FLOW IN
CONDUITS

FIGURE 10.1

The Alaskan pipeline, a significant accomplishment of the
engineering profession, transports oil 1286 km across

the state of Alaska. The pipe diameter is 1.2 m, and

44 pumps are used to drive the flow. This chapter presents
information for designing systems involving pipes, pumps,
and turbines. (© Easlcott/Momatiuk/The Image Works. )

| Chapter Road Map

This chapter explains how to analyze flow in co
duits. The primary tool, the energy equation, was
presented in Chapter 7. This chapter expands on
knowledge by describing how fo calculate head |
In addition, this chapter explains how to design p
into systems and how to analyze a network of pig

Learning Objectives

STUDENTS WILL BE ABLE TO

* Define a conduit. Classify a flow as laminar or urbule
Detine or calculate the Reynolds number. (§10.1)

* Describe developing flow and fully developed flow. C
a flow into these categories. (§10.1)

® Specily a pipe size using the NPS standard. {§10.2)

® Describe total head loss, pipe head loss, and compor
head loss. (§10.3)

* Define the friction factor f. List the steps to derive the
Darcy-Weisbach equation. (§10.3)

® Describe the physics of the Darcy-Weisbach equation
the meaning of the variables that appear in the equati
Apply this equation. {§10.3)

* Calculate hyor f for laminar flow. (§10.5)

* Describe the main features of the Moody diagram.
Calculate f for turbulent flow using the Moody diagran
the Swameedain correlation. {§10.6)

* Solve turbulent flow problems when the equations cani
be solved by algebra alone. (§10.7)

® Define the minor loss coefficient. Describe and apply
the combined head loss equation. (§10.8)

* Define hydraulic diameter and hydraulic radius and so
relevant problems. {§10.9)

Solve problems that involve pumps and pipe networks. (§ 11
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FIGURE 10.2

Reynolds’ experiment.
(a) Apparatus.

(b) Laminar flow of dye
in tube.

(c) Turbulent flow of dye
in tube.

[d) Eddies in turbulent flow.

A conduit is any pipe, tube, or duct that is completely filled with a flowing fluid. Example.
include a pipeline transporting liquefied natural gas,a microchannel transporting hydrogen ir
a fuel cell, and a duct transporting air for heating of a building. A pipe that is partially fillec
with a flowing fluid, for example a drainage pipe, is classified as an open-channel flow and i
analyzed using ideas from Chapter 15.

10.1 Classifying Flow

This section describes how to classify flow in a conduit by considering (a) whether the flow i
laminar or turbulent, and (b) whether the flow is developing or fully developed. Classifyin
flow is essential for selecting the proper equation for calculating head loss.

Laminar Flow and Turbulent Flow

Flow in a conduit is classified as being either laminar or turbulent, depending on the magni
tude of the Reynolds number. The original research involved visualizing flow in a glass tube a
shown in Fig. 10.2a. Reynolds (1) in the 1880s injected dye into the center of the tube an:
observed the following:

® When the velocity was low, the streak of dye flowed down the tube with little expansion, a
shown in Fig. 10.2b. However, if the water in the tank was disturbed, the streak would shif
about in the tube.

® If velocity was increased, at some point in the tube, the dye would all at once mix with the
water as shown in Fig. 10.2c.

® When the dye exhibited rapid mixing (Fig. 10.2c), illumination with an electric spark
revealed eddies in the mixed fluid as shown in Fig. 10.2d.

The flow regimes shown in Fig. 10.2 are laminar flow (Fig. 10.2b) and turbulent flow (Fig
10.2¢ and 10.2d). Reynolds showed that the onset of turbulence was related to a w-group the
is now called the Reynolds number (Re = pVD/) in honor of Reynolds’ pioneering work.

The Reynolds number is often written as Rep, where the subscript “D” denotes that diam
eter is used in the formula. This subscript is called a length scale. Indicating the length scale fc
Reynolds number is good practice because muliple values are used. For example, Chapter
introduced Re, and Re;.

Glass tube
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SECTION 10.1 CLASSIFYING FLOW

Reynolds number can be calculated with four different equations. These equations are
equivalent because one can start with one formula and derive the others. The formulas are
VD pVD 4Q  4m

R = — = = = 10.1
o v 1e wDv  wDp ( )

Reynolds discovered that if the fluid in the upstream reservoir was not completely still or
if the pipe had some vibrations, then the change from laminar to turbulent flow occurred at
Rep ~ 2100. However, if conditions were ideal, it was possible to reach a much higher Reynolds
number before the flow became turbulent. Reynolds also found that, when going from high
velocity to low velocity, the change back to laminar flow occurred at Rep, ~ 2000. Based on
Reynolds’ experiments, engineers use guidelines to establish whether or not flow in a conduit
will be laminar or turbulent. The guidelines used in this text are as follows:

Rep = 2000 laminar flow
2000 < Rep = 3000 unpredictable (10.2)
Rep = 3000 turbulent flow

In Eq. (10.2), the middle range (2000 < Rep, =< 3000) corresponds to a type of flow that is
unpredictable because it can change back and forth between laminar and turbulent states. Recog-
nize that precise values of Reynolds number versus flow regime do not exist. Thus, the guidelines
given in Eq. (10.2) are approximate, and other references may give different values. For example,
some references use Rep = 2300 as the criteria for turbulence.

Developing Flow and Fully Developed Flow

Flow in a conduit is classified as either developing flow or fully developed flow. For example,
consider laminar fluid entering a pipe from a reservoir as shown in Fig, 10.3. As the fluid
moves down the pipe, the velocity profile changes in the streamwise direction as viscous effects
cause the plug-type profile to gradually change into a parabolic profile. This region of changing
velocity profile is called developing flow. After the parabolic distribution is achieved, the flow
profile remains unchanged in the streamwise direction, and flow is called fully developed
flow.

e L, ) FIGURE 10.3
| In developing flow,
s Bdge ot hamdsny sy, the wall shear stress
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EXAMPLE 10.1

The distance required for flow to develop is called the entry or entrance length (L,). 1
the entry length, the wall shear stress is decreasing in the streamwise (i.e. s) direction. Fc
laminar flow, the wall shear-stress distribution is shown in Fig. 10.3. Near the pipe entranc
the radial velocity gradient (change in velocity with distance from the wall) is high, so tk
shear stress is large. As the velocity profile progresses to a parabolic shape, the velocity gr:
dient and the wall shear stress decrease until a constant value is achieved. The entry length
defined as the distance at which the shear stress reaches 2% of the fully developed valu
Correlations for entry length are

L,
D = 0.05 Rep (laminar flow: Rep, = 2000) {10.3
L,
o 50 (turbulent flow: Rep, = 3000) {10.3l

Eq. (10.3) is valid for flow entering a circular pipe from a reservoir under quiescent cond
tions. Other upstream components such as valves, elbows, and pumps produce complex flo
fields that require different lengths to achieve fully developing flow.

In summary, flow in a conduit is classified into four categories: laminar developing, lam
nar fully developed, turbulent developing, or turbulent fully developed. The key to classific:
tion is to calculate the Reynolds number as shown by Example 10.1.

State the Goal

Classifying Flow in Conduits : + Determine whether each flow is laminar or turbulent.

Problem Statement

o Calculate the entrance length (in meters) for each case.

Consider fluid flowing in a round tube of length 1 m and . Generate Ideas and Make a Plan
diameter 5 mm. Classify the flow as laminar or turbulentand | calculate the Reynolds number using Eq. (10.1).

calculate the entrance length for (a) air (50°C) with a speed
of 12 m/s and (b) water (15°C) with a mass flow rate

of m = 8gls.

« Establish whether the flow is laminar or turbulent using
Eq.(10.2).
o Calculate the entrance length using Eq. (10.3).

Define the Situation

Fluid is flowing in a round tube (two cases given).

Take Action (Execute the Plan)

©oa.Air

| vD (12 m/s)(0.005 m
foy [—————1=10m | ReD=—=———( X )=3350
Flow :

v 1.79 X 10> mYs

(a) Air, 50°C, V=12 m/s
(b) Water, 15°C, m = 0.008 kg/s

Properties:

D=0,005 m i Because Rep > 3000, the
: L. = 50D = 50(0.005m) =

© b. Water
1. Air (50°C), Table A.3,v = 1.79 X 10° m’/s o 4(0.008 kg/s)
2. Water (15°C), Table A5, = 1.14 X 103N+ s/m? Rep = wDp = m(0.005 m)(1.14 X 10°°N - s;’mz)
Assumptions: : = 1787
1. The pipe is connected to a reservoir. i Because Rep < 2000, the M‘]

2. The entrance is smooth and tapered. : L, = 0.05Re; D = 0.05(1787)(0.005 m) =



SECTION 10.3 PIPE HEAD LOSS

10.2 Specifying Pipe Sizes

This section describes how to specify pipes using the Nominal Pipe Size (NPS) standard. This
information is useful for specifying a size of pipe that is available commercially.

Standard Sizes for Pipes (NPS)

One of the most common standards for pipe sizes is called the Nominal Pipe Size (NPS) sys-
tem. The terms used in the NPS system are introduced in Fig. 10.4. The ID (pronounced “eye
dee”) indicates the inner pipe diameter, and the OD (“oh dee”) indicates the outer pipe diam-
eter. As shown in Table 10.1, an NPS pipe is specified using two values: a nominal pipe size
(NPS) and a schedule. The nominal pipe size determines the outside diameter or OD. For
example, pipes with a nominal size of 2 inches have an OD of 2.375 inches. Once the nominal
size reaches 14 inches, the nominal size and the OD are equal. That is, a pipe with a nominal
size of 24 inches will have an OD of 24 in.

Pipe schedule is related to the thickness of the wall. The original meaning of schedule was
the ability of a pipe to withstand pressure, thus pipe schedule correlates with wall thickness.
Each nominal pipe size has many possible schedules that range from schedule 5 to schedule
160. The data in Table 10.1 show representative ODs and schedules; more pipe sizes are speci-
fied in engineering handbooks and on the Internet.

TABLE 10.1 Nominal Pipe Sizes

NPS (in) OD (in) Schedule Wall Thickness (in) ID (in)
1/2 0.840 40 0.109 0.622
80 0.147 0.546

1 1.315 40 0.133 1.049
80 0.179 0.957

2 2.375 40 0.154 2.067
80 0.218 1.939

4 4.500 40 0.237 4.026
80 0.337 3.826

8 8.625 40 0.322 7.981
80 9.500 7.625

14 14.000 10 0.250 13.500
40 0.437 13.126

80 0.750 12,500

120 _ 1.093 11.814

24 24.000 10 0.250 23.500
40 0.687 22.626

80 1.218 21.564

120 1.812 20.376

10.3 Pipe Head Loss

This section presents the Darcy-Weisbach equation, which is used for calculating head loss in
a straight run of pipe. This equation is one of the most useful equations in fluid mechanics.

FIGURE 10.4
Section view of a pip

A larger schedule indic
thicker walls. A sched
40 pipe has thicker wa
a schedule 10 pipe.

ID (Inside diameter)

OD (Outside diameter)
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Combined (Total) Head Loss

Pipe head loss is one type of head loss; the other type is called component head loss. All he:
loss is classified using these two categories:

(Total head loss) = (Pipe head loss) + (Component head loss) (10.

Component head loss is associated with flow through devices such as valves, bends, and tee
Pipe head loss is associated with fully developed flow in conduits, and it is caused by she
stresses that act on the flowing fluid. Note that pipe head loss is sometimes called major he:
loss, and component head loss is sometimes called minor head loss. Pipe head loss is predictc
with the Darcy-Weisbach equation.

Derivation of the Darcy-Weisbach Equation

To derive the Darcy-Weisbach equation, start with the situation shown in Fig. 10.5. Assun
fully developed and steady flow in a round tube of constant diameter D. Situate a cylindric
control volume of diameter D and length AL inside the pipe. Define a coordinate system wi
an axial coordinate in the streamwise direction (s direction) and a radial coordinate in tl
r direction.

Apply the momentum equation to the control volume shown in Fig. 10.5.

2F=%vad¥+JVpV'M (10.

cs

(Net forces) = (Momentum accumulation rate) + (Net efflux of momentum)

FIGURE 10.5
Initial situation for the

derivation of the Darcy-
Weisbach equation.

r direction

s direction

—

ol

Select the streamwise direction and analyze each of the three terms in Eq. (10.5). The n
efflux of momentum is zero because the velocity distribution at section 2 is identical to tl
velocity distribution at section 1. The momentum accumulation term is also zero because tl
flow is steady. Thus, Eq. (10.5) simplifies to 2.F = 0. Forces are shown in Fig. 10.6. Summing
forces in the streamwise direction gives

F pressure + F, shear T F, weight — 0

(o — Pﬂ(%z‘) - 7(wDAL) — 7[(%)3>AL] sina =0 fo.
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FIGURE 10.6
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Figure 10.5b shows that sin o = (Az/AL). Equation (10.6) becomes

4ALT,
D

(o +vz1) — (p2 + v22) = {10.7)

Next, apply the energy equation to the control volume shown in Fig. 10.5. Recognize that
h, = h,=0,V, = V;,and o; = a,. Thus, the energy equation reduces to

P_l+zl=&+22+hL

v v (10.8)
(p1 + vz) = (P2 + v22) = vhy

Combine Egs. (10.7) and (10.8) and replace AL by L. Also, introduce a new symbol hyto repre-

sent head loss in pipe.
4L
hy = <¥1ead l'oss> _ 4l (10,9
in a pipe Dy
Rearrange the right side of Eq. (10.9).

(L 47y PVz/z} _{ 47, }(L){LZ}
hf—(D>{pV2/2}{ Y - pV2J\D 2% {10.10)

Define a new w-group called the friction factor fthat gives the ratio of wall shear stress (t,) to
kinetic pressure (pV'?%/2):

(4 -7) shear stress acting at the wall

f= (10.11)

(pV#2) N kinetic pressure
In the technical literature, the friction factor is identified by several different labels that are
synonymous: friction factor, Darcy friction factor, Darcy-Weisbach friction factor, and the resis-
tance coefficient. There is also another coefficient called the Fanning friction factor, often used by
chemical engineers, which is related to the Darcy-Weisbach friction factor by a factor of 4.

f Darcy = 4f Fanning

This text uses only the Darcy-Weisbach friction factor. Combining Egs. (10.10) and (10.11)
gives the Darcy-Weisbach equation:
VZ
hy= LV (10.12)
D 2g
To use the Darcy-Weisbach equation, the flow should be fully developed and steady. The
Darcy-Weisbach equation is used for either laminar flow or turbulent flow and for either round
pipes or nonround conduits such as a rectangular duct.
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FIGURE 10.7

For fully developed flow
in a pipe, the pressure
distribution on an area
normal fo streamlines is
hydrostatic.

v’ CHECKPOINT PROBLEM 10.1
The figure shows flow through two pipes. Case 1 has half the flow of

Case 2. Both cases involve the same length of pipe, the same friction Flow ) .
factor, and the same diameter. What is the ratio of head loss for Case 1 Case 1
to head loss for Case 2?

a.l:4

b.1:2 = oy e o

) Flow 20

c. head loss is the same Case 2

d.2:1

e 4:1

The Darcy-Weisbach equation shows that head loss depends on the friction factor, tt
pipe length-to-diameter ratio, and the mean velocity squared. The key to using the Darc)
Weisbach equation is calculating a value of the friction factor f. This topic is addressed in tt
next sections of this text.

10.4 Stress Distributions in Pipe Flow

This section derives equations for the stress distributions on a plane that is oriented normal 1
stream lines. These equations, which apply to both laminar and turbulent flow, provide insigh
about the nature of the flow. Also, these equations are used for subsequent derivations.

In pipe flow the pressure acting on a plane that is normal to the direction of flow is hydr
static. This means that the pressure distribution varies linearly as shown in Fig. 10.7. The reasc
that the pressure distribution is hydrostatic can be explained with Euler’s equation (see p. 130).

Hydrostatic pressure distribution

Plane normal
to streamlines

Flow

To derive an equation for the shear-stress variation, consider flow of a Newtonian fluid .
a round tube that is inclined at an angle a with respect to the horizontal as shown in Fig. 10.
Assume that the flow is fully developed, steady, and laminar. Define a cylindrical control ve
ume of length AL and radius r.

Apply the momentum equation in the s direction. The net momentum efflux is ze
because the flow is fully developed; that is, the velocity distribution at the inlet is the same .
the velocity distribution at the exit. The momentum accumulation is also zero because the flo
is steady. The momentum equation simplifies to force equilibrium.

2 Fs = Fpressure + Fweight + Fshear =0 (]0.]
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r direction

\,/ s direction

-
ol

Flow Control volume

Analyze each term in Eq. (10.13) using the force diagram shown in Fig. 10.9:

d,
PA — (p + %AL)A — Wsina — 7(2nwr)AL = 0 (10.14)
gﬂf/ljijza\\/(p ! _pAL)A
-~ \
Cge
\ ot
MJ/ "\ _~Anglea
w
Force diagram

Let W = yAAL,and let sin & = Az/AL as shown in Fig. 10.5b. Next, divide Eq. (10.14) by AAL:

“laee)

=5 TP Y (10.15)

Equation (10.15) shows that the shear-stress distribution varies linearly with r as shown in

Fig. 10.10. Notice that the shear stress is zero at the centerline, it reaches a maximum value of

To at the wall, and the variation is linear in between. This linear shear stress variation applies to
both laminar and turbulent flow.

Maximum shear stress (7,)
occurs at the wall

Linear shear-
stress distribution

10.5 Laminar Flow in a Round Tube

This section describes laminar flow and derives relevant equations. Laminar flow is important
for flow in small conduits called microchannels, for lubrication flow, and for analyzing other
flows in which viscous forces are dominant. Also, knowledge of laminar flow provides a foun-
dation for the study of advanced topics.

Laminar flow is a flow regime in which fluid motion is smooth, the flow occurs in layers
(laminae), and the mixing between layers occurs by molecular diffusion, a process that is much

FIGURE 10.8

Sketch for derivation o
equation for shear stre

FIGURE 10.9

Force diagram
corresponding fo the
control volume defined
in Fig. 10.8.

FIGURE 10.10

In fully developed flow
{laminar or turbulent), th
shear-siress distribution »
an area that is normal t
sireamlines is linear.
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slower than turbulent mixing. According to Eq. (10.2), laminar flow occurs when Rep = 200
Laminar flow in a round tube is called Poiseuille flow or Hagen-Poiseuille flow in honor
researchers who studied low-speed flows in the 1840s.

Velocity Profile

To derive an equation for the velocity profile in laminar flow, begin by relating stress to rate-o
strain using the viscosity equation:
av
T=po
W dy

where y is the distance from the pipe wall. Change variables by letting y = ro — r, where rg
pipe radius and r is the radial coordinate. Next, use the chain rule of calculus:

N AN AT AV 14
T “(dy) - lJL( dr)(d}'> (pL dr) it

Substitute Eq. (10.16) into Eq. (10.15).

2p\(dVY _d
_<T)<E) = X (p + -yz) (]0.]

In Eq. (10.17), the left side of the equation is a function of radius 7, and the right side is
function of axial location s. This can be true if and only if each side of Eq. (10.17) is equal tc
constant. Thus,

d A(p + vz)) (vAh>
constant = — (p +v2) ( AL AL (

where Ah is the change in piezometric head over a length AL of conduit. Combine Egs. (10.1
and (10.18):

av_ _<_’_)(_VA") (101

dr 2u/\ AL
Integrate Eq. (10.19):

2
Ve _(’_X_YM) re (10.2
4p/\ AL

To evaluate the constant of integration C in Eq. (10.20), apply the no-slip condition, whi
states that the velocity of the fluid at the wall is zero. Thus,

V(r=r)=0
2
ré 'yAh)
0=-"2{"=—)+
4p( AL ¢
Solve for C and substitute the result into Eq. (10.20):

2 _ 2 2 _ 2
rg-r[ 4d ré—r yAh) .
= _Z = - — 10.
M [ P ”z)] ( 4p. )( AL NG

The maximum velocity occurs at r = ry:

2
r3 'yAh) .
- ()22 10.
Vs <4u>( AL o




Combine Egs. (10.21) and (10.22);

o) e

Equation (10.23) shows that velocity varies as radius squared (V ~ r2), meaning that the veloc-
ity distribution in laminar flow is parabolic as plotted in Fig. 10.11.

——l FIGURE 10.11

e The velocity profile in
Vi) - p
) {_(_sEe_”—mﬂ Poiseuille flow is paral
1 o
z (vertical)

Discharge and Mean Velocity V

To derive an equation for discharge Q, introduce the velocity profile from Eq. (10.23) into the
flow rate equation.

Q= |VdA
fro(,.g - r?) ('yAh) (10.24)
0

T AL (2mrdr)
Integrate Eq. (10.24):
Ah 2 _ 2\2 |1 4 Ah
R N I
4u/\ AL 2 0 8 /\ AL
To derive an equation for mean velocity, apply Q = VA and use Eq. (10.25).

7o -(2)(2)
V= (SP«)( AL (10.26)

Comparing Egs. (10.26) and (10.22) reveals that V = Vmax/2. Next, substitute D/2 for r, in
Eq. (10.26). The final result is an equation for mean velocity in a round tube.

- ([ D? 'yAh)_me
v-~(o) (i) =t 1027

Head Loss and Friction Factor f :
FIGURE 10.12

To derive an equation for head loss in a round tube, assume fully developed flow in the pipe . )
Flow in a pipe.

shown in Fig. 10.12. Apply the energy equation from section 1 to 2 and simplify to give

D 2] Q@
(; + z,> = (7 + zz) + h (10.28) /

Let h; = hyand then Eq. (10.28) becomes ®/ H

(& + z,) = (% + z2> + hy (1029) _~»~

Y Flo

Diameter D

£



Expand Eq. (10.27).

p, \_(»
7= _<V_D_2>(éﬁ) - _(19_2> (V i ZZ) (7 i ZI> (10,30
32p/\AL 2 AL )
Reorganize Eq. (10.30) and replace AL with L.
32uVL
<-l— + zl) = <& + zz) + =2 (10.3°
Y Y YD
Comparing Eqs. (10.29) and (10.31) gives an equation for head loss in a pipe.
32ulV

= 10.3.

Key assumptions on Eq. (10.32) are (a) laminar flow, (b) fully developed flow, (c) steady flo'
and (d) Newtonian fluid.
Equation (10.32) shows that head loss in laminar flow varies linearly with velocity. Als
head loss is influenced by viscosity, pipe length, specific weight, and pipe diameter squared.
To derive an equation for the friction factor f, combine Eq. (10.32) with the Darcy-Weisbac
equation (10.12).
32pulV L V?

=l o 10.3
= ND? D2g (

32;LLV>(D)(2g> 64 64
=| — —_ == —— 10.
or f < vD* \L/\V?) ~ pDV ~ Rep (103

Equation (10.34) shows that the friction factor for laminar flow depends only on Reynol
number. Example 10.2 illustrates how to calculate head loss.

EXAMPLE 10.2 Generate Ideas and Make a Plan

Head Loss for Laminar Flow i 1. Calculate the mean velocity using the flow rate
: equation.

Problem Statement

. . . . - . . -4 2
Oil (§ = 0.85) with a kinematic viscosity of 6 X 10 “m /s 3. Check whether the flow is laminar or turbulent using
flows in a 15 cm diameter pipe at a rate of 0.020 m*/s. Whatis : Eq.(10.2).

the head loss for a 100 m length of pipe?

2. Calculate the Reynolds number using Eq. (10.1).

4. Calculate head loss using Eq. (10.32).

Define the Situation :
. Take Action (Execute the Plan)

1. Mean velocity

« Oil is flowing in a pipe at a flow rate of Q = 0.02 m’/s.
« Pipe diameter is D = 0.15 m.

Assumptions: Fully developed, steady flow Q 0020m% _  0.020m’s

: =5 = = 113 m/s
Properties: Oil: S = 0.85,v = 6 X 10 *m%/s A (wD¥4  =((0.15m)"/4)
State the Goal 2. Reynolds number
Calculate head loss (in meters) for a pipe length of Rep = vp _ (113 m/s)(0.15m) _ 283

100 m. : v 6 X 1074 m%s
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3. Because Rep, < 2000, the flow is laminar. Review the Solution and the Process

. d lami . :
4. Head loss (laminar flow) : Knowledge. An alternative way to calculate head loss for lamin:

= 32ulV _ 32pvLV _ 32vLV i flow is to use the Darcy-Weisbach equation (10.12) as follows:
' yD*  pgD? gD’ : 64

64
. : f= = 553 = 0226
~32(6 X 10™* m*/s)(100 m)(1.13 m/s) ep

: ? 2 : L\/V? 10 (1.13m/s) '\
(9.81 m/s)(0.15 m) 5 h,=f( )( )= 0‘226( Om)( ) 2)
: : D/\2g 0.15m/\2 X 9.81 m/s

=983m

10.6 Turbulent Flow and the Moody Diagram

This section describes the characteristics of turbulent flow, presents equations for calculating
the friction factor f, and presents a famous graph called the Moody diagram. This information
is important because most flows in conduits are turbulent.

Quadlitative Description of Turbulent Flow

Turbulent flow is a flow regime in which the movement of fluid particles is chaotic, eddying,
and unsteady, with significant movement of particles in directions transverse to the flow direc-
tion. Because of the chaotic motion of fluid particles, turbulent flow produces high levels of
mixing and has a velocity profile that is more uniform or flatter than the corresponding lami-
nar velocity profile. According to Eq. (10.2), turbulent flow occurs when Re = 3000.

Engineers and scientists model turbulent flow by using an empirical approach. This is
because the complex nature of turbulent flow has prevented researchers from establishing a
mathematical solution of general utility. Still, the empirical information has been used success-
fully and extensively in system design. Over the years, researchers have proposed many equations
for shear stress and head loss in turbulent pipe flow. The empirical equations that have proven to
be the most reliable and accurate for engineering use are presented in the next section.

Equations for the Velocity Distribution

The time-average velocity distribution is often described using an equation called the power-

law formula.
u = m
ulr) _ (fo ’) (10.35)

Umax )

where 1, is velocity in the center of the pipe, r, is the pipe radius, and m is an empirically
determined variable that depends on Re as shown in Table 10.2. Notice in Table 10.2 that the
velocity in the center of the pipe is typically about 20% higher than the mean velocity V.
Although Eq. (10.35) provides an accurate representation of the velocity profile, it does not
predict an accurate value of wall shear stress.

An alternative approach to Eq. (10.35) is to use the turbulent boundary-layer equations
presented in Chapter 9. The most significant of these equations, called the logarithmic velocity
distribution, is given by Eq. (9.29) and repeated here:
ur) udrg — 1)

—==244In—— + 556 {(10.36)
u v

where u., the shear velocity, is given by u. = V1,/p.



