.73ft and R} =195
Use the Chezy equation for traditional units, Eq. (15.16). : U2 =004 and A = 60f
Take Action (Execute the Plan) 1.49
: = — . .04) = | 467 cf
3 Q= 5 (60)(1.96)(0.04)

1.49 !
Q= TAR%”S}J'Z

The two results (Examples 15.5 and 15.5) are within expected engineering accuracy for
this type of problem. For a more complete discussion of the historical development of Man-
ning’s equation and the choice of n values for use in design or analysis, refer to Yen (4) and
Chow (5).

Best Hydraulic Section for Uniform Flow

The best hydraulic section is the channel geometry that gives the maximum discharge for a '

given cross sectional area. Maximum discharge occurs when a geometry has the minimum
wetted perimeter. Therefore, it yields the least viscous energy loss for a given area. Consider the
quantity AR} in Mannings equation given in Egs. (15.15 and 15.16), which is referred to as
the section factor. Because R, = A/P, the section factor relating to uniform flow is given by
A(A/P)*. Thus, for a channel of given resistance and slope, the discharge will increase with
increasing cross-sectional area but decrease with increasing wetted perimeter P. For a given
area, A, and a given shape of channel—for example, rectangular cross section—there will be a
certain ratio of depth to width (y/B) for which the section factor will be maximum. This ratio
is the best hydraulic section.

Example 15.6 shows that the best hydraulic section for a rectangular channel occurs
when y = 1B.1t can be shown that the best hydraulic section for a trapezoidal channel is half
a hexagon as shown; for the circular section, it is the half circle with depth equal to radius;
and for the triangular section, it is a triangle with a vertex of 90° (Fig. 15.5). Of all the various
shapes, the half circle has the best hydraulic section because it has the smallest perimeter for
a given area.

The best hydraulic section can be relevant to the cost of the channel. For example, if a
trapezoidal channel were to be excavated and if the water surface were to be at adjacent ground
level, the minimum amount of excavation (and excavation cost) would result if the channel of
best hydraulic section were used.

v’ CHECKPOINT PROBLEM 15.2

Consider uniform flow of water in two channels. Both have
the same slope, the same wall roughness, and the same section
area.

Which statement is true?
aQu=Q
b.Q<Qp
cQu>Q

FIGURE 15.5
Best hydraulic sections
for different geometries

-



EXAMPLE 15.6

Finding the Best Hydraulic Section for a Rectangular Channel 1. Relate 4 and Pin terms of y.

Take Action (Execute the Plan)

Problem Statement P= 4 + 2y
Determine the best hydraulic section for a rectangular channel Y
with depth y and width B. 2a. Minimize P.
Define the Situation %}—) = _?- +2=0
Y
Water flows in a rectangular channel. Depth = y. Width = B. A 4
== = 2
State the Goal : y
Find the best hydraulic section (relate B and y). : 2b. Express result in terms of y and B.
: A = By,so
Generate Ideas and Make a Plan B
: 1
L. SetA = Byand P = B + 2y so that both are a function of y. '}7}, = or |y= EB
2. Let A be constant, and minimize P. :
» Differentiate P with respect to y and set the derivative : Review the Solution and the Process
equal to zero. : Knowledge. The best hydraulic section for a rectangular
* Express the result of minimizing P as a relation between | channel occurs when the depth is one-half the width of the
yand B. : channel, see Fig. 15.5.

FIGURE 15.6

Culvert under a highway

embankment.

Uniform Flow in Culverts and Sewers

Sewers are conduits that carry sewage (liquid domestic, commercial, or industrial waste) fro
households, businesses, and factories to sewage disposal sites. These conduits are often circul
in cross section, but elliptical and rectangular conduits are also used. The volume rate of sev
age varies throughout the day and season, but of course sewers are designed to carry the ma:
imum design discharge flowing full or nearly full. At discharges less than the maximum, t}
sewers will operate as open channels.

Sewage usually consists of about 99% water and 1% solid waste. Because most sewage is ¢
dilute, it is assumed that it has the same physical properties as water for purposes of discharg
computations. However, if the velocity in the sewer is too small, the solid particles may sett
out and cause blockage of the flow. Therefore, sewers are usually designed to have a minimu
velocity of about 2 fi/s (0.60 m/s) at times when the sewer is flowing full. This condition is m«
by choosing a slope on the sewer line to achieve the desired velocity.

A culvert is a conduit placed under a fill such as a highway embankment. It is used t
convey stream-flow from the uphill side of the fill to the downhill side. Figure 15.6 shows th

g

Roadway




ECTION 15.3 STEADY UNIFORM FLOW &

essential features of a culvert. A culvert should be able to convey runoff from a design storm
without overtopping the fill and without erosion of the fill at either the upstream or down-
stream end of the culvert. The design storm, for example, might be the maximum storm that
could be expected to occur once in 50 years at the particular site.

The flow in a culvert is a function of many variables, including cross-sectional shape
(circular or rectangular), slope, length, roughness, entrance design, and exit design. Flow in a
culvert may occur as an open channel throughout its length, it may occur as a completely full
pipe, or it may occur as a combination of both. The complete design and analysis of culverts are
beyond the scope of this text; therefore, only simple examples are included here {(Examples 15.7
and 15.8). For more extensive treatment of culverts, please refer to Chow (5), Henderson (6),
and American Concrete Pipe Assoc. (7).

EXAMPLE 15.7 Take Action (Execute the Plar-IT

Sizing a Round Concrete Sewer Line 1. Chezy equation for traditional units is
- : 1.49 _
Problem Statement Q= = ARY3S)2
A sewer line is to be constructed of concrete pipe to be :
laid on a slope of 0.006. If n = 0.013 and if the design Q= 110ft"/s
discharge is 110 cfs, what size pipe (commercially available) n = 0.013
should be selected for a full-flow condition? What will be :
the mean velocity in the sewer pipe for these conditions? S = 0.006 (assume atmospheric pressure in the pipe)
(It should' ble 'notedftha't concrete pi%e is x"eac;i_ly availablc:i in 2. Solve for AR®. Note that units of AR?? are ft** because
comnhlera.a S.IZCS of 8-in., 10-in., an 1.2-m. iameter an' : Aisin f2 and R, is in f*".
then in 3-in. increments up to 36-in. diameter. From 36-in.  :
diameter up to 144 in. the sizes are available in : 25 (110 £6°/5)(0.013) 83
R : R = e = 12.39ft

6-in. increments.) : (1.49)(0.006)"?
Define the Situation — =3 P 3 Relate A and P to diameter by relating to R;.

. 3 : 2/3
Sewer line, S, = 0.006, Q (design) = 110 cfs. R, = % and R}® = (%)

Assumptions: Can only use a standard pipe size. o

A
AR} = P 12.39 fi®?

State the Goal 23
Find: Pipe diameter large enough to carry design discharge For a pipe flowing full, A = = D*4 and P = wD, or
and that allows V = 2 ft/s at full-flow condition. r e
: (wD?4) i

_ : e = 1239t
Generate Ideas and Make a Plan : (wD)
1. Use Chezy equation for traditional units, Eq. (15.16). : 4. Solving for diameter yields D = 3.98 ft = 47.8 in. Use the
2. Solve for ARY>. next commercial size larger, which is
3. For pipe flowing full, relate A and P to diameter wD? . .

through R,. : A== 50.3 ft? (for pipe flowing full)
4. ?olve for diameter, and use the next commercial size is Verify that velocity of full flow is greater than 2 fus.

arger. :

. ) : (110 fi’/s)
5. Check that velocity for full flow is greater than 2 ft/s. : V= Q. (__— =219 ft/
g ; 2 03

Example 15.8 demonstrates the calculation of necessary slope given all sources of head
loss and a required discharge.



EXAMPLE 15.8 Let points 1 and 2 be at the upstream and downstream
: water surfaces, respectively.

Culvert Design
Thus,(p, = p, = 0gage and V, = Vv, = 0)

Problem Statement Also,(z, — 2, = H)

A 54-in.-diameter culvert laid under a highway embankment
has a length of 200 ft and a slope of 0.01. This was designed to
pass a 50-year flood flow of 225 cfs under full-flow conditions
(see figure). For these conditions, what head H is required?

Therefore,(H = > k)

2. Head losses occur at culvert entrance and exit, as well as

over the length of pipe.
When the discharge is only 50 cfs, what will be the uniform : gth of pip
flow depth in the culvert? Assume n = 0.012. i H = pipe head loss + entrance head loss + exit head loss
N 2
Define the Situation i H= ZK—(Kr + Kg) + pipe head loss
: 24

Situation: Culvert has been designed to carry 225 cfs with _
given dimensions, K, = 0.50 (from Table 10.5)
Assumptions: Uniform flow, so that pipe head loss hycan be : Ke = 1.00 (from Table 10.5)
related to S, : 3. Pipe head loss is

1.49 P
Q = _n"AR%,JS(l)Z

Q = 225 ft’/s

D?
A="T" 2 15002

State the Goal 4
ind: : A D’/4 D
Find: Rh=—=Tr / = — = 1.125ft
1. The height H required between the two free surfaces when : P D 4
flowing full. : R} = (1.125 ft)** = 1.0817 f2?
2. The uniform flow depth in the culvert when Q = 50 cfs. : hf
: Sy ==
L

Generate Ideas and Make a Plan 145

H h 2
: A
1. Use energy equation between the two end sections, : 225 = (15.90 i) (1.0817 ﬁz”)(“)
: : 0.012 200
accounting for head loss. :

he=2221t
2. Document all sources of head loss. : d
3. Find pipe head loss hy using Eq. (15.17) and the fact that : 4. Continuity equation yields
by : v=Q_ R _ s
0o =71 : A 1590 ft A5 fus
5. Solve for H.
4. Use continuity equation to find V, the uniform flow : olvelor
: ) : 14.15%
velocity, needed to calculate head loss : H= (0.50 + 1.0) + 2.22
5. Solve for H. : 64.4
6. Solve for depth of flow, for Q = 50 cfs, using Eq. (15.16) H=466ft +222ft = |6.88 ft
and pipe geometry relations for pipe flowing partly full. 6. Depth of flow for Q = 50 cfs is
i 149 _
Take Action (Execute the Plan) ; 50 = = AR} 3(0.01)1.2

1. Energy equation

Vi Vi
B‘-+-—l-+z,=&+—2—+zz+2h;_
g %
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Values of A and R;, will depend on geometry of partly full  : Area A if angle 6 is given in degrees

pipe, as shown: D\ 26 by
DESE———— o : A= 1 Nae0c /| T\ (sin 9 cos 0)

15.4 Steady Nonuniform Flow

As stated in the beginning of this chapter, and shown in Fig. 15.2, all open-channel flows are clas-
sified as either uniform or nonuniform. Recall that uniform flow has constant velocity along a
streamline and thus has constant depth for a constant cross section. In steady nonuniform flow,
the depth and velocity change over distance (but not with time). For all such cases, the energy
equation as generally introduced in Section 15.2 is invoked to compare two cross sections. How-
ever, for analysis of nonuniform flow, it is useful to distinguish whether the depth and velocity
change occurs over a short distance, referred to as rapidly varied flow, or over a long reach of
the channel, referred to as gradually varied flow (Fig. 15.7). The head loss term is different for
these two cases. For rapidly varied flow, one can neglect the resistance of the channel walls and
bottom because it occurs over a short distance. For gradually varied flow, because of the long
distances involved, the surface resistance is a significant variable in the energy balance.

15.5 Rapidly Varied Flow

Rapidly varied flow is analyzed with the energy equation presented previously for open-
channel flow, Eq. (15.7), with the additional assumptions that the channel bottom is horizontal
(S, = 0) and the head loss is zero (h; = 0). Therefore, Eq. (15.7) becomes

vi V3
+ L=y + 2 15.1
nTy " Y2 2¢ (15.17)
Specific Energy
The sum of the depth of flow and the velocity head is defined as the specific energy:
2
E=y+ v (15.18)
28

Note that specific energy has dimensions [L]; that is, it is an energy head. Equation (15.17)
states that the specific energy at section 1 is equal to the specific energy at section 2, or E; = E,.
The continuity equation between sections 1 and 2 is

AV =AYV, =Q (15.19)

sin 0 cos 0

Wetted perimeter will be P = wD(w/180°), so

w-C)

(170/180°)>]

Substituting these relations for A and R, into the dischar,
equation and solving for 6 yields 8 = 70°. Therefore, y is

D D 54 1n ;
y= 5 - 2cosO:( 5 )(l 0.342)=

FIGURE 15.7
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FIGURE 15.8

Relation between depth
and specific energy.

FIGURE 15.9
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Therefore, Eq. (15.17) can be expressed as

Q Q@
T oAl T Geal
£A1 843

7 (15.2(
Because A, and A, are functions of the depths y, and y,, respectively, the magnitude of th
specific energy at section 1 or 2 is solely a function of the depth at each section. If, for a give
channel and given discharge, one plots depth versus specific energy, a relationship such as the
shown in Fig. 15.8 is obtained. By studying Fig. 15.8 for a given value of specific energy, on
can see that the depth may be either large or small. This means that for the small depth, th
bulk of the energy of flow is in the form of kinetic energy—that is, Q%/(2gA?) > y—whereas fo
a larger depth, most of the energy is in the form of potential energy. Flow under a sluice gat
(Fig. 15.9) is an example of flow in which two depths occur for a given value of specific energ'
The large depth and low kinetic energy occur upstream of the gate; the low depth and larg
kinetic energy occur downstream. The depths as used here are called alternate depths. That it
for a given value of E, the large depth is alternate to the low depth, or vice versa. Returning t
the flow under the sluice gate, one finds that if the same rate of flow is maintained, but the gat
is set with a larger opening, as in Fig. 15.9b, the upstream depth will drop, and the downstrean
depth will rise. This results in different alternate depths and a smaller value of specific energ
than before. This is consistent with the diagram in Fig. 15.8.

Flow under a sluice gate. (a) Smaller gate opening. [b) Larger gate opening.

EGL
-1_“_————————-7---/-
r EGL
Subcritical flow ;
—
Subcnitical flow
—l
t  Supercritical flow = Supercritical flow
—_— \ XSS

TN

(a}) (b)
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Finally, it can be seen in Fig. 15.8 that a point will be reached where the specific energy is
minimum and only a single depth occurs. At this point, the flow is termed critical. Thus one
definition of critical flow is the flow that occurs when the specific energy is minimum for a
given discharge. The flow for which the depth is less than critical (velocity is greater than
critical) is termed supercritical flow, and the flow for which the depth is greater than critical
(velocity is less than critical) is termed subcritical flow. Therefore, subcritical flow occurs
upstream and supercritical flow occurs downstream of the sluice gate in Fig. 15.9. Subcritical
flows corresponds to a Froude number less than one (Fr < 1), and supercritical flow corre-
sponds to (Fr > 1). Some engineers refer to subcritical and supercritical flow as tranquil and
rapid flow, respectively. Other aspects of critical flow are shown in the next section.

Characteristics of Critical Flow

Critical flow occurs when the specific energy is minimum for a given discharge. The depth
for this condition may be determined by solving for dE/dy from E = y + Q*/2gA” and setting
dE/dy equal to zero:

dE Q* dA

—_—=] - — s — .

& A dy {15.21)
However, dA = T dy, where T is the width of the channel at the water surface, as shown in
Fig. 15.10. Then Eq. (15.21), with dE/dy = 0, will reduce to

Q’T,

= 15.
7E 1 (15.22)
or
A_Q 15.23
T, gAl '
If the hydraulic depth, D, is defined as
A
D=— .24
T (15.24)
then Eq. (15.23) will yield a critical hydraulic depth D, given by
2 V2
D. = Q—z =— (15.25)
gA: 8
Dividing Eq. (15.25) by D, and taking the square root yields
\4
1= 15.26
VgD. 1324

Note: V/V/gD, is the Froude number. Therefore, it has been shown that the Froude number is
equal to unity when critical flow prevails.

i: v ! 1"5' —-J|

FIGURE 15.10
Open-channel relatio



570 CHAPTER 15 « FLOW IN OPEN CHANNELS

If a channel is of rectangular cross section, then A/T is the actual depth, and Q¥/A? = ¢/y
so the condition for critical depth (Eq. 15.23) for a rectangular channel becomes

2\1/3
q)

e =\ = {15.27

% (g

where ¢ is the discharge per unit width of channel.

EXAMPLE 15.9

Calculating Critical Depth in a Channel

Problem Statement

Determine the critical depth in this trapezoidal channel for a
discharge of 500 cfs. The width of the channel bottom is
B = 20 ft, and the sides slope upward at an angle of 45°.

Define the Situation

Water flows in a trapezoidal channel with known geometry.

State the Goal
Calculate the critical depth.

Generate Ideas and Make a Plan
1. For critical flow, Eq. (15.22) must apply.

2. Relate this channel geometry to width T and area A in
Eq.(15.22).

3. By iteration (choose y and compute A*/T), find y that
will yield A%/ T equal to 7764 ft?. This y will be critical
depth y..

Take Action (Execute the Plan)
1. Apply Eq. (15.22) or Eq. (15.23).

Q'T. QA

— =lor— = —

gA; g T.
2. For Q = 500 cfs,

Al 5002

= =T7764f

T. 322

For this channel, A = y(B+ y)and T = B + 2y.
3. Iterate to find y..

y.=|257ft

Critical flow may also be examined in terms of how the discharge in a channel varies witt
depth for a given specific energy. For example, consider flow in a rectangular channel where

or

2

E=y+
Yy ZgAZ

2

E=y+——
y ZgyZBZ

If one considers a unit width of the channel and lets ¢ = Q/B, then the foregoing equatior

becomes

If one determines how g varies with y for a constant value of specific energy, one sees tha
critical flow occurs when the discharge is maximum (see Fig. 15.11).



