SECTION 10.6 TURBULENT FLOW AND THE MOODY DIAGRAM

3. Because Rep, < 2000, the flow is laminar. Review the Solution and the Process
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10.6 Turbulent Flow and the Moody Diagram

This section describes the characteristics of turbulent flow, presents equations for calculating
the friction factor f, and presents a famous graph called the Moody diagram. This information
is important because most flows in conduits are turbulent.

Quadlitative Description of Turbulent Flow

Turbulent flow is a flow regime in which the movement of fluid particles is chaotic, eddying,
and unsteady, with significant movement of particles in directions transverse to the flow direc-
tion. Because of the chaotic motion of fluid particles, turbulent flow produces high levels of
mixing and has a velocity profile that is more uniform or flatter than the corresponding lami-
nar velocity profile. According to Eq. (10.2), turbulent flow occurs when Re = 3000.

Engineers and scientists model turbulent flow by using an empirical approach. This is
because the complex nature of turbulent flow has prevented researchers from establishing a
mathematical solution of general utility. Still, the empirical information has been used success-
fully and extensively in system design. Over the years, researchers have proposed many equations
for shear stress and head loss in turbulent pipe flow. The empirical equations that have proven to
be the most reliable and accurate for engineering use are presented in the next section.

Equations for the Velocity Distribution

The time-average velocity distribution is often described using an equation called the power-

law formula.
u = m
ulr) _ (fo ’) (10.35)

Umax )

where 1, is velocity in the center of the pipe, r, is the pipe radius, and m is an empirically
determined variable that depends on Re as shown in Table 10.2. Notice in Table 10.2 that the
velocity in the center of the pipe is typically about 20% higher than the mean velocity V.
Although Eq. (10.35) provides an accurate representation of the velocity profile, it does not
predict an accurate value of wall shear stress.

An alternative approach to Eq. (10.35) is to use the turbulent boundary-layer equations
presented in Chapter 9. The most significant of these equations, called the logarithmic velocity
distribution, is given by Eq. (9.29) and repeated here:
ur) udrg — 1)

—==244In—— + 556 {(10.36)
u v

where u., the shear velocity, is given by u. = V1,/p.
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FIGURE 10.13

Resistance coefficient f
versus Reynolds number

for sand-roughened pipe.

[Afier Nikuradse (4)].

TABLE 10.2 Exponents for Power-law Equation and Ratio of Mean to Maximum

Velocity
Re 4 x 10° 2.3 x 10* 1.1 x 10° 1.1 x 10° 3.2 x 10°
m RS 1 1 1 1
6.0 6.6 7.0 8.8 10.0
Upnard V 1.26 1.24 1.22 1.18 1.16

Source: Schlichting (2).

Equations for the Friction Factor, f

To derive an equation for f in turbulent flow, substitute the log law in Eq. (10.36) into the de
nition of mean velocity given by Eq. (5.10):

1 r To - —
V= Q_ (——-5)f u(r)2mrdr = <—12-)J u,[2.44 lnM + 5.56}2'rrrdr
A wre/ wro/ J, v

After integration, algebra, and tweaking the constants to better fit experimental data, the result

“\17f = 2.0log;o(Re V) — 0.8 (10.3
Equation (10.37), first derived by Prandtl in 1935, gives the friction factor for turbulent flow
tubes that have smooth walls. The details of the derivation of Eq. (10.37) are presented |
White (21). To determine the influence of roughness on the walls, Nikuradse (4), one
Prandtl’s graduate students, glued uniform-sized grains of sand to the inner walls of a tube ar
then measured pressure drops and flow rates.

Nikuradse’s data, Fig. 10.13, shows the friction factor f plotted as function of Reynols
number for various sizes of sand grains. To characterize the size of sand grains, Nikuradse use
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a variable called the sand roughness height with the symbol k,. The 7r-group, k,/D, is given the
name relative roughness.

In laminar flow, the data in Fig. 10.13 show that wall roughness does not influence f. In
particular, notice how the data corresponding to various values of k,/D collapse into a single
blue line that is labeled “laminar flow.”

In turbulent flow, the data in Fig. 10.13 show that wall roughness has a major impact on f.
When k,/D = 0.033, then values of fare about 0.04. As the relative roughness drops to 0.002, values
of f decrease by a factor of about 3. Eventually wall roughness does not matter, and the value of f
can be predicted by assuming that the tube has a smooth wall. This latter case corresponds to the
blue curve in Fig. 10.13 that is labeled “smooth wall tube”” The effects of roughness are summa-
rized by White (5) and presented in Table 10.3. These regions are also labeled in Fig. 10.13.

TABLE 10.3 Effects of Wall Roughness

Type of Flow Parameter Ranges Influence of Parameters on f
Laminar Flow Rep < 2000 NA fdepends on Reynolds number
fis independent of wall roughness (k,/D)

Turbulent Flow, Smooth Tube k. fdepends on Reynolds number

Rep > 3000 D Rep < 10 fis independent of wall roughness (k,/D)
Transitional Turbulent Flow . k, f depends on Reynolds number

Rep>3000 10 <{} Rep <1000 f depends on wall roughness (k,/D)
Fully Rough Turbulent Flow - k, fis independent of .R-eynolds number

Rep > 3000 D JRep > 1000 f depends on wall roughness (k,/D)

Moody Diagram

Colebrook (6) advanced Nikuradse’s work by acquiring data for commercial pipes and then
developing an empirical equation, called the Colebrook-White formula, for the friction factor.
Moody (3) used the Colebrook-White formula to generate a design chart similar to that shown
in Fig. 10.14. This chart is now known as the Moody diagram for commercial pipes.

In the Moody diagram, Fig. 10.14, the variable  denotes the equivalent sand roughness.
That is, a pipe that has the same resistance characteristics at high Re values as a sand-roughened
pipe is said to have a roughness equivalent to that of the sand-roughened pipe. Table 10.4 gives the
equivalent sand roughness for various kinds of pipes. This table can be used to calculate the relative
roughness for a given pipe diameter, which, in turn, is used in Fig. 10.14, to find the friction factor.

In the Moody diagram, Fig. 10.14, the abscissa is the Reynolds number Re, and the ordinate is
the resistance coefficient f. Each blue curve is for a constant relative roughness k,/D, and the values
of k,/D are given on the right at the end of each curve. To find f, given Re and k,/D, one goes to the
right to find the correct relative roughness curve. Then one looks at the bottom of the chart to find
the given value of Re and, with this value of Re, moves vertically upward until the given k/D curve
is reached. Finally, from this point one moves horizontally to the left scale to read the value of f. If
the curve for the given value of k,/D is not plotted in Fig. 10.14, then one simply finds the proper
position on the graph by interpolation between the k,/D curves that bracket the given k,/D.

To provide a more convenient solution to some types of problems, the top of the Moody
diagram presents a scale based on the parameter Re f 12 This parameter is useful when hsand
k/D are known but the velocity V is not. Using the Darcy-Weisbach equation given in
Eq. (10.12) and the definition of Reynolds number, one can show that

D3J’2
Ref!? = ‘-V—(Zgh,{/L)'” {10.38)
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SECTION 10.7 STRATEGY FOR SOLVING PROBLEMS

TABLE 10.4 Equivalent Sand-Grain Roughness, (), for Various Pipe Materials

Boundary Material k,, Millimeters k,, Inches
Glass, plastic Smooth Smooth
Copper or brass tubing 0.0015 6%107°
Wrought iron, steel 0.046 - 0.002
Asphalted cast iron 0.12 0.005
Galvanized iron 0.15 0.006

Cast iron 0.26 0.010
Concrete 0.3t03.0 0.012-0.12
Riveted steel 0.9-9 0.035-0.35
Rubber pipe (straight) 0.025 0.001

In the Moody diagram, Fig. 10.14, curves of constant Re f'? are plotted using heavy black lines
that slant from the left to right. For example, when Re 2 = 10° and k,/D = 0.004, then
f = 0.029. When using computers to carry out pipe-flow calculations, it is much more conve-
nient to have an equation for the friction factor as a function of Reynolds number and relative
roughness. By using the Colebrook-White formula, Swamee and Jain (7) developed an explicit
equation for friction factor, namely

0.25
f= [lo ( ko 5.74)]2
B\ 37D 7 Re¥’

It is reported that this equation predicts friction factors that differ by less than 3% from those
on the Moody diagram for 4 X 10° < Rep < 10°and 10° < k/D <2 X 1072

{10.39)

v CHECKPOINT PROBLEM 10.2

Water (15°C) flows in a 100 m length of cast iron pipe. The pipe inside diameter is 0.15 m, and the
mean velocity is 0.6 m/s.

a. What is the value of Reynolds number?

b. What is the value of k,/D ?

¢. What is the value of f from the Moody diagram?

d. What is the value of f from the Swamee-Jain correlation?
€. What is the value of head loss?

10.7 Strategy for Solving Problems

Analyzing flow in conduits can be challenging because the equations often cannot be solved
with algebra. Thus, this section presents a strategy.

Conduit problems are solved with the energy equation together with equations for head-loss.
Thus, the next checkpoint problem allows you to test your understanding of the energy equation.
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FIGURE 10.15

A strategy for solving
conduit flow problems.

v CHECKPOINT PROBLEM 10.3

The sketch shows an idealization of a garden hose
of diameter D and length L connected to a pipe
bib at a residence. Assume that the supply pres-

Valve (fully open)
\/ r Diameter |

sure p, upstream of the valve is constant. Assume s = —
that the faucet valve has no head loss because it House I L |k
is fully open. Thus, the only head loss is in the

garden hose.

a. Derive an equation for the mean velocity V of the water in terms of the friction factor and othe
relevant variables.

b. How much will V change if L is doubled? Assume f remains constant.

Fig. 10.15 provides a strategy for problem solving. When flow is laminar, solutions are straig,
forward because head loss is linear with velocity V and the equations are simple enough
solve with algebra. When flow is turbulent, head loss is nonlinear with V and the equations
too complex to solve with algebra. Thus for turbulent flow, engineers use computer solutic
or the traditional approach.

Turbulent flow

Algebra. Solve the
equations using algebra.

Modern Approach. Solve
the equations using a
computer program that
can solve coupled,
nonlinear equations.

Traditional. Classify the
problem into case 1, case 2,
or case 3. Apply methods
that can be implemented
without a computer.

To solve a turbulent flow problem using the traditional approach, one classifies the pro
lems into three cases:

Case 1 is when the goal is to find the head loss, given the pipe length, pipe diameter, and flc
rate. This problem is straightforward because it can be solved using algebra; see Example 10

Case 2 is when the goal is to find the flow rate, given the head loss (or pressure drop), tl
pipe length, and the pipe diameter. This problem usually requires an iterative approac
See Examples 10.4 and 10.5.

Case 3 is when the goal is to find the pipe diameter, given the flow rate, length of pipe, and he:
loss (or pressure drop). This problem usually requires an iterative approach; see Example 10

There are several approaches that sometimes eliminate the need for an iterative approac
For case 2, an iterative approach can sometimes be avoided by using an explicit equatic
developed by Swamee and Jain (7):

k 1.78 v
= —222 D**Vgh L1 ( <y ) 104
Q= ~22D7VehyiLlog| 3, D*\/gh, T (

Using Eq. (10.40) is equivalent to using the top of the Moody diagram, which presents a sca
for Re f!'2. For case 3, one can sometimes use an explicit equation developed by Swamee an
Jain (7) and modified by Streeter and Wylie (8):

2\ 4.75 527004
D = 0.66 [k}'25(£-> + vQ9'4(—L-) ] (10.4
ghy ghy.

Example 10.3 shows an example of a case 1 problem.
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3. Calculate the relative roughness and then look up fon the
Moody diagram.

EXAMPLE 10.3

Head Loss in a Pipe (Cose 1)

Problem Statement

Water (T = 20°C) flows at a rate of 0.05 m*/s in a 20 cm asphalted
cast-iron pipe. What is the head loss per kilometer of pipe?

Define the Situation
Water is flowing in a pipe.

f—————L=1000m ——]
—c 0 \

Water, 20°C =
D=02m

Q=0.05ms
Asphalted, cast-iron

Assumptions: Fully developed flow
Properties: Water (20°C), Table A.5: v = 1 X 10" m’/s

State the Goal
Calculate the head loss (in meters) for L = 1000 m.

Generate Ideas and Make a Plan

Because this is a case 1 problem (head loss is the goal), the
solution is straightforward.

1. Calculate the mean velocity using the flow rate equation.
2. Calculate the Reynolds number using Eq. (10.1).

4, Find head loss by applying the Darcy-Weisbach equation (10.1

Take Action (Execute the Plan)

1.

Mean velocity
0.05 m*/
= —Q— = __rps_2= 1.59 m/s
A (w/4)(0.02m)
Reynolds number
VD 1.59 m/s)(0.20 m
Rep = — = (159 m/s)(0.20 m) _6)(2 ) - 3.18 X 10°
v 107" m“/s

. Resistance coefficient

« Equivalent sand roughness (Table 10.4):
k, = 0.12 mm
« Relative roughness:
k./D = (0.00012 m)/(0.2 m) = 0.0006

« Look up fon the Moody diagram for Re = 3.18 X 10°
and k,/D = 0.0006:

f=0019

. Darcy-Weisbach equation

L\/V* 10 597 m¥/s?

hy =f(---)<-—) = 0.019( °°m)( 159" m s))

' D/\2g 0.20 m /\2(9.81 m/s?)
~[i22m]

Example 10.4 shows an example of a case 2 problem. Notice that the solution involves applica-
tion of the scale on the top of the Moody diagram, thereby avoiding an iterative solution.

EXAMPLE 10.4

2. Using the Moody diagram, find the friction factor f.

Flow Rate in a Pipe (Case 2)

Problem Statement

The head loss per kilometer of 20 cm asphalted cast-iron pipe
is 12.2 m. What is the flow rate of water through the pipe?

3. Calculate mean velocity using the Darcy-Weisbach

4.

equation (10.12).
Find discharge using the flow rate equation.

© Take Action (Execute the Plan)

1. Compute the parameter D**\/2gh,/L/v.
Define the Situation V28 RL N
This is the same situation as Example 10.3 except that the head D — ® (0.20 m)
loss is now specified and the discharge is unknown. 5 -

 [2081m/s )(12.2 m/1000 m)]

State the Goal 1.0 X 107 m%/s
Calculate the discharge (m*/s) in the pipe. = 4.38 X 10*

2. Determine resistance coefficient.

Generate Ideas and Make a Plan

This is a case 2 problem because flow rate is the goal. However,
a direct (i.e., noniterative) solution is possible because head
loss is specified. The strategy will be to use the horizontal scale
on the top of the Moody diagram.

1. Calculate the parameter on the top of the Moody diagram.

« Relative roughness:
k./D = (0.00012 m)/(0.2 m) = 0.0006

« Look up fon the Moody diagram for
D*? V2ghs/Llv = 44 X 10* and k,/D = 0.0006:
f=0019
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3. Find V using the Darcy-Weisbach equation.

w=15))

122m—'0019<1000m)( v )
' ’ 0.20 m /\ 2(9.81 m/s?)

V=159m/s

4. Use flow rate equation to find discharge.
Q = VA = (1.59 m/s)(m/4)(0.2 m)* = [0.05 ms|

Review the Solution and the Process

Validation. The calculated flow rate matches the value from
Example 10.3. This is expected because the data are the same.

When case 2 problems require iteration, several methods can be used to find a solution. O
of the easiest ways is a method called “successive substitution” which is illustrated

Example 10.5.

EXAMPLE 10.5

Flow Rate in a Pipe (Case 2)

Problem Statement

Water (T = 20°C) flows from a tank through a 50 cm diameter
steel pipe. Determine the discharge of water.

@ e — Elevation = 60 m
Water D =50cm Steel pipe @ 40mEIl
! | |

Define the Situation

Water is draining from a tank through a steel pipe.
Assumptions:

« Flow is fully developed.

¢ Include only the head loss in the pipe.
Properties:

o Water (20°C), Table A.5: v = 1 X 105 m%s.

o Steel pipe, Table 10.4, equivalent sand roughness:
k, = 0.046 mm. Relative roughness (k,/D) is 9.2 X 105,

State the Goal
Find: Discharge (m?/s) for the system.

Generate Ideas and Make a Plan

This is a case 2 problem because flow rate is the goal. An
iterative solution is used because V is unknown, so there is no
direct way to use the Moody diagram.

1. Apply the energy equation from section 1 to section 2.

2. First trial. Guess a value of fand then solve for V,

3. Second trial. Using V from the first trial, calculate a new
value of f.

4. Convergence. If the value of fis constant within a few
percent between trials, then stop. Otherwise, continue
with more iterations.

5. Calculate flow rate using the flow rate equation.

Take Action (Execute the Plan)

1. Energy equation (reservoir surface to outlet)

Vi V3
UM (P <S4 SN
Y 2

Y 2
o+o+60=o+ﬁ+40+f£y—i
2g D 2g
or
ngzo 1/2
V= (1 e ZOOf) @

2. First trial (iteration 1)
+ Guess a value of f = 0.020.
o Use Eq. (a) to calculate V = 8.86 m/s. :
o Use V = 8.86 m/s to calculate Re = 4.43 X 10°,

o Use Re = 443 X 10°and k,/D = 9.2 X 10"° on the
Moody diagram to find that f = 0.012.

* Use Eq. (a) with f = 0.012 to calculate V = 10.7 m/s.
3. Second trial (iteration 2)
o Use V = 10.7 m/s to calculate Rej, = 5.35 X 10°.

o UseRep =535 X 10°and k,/D = 9.2 X 10~° on the
Moody diagram to find that f = 0.012.

4. Convergence. The value of f = 0.012 is unchanged between
the first and second trials. Therefore, there is no need for
more iterations.

5. Flow rate
Q = VA = (10.7 m/s) X (w/4) X (0.50)* m*> = 2.10 m¥/s
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In a case 3 problem, derive an equation for diameter D and then use the method of successive
substitution to find a solution. Iterative approaches, as illustrated in Example 10.6, can employ
a spreadsheet program to perform the calculations.

EXAMPLE 10.6

Finding Pipe Diameter (Case 3)

Problem Statement

What size of asphalted cast-iron pipe is required to carry water
(60°F) at a discharge of 3 cfs and with a head loss of 4 ft per
1000 ft of pipe?

Define the Situation

Water is flowing in a asphalted cast-iron pipe. Q = 3 fe'/s.
Assumptions: Fully developed flow

Properties:

« Water (60°F), Table A.5: v = 1.22 X 107° ft/s

« Asphalted cast-iron pipe, Table 10.4, equivalent sand
roughness: k, = 0.005 in.

State the Goal

Calculate the pipe diameter (in ft) so that head loss is 4 ft per
1000 ft of pipe length.

Generate Ideas and Make a Plan

Because this is a case 3 problem (pipe diameter is the goal),

use an iterative approach.

1. Derive an equation for pipe diameter by using the
Darcy-Weisbach equation.

2. For iteration 1, guess f, solve for pipe diameter, and then
recalculate f.

3. To complete the problem, build a table in a spreadsheet
program.

Take Action (Execute the Solution)

1. Develop an equation to use for iteration.

10.8 Combined Head Loss

o Darcy-Weisbach equation

_ (B = f(L QI’AZ)_ [l
hy=f (D)(zg)'f (D)( 2 /) 2g(m/4)’D°
« Solve for pipe diameter

5 = __fL_(&_
0.785%(2gh;)

2. Iteration 1

+ Guess f = 0.015.

« Solve for diameter using Eq. (a):

~ 0.015(1000 ft)(3 /sy

0.785%(64.4 ft/s*)(4 ft)
D = 0.968 ft

« Find parameters needed for calculating f:

5

= 0.852 ft°

k,/D = 0.005/(0.97 X 12) = 0.00043
« Calculate f using Eq. (10.39): f = 0.0178.

i 3. In the table below, the first row contains the values from

iteration 1. The value of f = 0.0178 from iteration 1 is use
for the initial value for iteration 2. Notice how the solutio
has converged by iteration 2.

1 ] } 1

teration# | Initialf| D | V | Re | kD | Ne

|
: (f) |(fus)|
0.968 | 4.08
1.002 | 3.81
[1o01 | 381
001 | 381

- +

3.26E+05 | 43E—04 | 0.01
3.15E+05 | 42E—04 | 0.01
3.15E+05 | 42E—04 | 0.01
3.15E+05 | 42E—04 | 001

0.0150
| 0.0178
| 0.0178
T0.0178

- W N e

l Specify a pipe with a 12-inch inside diameter.

Previous sections have described how to calculate head loss in pipes. This section completes
the story by describing how to calculate head loss in components. This knowledge is essential
for modeling and design of systems.




FIGURE 10.16
Flow through a generic
component.

The Minor Loss Coefficient, K

When fluid flows through a component such as a partially open value or a bend in a pipe, 1
cous effects cause the flowing fluid to lose mechanical energy. For example, Fig. 10.16 sho
flow through a “generic component.” At section 2, the head of the flow will be less than at s

tion 1. To characterize component head loss, engineers use a w-group called the minor I
coefficient K

(Ah) _ (Ap)
(Vi2g) ~ (pV712)

K

{10.

where Ah is the drop in piezometric head that is caused by a component, Ap, is the drop
pizeometric pressure, and V is mean velocity. As shown in Eq. (10.42), the minor loss coel
cient has two useful interpretations:

K drop in piezometric head across component  pressure drop due to component
velocity head kinetic pressure

Thus, the head loss across a single component or transition is h; = K( VZ/(Zg)), where Kis t
minor loss coefficient for that component or transition.

Most values of K are found by experiment. For example, consider the setup shov
in Fig. 10.17. To find K, flow rate is measured and mean velocity is calculated usis
V = (Q/A). Pressure and elevation measurements are used to calculate the change in piez

metric head.
Y Y

Then, values of V and Ah are used in Eq. (10.42) to calculate K. The next section presen
typical data for K.

Flow at a sharpedged

FIGURE 10.17
inlet. I

Data for the Minor Loss Coefficient This section presents K data and relates thes
data to flow separation and wall shear stress. This information is useful for syster
modeling.

Pipe inlet. Near the entrance to a pipe when the entrance is rounded, flow is devel
oping as shown in Fig. 10.3 and the wall shear stress is higher than that found in full
developed flow. Alternatively, if the pipe inlet is abrupt, or sharp-edged, as in Fig. 10.1;
separation occurs just downstream of the entrance. Hence the streamlines converge an
then diverge with consequent turbulence and relatively high head loss. The loss coefficien
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for the abrupt inlet is K, = 0.5. This value is found in Table 10.5 using the row labeled
“Pipe entrance” and the criteria of r/d = 0.0. Other values of head loss are summarized in
Table 10.5.

TABLE 10.5 Loss Coefficients for Various Transitions and Fittings

Description Sketch Additional Data K Source
Pipe entrance \ | r/d K, (10)t
\ = 0.0 0.50
h = K,V/2g Y di=x 0.1 0.12
/AT >0.2 0.03
Contraction D, ' Ke Kc
wz Ds/D, 0 = 60° 6 = 180° (10)
D, 8 0.00 0.08 0.50
—— T 0.20 0.08 0.49
b= KcViiog 0.40 0.07 0.42
0.60 0.06 0.27
0.80 0.06 0.20
0.90 0.06 0.10
Expansion " D, Kg Kg
gxl;,r—.— D\/D, 8 =20° 6 = 180° (9)
0 D, 0.00 1.00
hy = KgVil2g Tt 0.20 0.30 0.87
0.40 0.25 0.70
0.60 0.15 0.41
0.80 0.10 0.15
90° miter bend Vanes Without K,=1.1 (15)
N vanes
90° smooth bend With vanes K,=02 (15)
r/d (16) and (¢
1 K, =0.35
2 0.19
4 0.16
6 0.21
8 0.28
10 0.32
Threaded pipe fittings Globe valve—wide open K, =100 (15)
Angle valve—wide open K,=5.0
Gate valve—wide open K,=0.2
Gate valve—half open K,=56
Return bend K, =22
Tee
Straight-through flow K,=04
Side-outlet flow K,=18
90° elbow K,=09
45° elbow K,=04

"Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook— Fundamen
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FIGURE 10.18
Flow pattern in an elbow.

Separation zone —

Flow in an elbow. In an elbow (90° smooth bend), considerable head loss is produced t
secondary flows and by separation that occurs near the inside of the bend and downstream «
the midsection as shown in Fig. 10.18.

The loss coefficient for an elbow at high Reynolds numbers depends primarily on t
shape of the elbow. For a very short-radius elbow, the loss coefficient is quite high. For large
radius elbows, the coefficient decreases until a minimum value is found at an /d value of about
(see Table 10.5). However, for still larger values of r/d, an increase in loss coefficient occu
because the elbow itself is significantly longer.

Other components. The loss coefficients for a number of other fittings and flow trans
tions are given in Table 10.5. This table is representative of engineering practice. For more e:
tensive tables, see references (10-15).

In Table 10.5, the K was found by experiment, so one must be careful to ensure th
Reynolds number values in the application correspond to the Reynolds number values use
to acquire the data.

Combined Head Loss Equation
The total head loss is given by Eq. (10.4), which is repeated here:
{Total head loss} = {Pipe head loss} + {Component head loss} (10.4

To develop an equation for the combined head loss, substitute Eqs. (10.12) and (10.42)
Eq. (10.44):

L v?
hL:E B£+ 2 K

pipes components

2
L (104
2

4

Equation (10.45) is called the combined head loss equation. To apply this equation, follow tl
same approaches that were used for solving pipe problems. That is, classify the flow as case
2, or 3 and apply the usual equations: the energy, Darcy-Weisbach, and flow rate equatior
Example 10.7 illustrates this approach for a case 1 problem.



EXAMPLE 10.7

Pipe System with Combined Head Loss

Problem Statement

If oil (v = 4 X 10 ° m?/s; S = 0.9) flows from the upper to the
lower reservoir at a rate of 0.028 m”/s in the 15 cm smooth
pipe, what is the elevation of the oil surface in the upper
reservoir?

@ s Elevation = ?
— 60m —-I
L as 7m @ —_-_¥+— Elevation
D =
=130 m
L— 130m —f
Define the Situation

Oil is flowing from a upper reservoir to a lower reservoir.

Properties:

e Qikv=4X10""m%s, S =09

» Minor head loss coefficients, Table 10.5: entrance = K, = 0.5;
bend = K, = 0.19; outlet = Kz = 1.0

State the Goal

Calculate the elevation (in meters) of the free surface of the
upper reservoir.

Generate Ideas and Make a Plan

This is a case 1 problem because flow rate and pipe dimensions
are known. Thus, the solution is straightforward.

1. Apply the energy equation from 1 to 2.

2. Apply the combined head loss equation (10.45).

3. Develop an equation for z, by combining results from
steps 1 and 2.

4. Calculate the resistance coefficient f.
5. Solve for z; using the equation from step 3.

Take Action (Execute the Plan)

1. Energy equation and term-by-term analysis

Vi V2
&+a,—+zl+h R4 SR
Y 2 Y 2
0+0+2+0=0+0+2+0+h

Z|=Zz+hL

Interpretation: Change in elevation head is balanced by the
total head loss.

SECTION 10.8 COMBINED HEAD LOSS

2. Combined head loss equation

L V?
o= > K——

pipes D 2g components g

v? v?
— 4 Kp—
2g £ 2g>

vi( L
= (f— + 2K, + K, + KE)
26\'D

2
hL:f__+(2Kb2_g+Kt

3. Combine egs. (1) and (2).
Vi( L
=2+ 2;(f5+ 2K, + K, + KE)

4. Resistance coefficient
o Flow rate equation

Q  (0.028 m'/s)

Thus, flow is turbulent.
« Swamee-Jain equation (10.39)

0.25 0.25

h k| s7a\[F 574 \|*
o810\ 37D * Reo® 10810\0 * 53005

5. Calculate z, using the equation from step (3):
(1.58 m/s)?
2(9.81)m/s?

(197 m)
(0 036 (0.15m)

Review the Solution and the Process

z, = (130m) +

+2(0.19) + 0.5 + 1.0)

1. Discussion. Notice the difference is the magnitude of the
pipe head loss versus the magnitude of the component
head loss:

(197 m)
(0.15m)

Component head loss ~ ZK = 2(0.19) + 0.5 + 1.0 = 1.
Thus pipe losses > component losses for this problem.

Pipe head loss ~ f — = 0.036 =472

2. Skill. When pipe head loss is dominant, make simple
estimates of K because these estimates will not impact the
prediction very much.
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10.9 Nonround Conduits

Previous sections have considered round pipes. This section extends this information 1
describing how to account for conduits that are square, triangular, or any other nonrour
shape. This information is important for applications such as sizing ventilation ducts in buil
ings and for modeling flow in open channels.

When a conduit is noncircular, then engineers modify the Darcy-Weisbach equatio
Eq.(10.12}, to use hydraulic diameter Dj, in place of diameter.

LV

=f—— 10.4
Dh Zg (

L

Equation (10.46) is derived using the same approach as Eq. (10.12), and the hydraulic diamet
that emerges from this derivation is

4 X cross-section area ,
Dh = - (] 0.4
wetted perimeter

where the “wetted perimeter” is that portion of the perimeter that is physically touching tt
fluid. The wetted perimeter of a rectangular duct of dimension L X w is 2L + 2w. Thus, t}
hydraulic diameter of this duct is:

_ 4 X Lw _ 2Lw
T 242w L+w

h

Using Eq. (10.47), the hydraulic diameter of a round pipe is the pipe’s diameter D. Whe
Eq. (10.46) is used to calculate head loss, the resistance coefficient fis found using a Reynolc
number based on hydraulic diameter. Use of hydraulic diameter is an approximation. Accorc
ing to White (20), this approximation introduces an uncertainty of 40% for laminar flow an
15% for turbulent flow.

f= (ﬁ-> * 40% (laminar flow)
ReD,,
{10.4¢
f= 025 * 15% (turbulent flow)
- -— (V]
k, 574\ |?
logio\ 75~

37D, Re}

In addition to hydraulic diameter, engineers also use hydraulic radius, which is defined as

section area D
p=————————— = " (10.4¢
wetted perimeter 4

Notice that the ratio of R, to Dy is 1/4 instead of 1/2. Although this ratio is not logical, it is th
convention used in the literature and is useful to remember. Chapter 15, which focuses o
open-channel flow, will present examples of hydraulic radius.

Summary. To model flow in a nonround conduit, the approaches of the previous section
are followed with the only difference being the use of hydraulic diameter in place of diamete
This is illustrated by Example 10.8.



EXAMPLE 10.8

Pressure Drop in an HVAC Duct

Problem Statement

Air (T = 20°C and p = 101 kPa absolute) flows at a rate of
2.5 m%/s in a horizontal, commercial steel, HVAC duct. (Note
that HVAC is an acronym for heating, ventilating, and air
conditioning.) What is the pressure drop in inches of water
per 50 m of duct?

|\
0.6 m \~|

ad

Q=25m's 0)

Define the Situation
Air is flowing through a duct.

Assumptions:

o Fully developed flow, meaning that V, = V,. Thus, the
velocity head terms in the energy equation cancel out.

o No sources of component head loss.

Properties:

o Air (20°C, 1 atm, Table A.2:) p = 1.2 kg/m’,
v =151 X 10 *m?¥s

« Steel pipe, Table 10.4: k, = 0.046 mm

State the Goal
Find: Pressure drop (inch H,0) in a length of 50 m.

Generate Ideas and Make a Plan

This is a case 1 problem because flow rate and duct dimensions
are known. Thus, the solution is straightforward.

10.10 Pumps and Systems of Pipes

SECTION 10.10 PUMPS AND SYSTEMS OF PIPES

1. Derive an equation for pressure drop by using the energy
equation.

2. Calculate parameters needed to find head loss.

3. Calculate head loss by using the Darcy-Weisbach equatio
(10.12).

4. Calculate pressure drop Ap by combining steps 1, 2,
and 3.

! Take Action (Execute the Plan)

1. Energy equation (after term-by-term analysis)

P — p2 = pgh
2. Intermediate calculations

« Flow rate equation

Q 2.5m’/s

ve=S= S8 = 139m)
A (03m)0.6m) me
o Hydraulic diameter
_ 4 X sectionarea _ 4(0.3 m)(0.6 m)

"™ wetted perimeter (2 X 0.3 m) + (2 X 0.6 m) -

o Reynolds number
VD, (139m/s)(04m)

Thus, flow is turbulent.
« Relative roughness

k,/D, = (0.000046 m)/(0.4 m) = 0.000115

« Resistance coefficient (Moody diagram): f = 0.015
3. Darcy-Weisbach equation

hy = f(i)(;,—;) = 0-015(52:1){2((193.:1";!2:)}

= 18.6 m

4. Pressure drop (from step 1)
P = P2 = pghy = (12 kg/m’)(9.81 m/s*)(18.6 m) = 220
[p1 — p: = 0.883 inch H,0]

This section explains how to model flow in a network of pipes and how to incorporate perfor-
mance data for a centrifugal pump. These topics are important because pumps and pipe net-

works are common.



