BUILDING A SOLID
FOUNDATION

-/ Chapter Road Map

The purpose of this chapter is to help students buil
foundation for learning fluid mechanics. The chag
has three main objectives: to define engineering,
describe fluids, and to introduce skills that are use
for solving engineering problems.

{Learning Objectives

STUDENTS WILL BE ABLE TO

* Define engineering, fluid mechanics, and learning. (§1

FIGURE 1.1 : e Define fluid, liquid, and gas. {§1.2)

As engineers, we get to design cool systems like this glider. ¢ Descr.ibe the choroc.:teristics ?f quuids' and g?s?s. (§1.2
This is exciting! |© Ben Blankenburg/Corbis RF/Age * Explain macroscopic and microscopic descriptions. {§1
Fotostock America, Inc.) ; * Explain the continuum assumption. (§1.3)

* Define a fluid particle. {§1.3)

¢ Describe units and dimensions. (§1.4)

¢ Determine if a set of units are consistent. (§1.4)

* Apply the grid method fo carry and cancel units. (§1.5
* Apply the ideal gas law, or IGL. (§1.6)

e Describe the Wales-Woods model, or WWM. (§1.7)

o Check for dimensional homogeneity, or DH. (§1.8)

* Define a mgroup. Define the derivative and the infegral. (€

“Begin difficult things while they are easy. Do great things when they are small. The difficult
things of the world must have once been easy. The great things must have once been small.
A thousand-mile journey begins with one step.”

-Lao-tzu (Chinese philosopher who founded Taoism in about 600 BC)

In this chapter, we invite you to take the first steps of your journey in learning fluid
mechanics. We have been on this journey most of our lives, and we love to share our passion
and our knowledge with you as you walk your path.
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FIGURE 1.2

{a) Commercial wind
turbines in Oregon.

(b} Engineering slow sand
filter technology near
Nairobi Kenya. (Photos by
Donald Elger)

1.1 Defining Engineering Fluid Mechanics

As engineers we ought to be able to explain to a layperson what our discipline is about. Thu
this section defines engineering fluid mechanics and defines learning.

Engineering

Engineers design systems that benefit people. For example, Fig. 1.1 shows a glider and Fig, 1.2
shows wind turbines being used to generate electrical power for a community. Fig, 1.2b show
people working on slow-sand filter technology. This technology is used to produce safe drin}
ing water for families. The person in the center of the photo is a mechanical engineering stu
dent who worked on this project during his senior year. We also design hydroelectric powe
systems such as Hoover Dam. We design oil pipelines, artificial hearts, jet engines, and coolin
systems for buildings. Engineers design the technology of the world.

The National Research Council (1) states that “engineering is the process of designing th
human made world.” They assert that science involves study of the natural world, wherea
engineering involves modifying the world to meet human needs. Of course, science, math, an
engineering are interwoven. Thus, the central purpose of engineering education is to teac
engineering students how to design the human-made world in ways that integrate and capital
ize on math and science while considering foremost the needs of people.

Regarding math, this can be defined as the abstract and logical study of numbers, quanti
ties, and space. Science is the systematic study of the physical world through observation an
experiment. Science differs from math in that math is about abstraction and symbols, wherea
science is about understanding the physical world. Science is the music and math is means ¢
writing the music down. Technology is the collection of machinery, equipment, and too
developed from scientific knowledge. By applying existing technology, engineers leverage th
progress of those who have come before.

In addition to math, science, and technology, engineers apply knowledge from other field
such as economics, sociology, and psychology. Although these fields are applied to a lesse
degree than math and science, they are still important. Thus, we say that engineers apply th
knowledge (i.e., collective wisdom) of humankind.

When Cegnar (2), a practicing engineer, saw Katehi et al.’s description (1), he suggeste
that engineering requires more that just math, science, and technology. Cegnar stated the
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solutions also involve creativity and innovation. Solutions involve persistence and struggie in
the face of challenges. Solutions involve constraints such as time and money. Solutions involve
the ability to simplify and idealize that which is complex. The skills that professionals use to
be creative, to handle adversity, to manage constraints, and to idealize are called the art of
engineering.

Fig. 1.3 summarizes ideas about engineering. The upper row summarizes what engineer-
ing is. The lower row summarizes how engineering is done and why engineering is done. The
term process means a systematic and effective method for getting results.

Math, Design
Engineering is A1l Artand ap]:fl(;:ing Scicncc: & o
a Process Technology Products that
4 3 Benefit People
apply a process apply the [
that is systematic, collective wisdom build a
yet highly creative of humankind better world

Definition of Fluid Mechanics

Mechanics is the field of science focused on the motion of material bodies. Mechanics involves
force, energy, motion, deformation, and material properties. When mechanics applies to mate-
rial bodies in the solid phase, the discipline is called solid mechanics. When the material body
is in the gas or liquid phase, the discipline is called fluid mechanics.

In summary, fluid mechanics is the science of energy, motion, deformation, and proper-
ties when the material is in the gas or liquid phase.

Definition of Learning

Researchers at the Harvard Graduate School of Education (3, 4) define understanding as the
ability to carry out performances that show one’s grasp of a subject and advance it at the same
time. Understanding is about being able to apply knowledge in new ways. Based on these ideas,
we define learning as the process of developing (or improving) one’s abilities to do something
useful while also advancing one’s ability to learn in the future,

Summary To learn engineering fluid mechanics means to develop the ability to design sys-
tems that involve fluids while also advancing one’s abilities to learn in the future.

1.2 Describing Liquids and Gases

Designers need to understand the nature of the materials they work with. Thus, this section
describes fluids. A wonderful starting point is the atomic hypothesis as stated by the Nobel-
prize-winning physicist Richard Feynman (5):

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sen-
tence passed on to the next generation of creatures, what statement would contain the most
information in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or
whatever you wish to call it} that all things are made of atoms—little particles that move
around in perpetual motion, attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another. In that one sentence, you will see, there is
an enormous amount of information about the world, if just a little imagination and thinking
are applied.

FIGURE 1.3
A summary of ideas ab
engineering.
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A fluid is a substance whose molecules move freely past each other. More specifically
fluid is a substance that will continuously deform (i.e., flow) under the action of a shear stre
Alternatively, a solid will deform under the action of a shear stress but will not flow like a flu
Both liquids and gases are classified as fluids.

Because of differences in the forces between molecules, liquids and gases behave diffe
ently. As shown in the first row of Table 1.1, a liquid will take the shape of a contain
whereas a gas will expand to fill a closed container. The behavior of the liquid is produced
strong attractive force between the molecules. This strong attractive force also explains w.
the density of a liquid is much higher than the density of gas (see the fourth row). T
attributes in Table 1.1 can be generalized by defining a gas and liquid based on the diffe
ences in the attractive forces between molecules. A gas is a phase of material in which mc
ecules are widely spaced, molecules move about freely, and forces between molecules a
minuscule, except during collisions. Alternatively, a liquid is a phase of material in whi
molecules are closely spaced, molecules move about, and there are strong attractive forc

between molecules.

TABLE 1.1 Comparison of Solids, Liquids, and Gases

Attribute Solid Gas
Typical Visualization
1
. i)_egcrii);iox_l "~ Solids hold their shape;— noneed | Liquids take the sinape of the " Gases expand to fill a closed
for a container container and will stay in open | container
container
Mobility of Molecules = Molecules have low mobility | Molecules move around freely Molecules move around freely
because they are bound in even though there are strong with little interaction except
a structure by strong intermolecular forces between during collisions; this is why
intermolecular forces molecules gases expand to fill their
| container
Typical Density ' Often high; e.g., density of steel | Medium; e.g., density of wateris | Small; e.g., density of air at sea
is 7700 kg/m* 1000 kg/m* level is 1.2 kg/m®
Molecular Spacing Small—molecules are close Small—molecules are held close La;ée;on average, molecules are
together together by intermolecular forces | far apart
Effect of Shear Stress | Produces deformation Produces flow Produces flow
Effect of Normal Produces deformation that may | Produces deformation associated = Produces deformation associated
Stress associate with volume change; with volume change with volume change
can cause failure
Viscosity NA High; decreases as temperature Low; increases as temperature
increases increases
Compressibility Difficult to compress; bulk Difficult to compress; bulk Easy to compress; bulk modulus

modulus of steel is 160 X 10° Pa

modulus of liquid water
is 2.2 X 10° Pa

of a gas at room conditions is

about 1.0 X 10° Pa
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1.3 Idealizing Matter

Engineers apply idealized* models to characterize material behavior. Thus, this section pres-
ents ideas for understanding materials and their behaviors.

The Microscopic and Macroscopic Viewpoints

A microscopic viewpoint describes material behavior by characterizing the behavior of atoms
and molecules, often using statistical methods to characterize average molecular behavior.
Alternatively, a macroscopic viewpoint describes material behavior without resulting to mod-
els at the atomic level. The macroscopic viewpoint is simpler, so it is used more often.

Matter can be studied from a macroscopic viewpoint or a microscopic viewpoint. Most
engineering models are based on a macroscopic viewpoint. However, in selected cases such as
the kinetic theory of gases, the microscopic viewpoint is useful. In addition, the microscopic
model is useful for understanding phenomena such as surface tension and viscosity.

The Continuum Assumption

Because a body of fluid is comprised of molecules, properties are due to average molecular be-
havior. That is, a fluid usually behaves as if it were comprised of continuous matter that is infi-
nitely divisible into smaller and smaller parts. This idea is called the continuum assumption.

When the continuum assumption is valid, engineers can apply limit concepts from dif-
ferential calculus. A limit concept typically involves letting a length, an area, or a volume
approach zero. Because of the continuum assumption, fluid properties such as density and
velocity can be considered continuous functions of position with a value at each point in space.

To gain insight into the validity of the continuum assumption, consider a hypothetical
experiment to find density. Fig. 1.4a shows a container of gas in which a volume A¥ has been
identified. The idea is to find the mass of the molecules Am inside the volume and then to
calculate density by

P=3

The calculated density is plotted in Fig. 1.4b. When the measuring volume A¥ is very small
(approaching zero), the number of molecules in the volume will vary with time because of
the random nature of molecular motion. Thus, the density will vary as shown by the wiggles in
the blue line. As volume increases, the variations in calculated density will decrease until the
calculated density is independent of the measuring volume. This condition corresponds to the

|
Gas Gas molecules [
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S Spsco I is valid.
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Volume A¥
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*Engineers idealize because this makes things easier and faster, To idealize means to simplify an entity (an idea,
a physical system, a mathematical model, etc.) by removing extraneous details that have little impact on utility.

FIGURE 1.4

When a measuring voli
A¥ is large enough for
random molecular effec
fo average out, the
continuum assumption it
valid.
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vertical line at A¥,. If the volume is too large, as shown by A%, then the value of density m
change due to spatial variations.
In most applications, the continuum assumption is valid as shown by the next example.

{ EXAMPLE. Probability theory shows that including 10° molecules in a volume will allc
i the determination of density to within 1%. Thus, a cube that contains 10° molecules shou
i be large enough to accurately estimate macroscopic properties such as density and veloci
i Find the length of a cube that contains 10° molecules. Assume room conditions. Do calcul
i tions for (a) water, and (b) air.

i Solution. (a) The number of moles of water is 109/6.02 X 10® = 1.66 X 10™'® mol. The me
i of the water is (1.66 X 107'® mol)(0.0180 kg/mol) = 2.99 X 10™?" kg. The volume of the cu
i s (2.99 X 10™* kg)/(999 kg/m®) = 2.99 X 10~2 m®. Thus, the length of the side of a cube
i 3.1 X 107 m. (b) Repeating this calculation with air gives a length of 3.5 X 10" m.

Review. For the continuum assumption to apply, the object being analyzed would ne:
i to be larger than the lengths calculated in the solution. If we select 100 times larger as o
i criteria, then the continuum assumption applies to objects with:

* Length (L) > 3.1 X 107 m (for liquid water at room conditions)
» Length (L) > 3.5 X 10™° m (for air at room conditions)

Given the two length scales just calculated, it is apparent that the continuum assumptic
applies to most problems of engineering importance. However, there are a few situations whe
the problem length scales are too small,

i EXAMPLE. When air is in motion at a very low density, such as when a spacecraft ente
i the earth’s atmosphere, then the spacing between molecules is significant in comparison
i the size of the spacecraft.

i EXAMPLE, When a fluid flows through the tiny passages in nanotechnology devices, the
i the spacing between molecules is significant compared to the size of these passageways.

The Fluid Particle

When developing equations or visualizing the flow of a fluid, it is useful to visualize a sm:
unit of fluid that is part of a larger body. A fluid particle is defined as a small quantity of flu
with fixed identity. Small means that the lengths of the particle are much smaller that the cha
acteristic length(s) of the problem under study. The words fixed identity mean that the partic
is always comprised of the same matter. Typically, a fluid particle in a flow will change shaj
(i.e., deform) and change orientation in response to forces. However, the fluid particle w
always be comprised of the same matter.

In the development of equations, it is common to let the dimensions of a fluid partic
approach zero in sense of the limit from calculus. In this case, we say that the fluid particle
infinitesimal in size. Because the fluid particle is a macroscopic concept (i.e., assume the co!
tinuum assumption applies), the idea of an infinitesimal particle is valid.

1.4 Dimensions and Units

As engineers we record data; we measure things. The foundation of measurement is the dimei
sion and the unit. Thus, this section introduces these topics.
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Dimensions

A dimension is a category for measurement. For example, engineers measure power, so power
is a dimension. Dimensions can be identified by asking the question: what are we interested in
measuring? Answers to this question can include force, length, volume, work, and viscosity.
Thus, these variables are dimensions.

Dimensions can be related by using equations. For example, Newton’s second law, F = ma,
relates the dimensions of force, mass, and acceleration. Because dimensions can be related,
engineers and scientists can express dimensions using a limited set that are called primary
dimensions. Table 1.2 lists one set of primary dimensions.

TABLE 1.2 Primary Dimensions

Dimension Symbol Unit (SI)
Length i L ] meter (m)

4
Mass M | kilogram (kg)

Time _ - T se;onjc}-is-)____ .
Temperature 6 | kevin(K)_

Hecicoutent | 1| awpere(A)
Amount of light [ C candela (cd)

Amount of matter l N ‘ mo_le_(;nol) _

A secondary dimension is any dimension that can be expressed using primary dimensions.

For example, the secondary dimension “force” is expressed in primary dimensions by using
F = ma. The primary dimensions of acceleration are L/T?, so
L ML

[F) = (ma] = M5 =

=3 (1.1)

In Eq. (1.1), the square brackets means “dimensions of.” Thus [F] means “the dimension of
force. Similarly, [ma] means the dimensions of mass times acceleration. This equation reads “the
primary dimensions of force are mass times length divided by time squared.” Notice that primary
dimensions are not enclosed in brackets. For example, ML/T? is not enclosed in brackets.
One can find primary dimensions by applying a known equation.
i EXAMPLE. Suppose the goal is to find the primary dimensions of work.
Step 1: Find an equation.
. (work) = (force)(distance)
W=Fd
Step 2: Use the equation to relate the secondary dimensions:
[W]=[Fd]=F][d]
Step 3: Insert primary dimensions and do algebra.

(W] = [Fld] = 73 XL ==



8 CHAPTER 1 ¢ BUILDING A SOLID FOUNDATION

FIGURE 1.5

The relationship between
units and a dimension.

One can also find primary dimensions by looking them up. For example, Table E 1 (inside fro
cover) shows that, the primary dimensions of viscosity are M/LT. Similarly, Table A.6 (insi
back cover) lists primary dimensions for symbols used in this text.

Units

A unit is a standard for measurement so that size or magnitude can be characterized. Un
allow quantification. For example, to quantify how much volume (a dimension), one selec
from a variety of units: liters, cubic meters, cubic feet, etc. For example, one might state tha
tank has a volume of 42 liters. The dimension describes what (i.e., the volume) and the ur
describes how much (42 liters). Similarly, measurement of energy (a dimension) can be e
pressed using units of joules or units of calories. The relationship between units and dime
sions is illustrated in Fig. 1.5. As shown, a dimension can be visualized as a number line, anc
unit is a way to increment a dimension so that magnitude can be measured.

how much force)

Unit: A standard for measuring “how much”
/ (Example: Newtons can be applied to quantify

newtons (N)
L | L L 1
1 1

T T 1 T

|
[ T

¢ » Force

A
]

Dimension: A category for measurement; what we want to measure
Visualize a dimension as a number line.

v CHECKPOINT PROBLEM 1.1

Weightwatchers, Inc. has developed “Points”™, which are used to track food intake. Points ar
calculated as a function of calories, grams of fat, and grams of fiber. You're only supposed to eat :
certain number of Points™ in a day. Is the Point™ a dimension or a unit?

Unit Systems

This text uses two units systems:

® The International System of Units (abbreviated SI from the French “Le Systéme
International d'Unités”) is based on the meter, kilogram, and second. The SI system is
the international standard for measurement.

® The “traditional unit system” employs English units such as the slug for mass, the foot (ft
for length, the pound-force (Ibf) for force, and the second (s) for time.

Consistent Units

Consistent units are defined as a set of units for which the conversion factors only contain t!
number 1.0. This means, for example, that:

(1 unit of force) = (1 unit of mass)(1 unit of acceleration)
1 unit of power) = (1 unit of work)/(1 unit of time (1.
p

(1 unit of speed) = (1 unit of distance)/(1 unit of time)
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Table 1.3 lists consistent units in the SI system and in the traditional system.

TABLE 1.3 Consistent Units

Dimension SI system Traditional System
length " meter (m) foot (ft)

mass kllogram (kg) - o ._—slug (slug) -
tme  second()  secondl®
force | mewton (N) o B pound force (lbf)
pressure pascal (Pa) pound force per square foot (psf)
density_ ] kdd;an; p:ar meter cubed (kg/m’) -‘ slug per foot cubed (slug7f_t’)_ R

_ volume ____1 ‘cublc-;ne_iex"_s_—(r?; * — ___ -j __i. ;b_lc_t:eet (ft’) -_-____ )
power watt (W) foot- -pound force per second (ft-1bf/s)

Regarding unit practice, three recommendations are

® Use consistent units because this eliminates extraneous unit conversions.

® Use the SI system whenever possible because this system is the international standard, and
this system is simpler and leads to more accurate work for most people.

® Become proficient with traditional units because these units are still commonly used.

v

Organizing Units and Dimensions

Table E1 (inside front cover) shows how units and dimensions fit together in fluid mechanics.
Four primary dimensions (M, L, T, 6) are used to build approximately 12 secondary dimen-
sions (flow rate, pressure, power, etc.). Each of these dimensions can be quantified with many
different units.

1.5 Carrying and Canceling Units

Carrying and canceling units in engineering is beneficial, if not essential. Thus, this section
introduces a method called the grid method, developed by Wales and Stager (6). Although
other methods are available, the grid method is presented here because it is simple and
clear.

Example of the Grid Method

The grid method is illustrated in Fig. 1.6. As shown, this calculation is an estimate of the power P
required to ride a bicycle at a speed of V = 20 mph. The engineer estimated that the required
force to move against wind drag is F = 4.0 Ibf and applied the equation P = FV, As shown, the
calculation reveals that the power is 159 watts.
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FIGURE 1.6 PuF XY= 41bf | 20mphf | 10mis | 1ON | Ws

Grid method. | | 2237mptt | 022481 | N-m

The idea of the grid method is to keep multiplying the right side of the equation by t
number 1.0 until the units are the desired units. For example in Fig. 1.6, the engineer mul
plied the right side of the equation by 1.0 three times.

- _lmls (first time)
2.237 mph
10N .
| = 02249 Iof (second time)
W-s e
1.0 = N-m (third time)

Finding Unity Conversion Ratios

Each equation listed above is called a unity coversion ratio (conversion ratio for short) becau
the pure number 1.0 without units appears on the left side. There are three methods for findii
unity conversion ratios. The first method is to derive a formula.

Step 1. Start with a definition:

work

power = —
time

Step 2. List the units of each variable.

1.0joule 1.0 newton-meter _ 1.0N-m

1.0W = 1.0 watt = =
wa 1.0 second second s

Step 3. Do algebra.
_ W-s

1.0 =
N'm

The second method is look up a formula in the inside front cover of this book.

i EXAMPLE. Find the row labeled “speed” in Table E1 and note that 1.0 m/s = 2.237 mp
¢ 'This formula can be rearranged to give
1 m/s

1.0=7r7——
2.237 mph

'The third method is use a memorized fact. For example, if one can remember that 1.00 in
is equal to 2.54 centimeters, one can write

1inch
2.54cm

1.0 =

v’ CHECKPOINT PROBLEM 1.2

Which conversion ratio is correct?

(a) 1.0 = (3.785 US gallons)/(1.0 L), (b) 1.0 = (1.0 cm)/(2.54 in), () 1.0 = (1.0 Ibm)/(2.205 kg)
(d) 1.0 = (3.281 yd)/(1.0 m), () 1.0 = (14.7 psi)/(101.3 kPa)
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Examples of the Grid Method

The steps of the grid method are listed in the first column of Table 1.4. Examples showing how
to apply the steps are presented in the second and third columns.

TABLE 1.4 Applying the Grid Method {Two Examples)

Step Example 1 Example 2
Problem Statement => Situation: Convert a pressure of 2.00 psi to | Situation: Find the force in newtons that is
pascals. needed to accelerate a mass of 10 g at a rate
15 ft/s.
Step 1. Write the equation down not applicable F=ma
Step 2. Insert numbers and units p = 2.00 psi F = ma = (0.01 kg)(15 ft/s?)
Step 3. Look 1;p_ conversion ratios __ 1Pa - “_1_.0 m ;\I_s2
Tl E 0= ————— 1.0 = 1.0 =
(see Table E1) 1.45 X 107" psi 3.281 ft kg - m
Step 4. Multiply terms and cancel 1Pa 15_& 10m || N sz 1
units. - p = [200pst)| e — S F=[o001kg] =3 :
. pst 8 J[3281)| kg- =
Step 5. Do calculations. p=138kPa F=0.0457N

Using Pounds-Mass and Slugs

Engineers often use pounds-mass (Ibm) and slugs in calculations. Thus, this subsection shows
how to use these units.

Table E1 shows how mass units are related. One kilogram of mass is equivalent to
2.2 pounds mass (1 kg = 2.21bm). One pound of mass is equivalent to 454 grams (1.0bm = 453.6 g).
One slug of mass is equivalent to 32.2 pounds mass or 14.6 kilograms (1.0 slug = 32.17 Ibm =
14.59 kg).

Mass units can be related to force units by application of F = ma. In the SI unit system, a
force of 1.0 N is defined as the magnitude of force that will accelerate a mass of 1.0 kg at a rate
of 1.0 m/s% Thus,

(1.0N) = (1.0 kg)(1.0 m/s?)

Rewriting this expression gives a conversion ratio
kg + m
N ¢

1.0 {1.3)

When the mass unit is the slug, a force of 1.0 pound-force (Ibf) is defined as the force that will
accelerate a mass of 1.0 slugs at a rate of 1 ft/s%. Thus,

(1.01bf) = (1.0 slug)(1.0 ft/s?)
Rewriting this expression gives the conversion factor

_slug-ft
 Ibf- s

(1.4)
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When the mass unit is Ibm, a force of 1.0 Ibf is defined as the magnitude of force that w
accelerate a mass of 1.0 Ibm at a rate of 32.2 ft/s%. So,

(1.01bf) = (1.0 1bm)(32.2 ft/s?)

Thus, the conversion ratio relating force and mass units becomes

v CHECKPOINT PROBLEM 1.3

_ 3220bm - ft

1.0
Ibf - s

(1.

A force of F = 10 Ibf accelerates a block at a rate of a = 5 ft/s’. Using F = ma, calculate the mass o

the block in units of pounds-mass.

Example 1.1 shows how to use the grid method.

EXAMPLE 1.1

Grid Method Applied to Calculating Thrust from a Rocket

State the goal

T(N), T(Ibf) 4= thrust force in newtons and pounds-force

Problem Statement

A water rocket is fabricated by attaching fins to a 1-liter
plastic bottle. The rocket is partially filled with water, and the
air space above the water is pressurized, causing water to jet
out of the rocket and propel the rocket upward. The thrust
force T from the water jet is given by T = mV, where m is
the rate at which the water flows out of the rocket in units

of mass per time and V is the speed of the water jet.

(a) Estimate the thrust force in newtons for a jet velocity

of V = 30 m/s (98.4 ft/s) where the mass flow rate is

m = 9kg/s (19.8 Ibm/s). (b) Estimate the thrust force in units
of pounds-force (Ibf). Apply the grid method during your
calculations.

Define the Situation
A rocket is propelled by a water jet.
Thrust Force = T = mV

Pressure = p

A
A4 A

@/ \©

/— Water jet
Velocity = ¥=30m/s =98.4 ft/s

Mass flow rate = ni = 9 kg/s = 19.8 Ibm/s

Generate Ideas and Make a Plan

Apply the process given in Table 1.4. When traditional units
¢ are used, apply Eq. (1.5).

Take Action (Execute the Plan)

1. Thrust force (SI units)
T=mv
« Insert numbers and units:
T (N) = mV = (9 kg/s)(30 m/s)
« Insert conversion ratios and cancel units:

oo - |22 2] 22

i 2. Thrust force (traditional units)

T=mV
» Insert numbers and units:
T (Ibf) = mV = (19.8 Ibm/s)(98.4 ft/s)
« Insert conversion ratios and cancel units:

19.81bm][98.4&][ Ibf - &7 }
g g 3220hm - ft

T (Ibf) = [

. Review

1. Validate. Because 270 N = 60.5 Ibf, the answers are the same.

i 2. Tip. To validate calculations in traditional units, one can

repeat the calculation in SI units.



1.6 Applying the Ideal Gas Law (IGL)

The design of systems that involve gases (e.g., airbags, shock absorbers, combustion systems,
aircraft) often involve application of the IGL. Thus, this section presents this topic.

Theoretical Development of the IGL

Brown et al. (7) states that the IGL was developed empirically. An empirical equation is one
that was developed by the logical process called induction. Induction is the process of making
many experimental observations and then concluding that something is always true because
every experiment indicates this truth. For example, if a person concludes that the sun will rise
tomorrow because it has risen every day in the past, this is an example of inductive reasoning.

The IGL was developed by combining three empirical equations that had been discovered
previously. The first of these equation, called Boyle's law, states that when temperature T is held
constant, the pressure p and volume ¥ of a fixed quantity of gas are related by:

p¥ = constant  (Boyle’s law)

The second equation, Charles’s law, states that when pressure is held constant, the temperature
and volume ¥ of a fixed ‘quantity of gas are related by:

5,?1 = constant  (Charles’s law)

The third equation was derived by a hypothesis formulated by Avogadro: Equal volumes of gases
at the same temperature and pressure contain equal number of molecules. When Boyle's law,
Charles’s law, and Avogadro’s law are combined, the result is the ideal gas equation in this form:

p¥ =nR,T (1.6)

where 7 is the amount of gas measured in units of moles. A mole is defined as the amount of
matter that contains as many particles as there are atoms in 12 g of carbon-12. This means that
a mole of gas will contain 6.02214 X 10% particles. In Eq. (1.6), R, is a constant called the uni-
versal gas constant; some useful values are

i ft - Ibf
Re= 831 K~ P omole - R

To make the ideal gas law more useful, it can be rearranged to use mass units instead of
mole units. To relate moles and mass, let

(grams)
(mole)

n(moles) X M = m(grams) (1.7

where M is the molar mass of the gas and m is mass of the gas. To develop the mass form of the
ideal gas equation, substitute Eq. (1.7) into Eq. (1.6).

m A
p¥ = mRT

where the specific gas constant R is given by

ideal ga stant
_i gas con (19)

. R,
R = (specific gas constant) = m molar mass
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To introduce density into the IGL, rewrite Eq. (1.8) and then introduce the definition
density p:

p= (%)RT = pRT (1.1

v CHECKPOINT PROBLEM 1.4

If the molar mass of a gas is 35 grams per mole, what is the specific gas constant for this gas i
SI units?

Validity of the IGL

An equation is valid when calculated values closely match (say within 5%) values that wot
be measured if an experiment was done. Regarding the validity of the IGL, some useful tips ¢
presented here.

For gases near atmospheric conditions, the IGL is a good approximation.

When both the liquid phase and the gas phase are present (e.g., propane in a tank used
for a barbecue), one can consult thermodynamic tables (8) to find the density of the gas
phase.

When a gas is very hot such as the exhaust stream of a rocket, then the gas can ionize or
disassociate. Both of these effects can invalidate the ideal gas law.

To determine if a gas can be characterized with the IGL, one can calculate the
compressibility factor, which is commonly given the symbol Z and presented in
thermodynamics texts (8).

Working Equations

An equation that is used for applications is called a working equation. Working equations :
fluid mechanics are presented in Table E2 in the front of the book. In addition, many of tht
working equations are described in more detail; see, for example, Table 1.5 for the IGL.

Table 1.5 lists the most useful forms of the IGL and lists the variables. Notice the tips in 1

last column of the table. Tips are identified by parenthesis.

TABLE 1.5 Summary of the Ideal Gas Law Equations

Description Equation Variables
Density form of the IGL ' p = pRT (1.10) | p = pressure (Pa)
' (use absolute pressure, not gage or vacuum pressure)
| p = density (kg/m®)
R = specific gas constant (J/(kg - K)) (look up R in Table A..
T = temperature (K) (use absolute temperature)
Mass form of the IGL p¥ = mRT (1.8) | ¥ = volume (m®)

m = mass (kg)



TABLE 1.5 Summary of the Ideal Gas Law Equations (Continued)

Description Equation Variables

Mole form of the IGL I p¥ =nR,T (1.6) I n = number of moles

R, = universal gas constant

This equation is used to relate gas R=

R, _ | M = molar mass (kg/mol)
constants M

|
' (1.9) .|

(R, = 8.314 J/(mol - K) = 1545 (ft - Ibf)/(Ibmol « °R))

1.7 The Wales-Woods Model

Engineers use calculations to figure things out. Thus, this section presents a model, called the
Wales-Woods model, that reveals how professionals do calculations.

Rationale for the Wales-Woods Model (WWM)

An expert is a person who does things well with minimal effort. For example, an expert golf
player hits a golf ball far with little effort. It is human nature to desire the ability to create great
results with minimal effort.

Learning to do something well is facilitated by deliberate practice according to Dr.
Anders Ericsson and his colleagues (9). Dr. Ericsson is the Conradi Eminent Scholar of
Psychology at Florida State University and an international authority on the development
of expertise. He asserts that it is deliberate practice, not innate talent, that leads to exper-
tise. Deliberate practice involves understanding how experts do things and then practic-
ing these fundamentals over a long period of time. Thus, the rationale for the WWM is to
reveal how experts solve technical problems so that students can practice these skills and
develop themselves over time into professionals who solve difficult problems with minimal
effort. -

The WWM is based on the research of Professors Charles Wales, Anni Nardi, Robert
Stager, and Donald Woods (6, 10-17). These researchers studied how experts solved problems,
and then they figured out how to teach these patterns to students.

The WWM is effective. Based on 5 years of data, Wales (11) reports that when students
were taught problem solving as freshman, the graduation rate increased by 32% and the aver-
age grade point average increased by 25%, as compared to the control group, who were
not taught these skills. Based on 20 years of data, Woods (17) reports that students taught
problem-solving skills, as compared to control groups, showed significant gains in confidence,
problem-solving ability, attitude toward lifetime learning, self-assessment, and recruiter
response.

Introduction to the WWM

Experts have a method or process that they apply to solve problems. Thus, this subsection in-
troduces this process in the context of solving a textbook problem.

Example 1.2 shows the WWM applied to a textbook problem. The left column shows the
problem and the solution. The right column explains how to apply the WWM and lists skills
(i.e., actions) that are used in the model.
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EXAMPLE 1.2

Applying the IGL to Predict Weight
PROBLEM AND THE SOLUTION

Problem Statement

Find the total weight of a 17 ft° tank of nitrogen if the nitrogen
is pressurized to 500 psia, the tank itself weighs 50 Ibf, and the
temperature is 20°C. Work in SI units.

EXPLANATION OF THE WWM

To the left is a typical problem statement from a textbook.

i Experts read and interpret the problem statement. Experts
: present their own interpretation of the problem.

Define the Situation
A tank contains nitrogen. Wy, = 50 Ibf = 222 N

¥=1781=0481 m’
p = 500 psia=3.45 MPa absolute
T=20°C=293K

Assumption: The IGL applies.
Nitrogen: (Table A.2) Ry, =297 (J/kg - K).

To define the situation is to summarize the problem in a way

that shows how you are idealizing the problem. Actions:

o Visualize the problem as if it exists in the real world.
A useful question to ask is, what am I looking at?

» Identify scientific concepts that may be useful.
A useful question to ask is, what are the physics?

i Summarize the physical situation (write down 1 to 2 sentences).

o List known values of variables.

o Sketch the situation; this sketch is called a situation diagram.
Use engineering conventions on this diagram.

: o Convert units to consistent units.

« State main assumptions.
List fluid properties (see Section 2.4)

State the Goal
Wr(N) 4= Weight total (nitrogen + tank)

i To state the goal is to summarize the results you intend to
i create. Actions:

i o List the variable(s) to be solved for.

o List the units on these variables.

i Describe each variable(s) with a short statement.

Generate Ideas and Make a Plan
Because weight is the goal, let

In Eq. (a), W is known and Wy, is unknown, so it becomes

the new goal. Select Newton's law of gravitation because this

equation has the new goal in it. .
WN2 = mn,8 (b)

In Eq. (b), identify that my, is unknown. This parameter can

be found by applying the ideal gas law.

p¥ = mRT lc)

In Eq. (c), all new variables are known. Thus, the problem

is cracked. There are three equations (a, b, and c) and three
unknown variables (weight of nitrogen, mass of nitrogen, and
total weight of the tank). The step-by-step plan is

1. Calculate mass of nitrogen using Eq. (c).

2. Calculate weight of nitrogen using Eq. (b).

3. Calculate the total weight using Eq. (a).

To generate ideas is to consider alternative approaches to
: reach your goal(s) and to select the best ideas.

Wi = Wi + Wy, (o) : The actions that work on most problems are listed here‘.
i These steps from Wales et al. (6) can be remembered with the

: acronym GENIL

o Step 1. Start with Goal
o Step 2. Identify an Equation that contains the goal
« Step 3.In this equation, identify the unknowns (Needs)

o Step 4. In this equation, identify the knowns (Information)

« Step 5. Repeat steps 1 to 4 until the number of equations is
equal to the number of unknowns. At this point the problen
is figured out (we say the problem is cracked)

To make a plan is to figure out the steps to reach your goals.
o Identify the easiest and fastest way to get to your goal.
i o List the steps.

i Note: Most of the time, the steps of the plan are in reverse
¢ order of the steps of the reasoning process.
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Take Action (Execute the Plan)

1. Ideal gas law (mass form)
p¥

: T RT

LG S e

= 19.1kg
2. Newtons law of gravity
Wy, = mg = (19.1 kg)(9.81 m/s’) = 187 N
3. Total weight
Wr = Wy + Wy, = (222N) + (187 N) =[409 N|

my

: To take action is to execute the steps of the plan. Actions:

+ On each step, list the name of the main equation or give
another descriptive label.

e Carry and cancel units with the grid method. (Note: Unit

cancellations are not shown in the text or solution manual
because we have not yet found a simple way to do this.)

« Box the final answer(s).

Review the Solution and the Process

1. Knowledge. Use the mass form of the IGL when mass is the
goal.

2. Knowledge. W = mg can be derived from Newton’s law of
gravity. Thus, this equation is a special case of this law.

3. Validate. To check the IGL assumption, we calculated the
compressibility factor and found that the IGL was accurate
to within about 98%.

4. Implications. For this problem, the weight of the gas is
significant as compared to the weight of the tank.

5. Skill. To save time, add problem information to the
situation diagram.

Structure of the Wales-Woods Model (WWM)

To review the solution and the process is to think critically
: and then to write one to three useful or insightful thoughts. A,
: effective approach is to ask questions. Examples:

o Validate. How can I check (validate) my solution? Does my
solution make sense? Why?

T Implications. What did I learn? What might my result mean

in the real world?

Skill(s). What skills helped me solve this problem? What
skills will help me solve problems in the future?

Knowledge. What knowledge was useful for solving this
problem? What new ideas did I gain?

i o Discussion. What aspects of the solution are worthwhile to

point out?

As shown by Example 1I.2, the WWM is comprised of six thinking operations. A thinking
operation (Table 1.6) is a collection of skills for achieving a certain outcome. Notice that each

thinking operation has an outcome and a rationale.

TABLE 1.6 Structure of the WWM (Thinking Operations)

Why Do This Thinking Operation? (Rationale)

Thinking

Operation Outcome of This Thinking Operation
Define the The model (idealization) used to solve the problem is
situation clear, specific, and organized.

State the goal The goal is.speciﬁc and actionable (not _vague).

Generate ideas

The ideas for solving the problem are clear and
specific. In addition, there is a logical process that
shows how the problem solver was able to find a path
to the solution.

So you know how you are idealizing the problem.

So you know where you are at (i.e., the situation) and
where you need to go (i.e., the goal).

Because the reasoning process reveals how the
problem can be solved. This gives one the ability to
solve unfamiliar problems and reduces or eliminates
the need to memorize solutions. In addition, this
gives one the satisfaction that I cracked the problem!

(Continue
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TABLE 1.6 Structure of the WWM (Thinking Operations) {Continued)

Thinking 1
Operation Outcome of This Thinking Operation } Why Do This Thinking Operation? (Rationale)
Make a plan There is a list of steps for reaching the goal. To find a simple and effective solution method.
To create an orgamzed plan of attack.
Takeaction  The steps for reachmg the goal have been executed " To reach the goals anﬁny& the satisfaction of
(Execution) | and the goal has been attained. completmg the problem.
Review the One to three insightful statements are written down. - To grow. This growth can take multlple forms.
solution and the Examples: to become better at problem solving, to
process increase knowledge, to increase abilities to validate, t«
increase abilities to think critically, and to increase
self-awareness of problem solving.
Applying the WWM to a Design Problem
The WWM can be applied to a design problem, for example, redesigning a bike pump (:
Fig. 1.7). Suppose that a conventional bike pump take too many strokes to inflate a tire, an:
designer wishes to redesign the pump to solve this problem. Example 1.3 illustrates how to :
ply the WWM to this task.
FIGURE 1.7

A bike pump being used to
inflate @ mountain bike tire.
(Photo by Donald Elger)

EXAMPLE 1.3

The Wales-Woods Model Applied to a Design Problem

Problem Statement

Size a bike pump that will inflate a typical mountain bike tire v (D7),

in 20 strokes. ” f i
o 7 D=0045m

Define the Situation : 1 L=19m

Redesign a bike pump to inflate a bike tire in 20 strokes. : -

Air: (Table A.2) R, = 287 (J/kg * K)

Idealize the bike tire as a volumetric region. il T— I

Check
valve



Assumptions:

o Idealize the tire as a cylinder of length L = 1.94 m and
diameter D = 0.045 m.

o Assume that pi,g,.. = 50 psig = 450 kPa absolute.

o Isothermal compression: T = 20 °C = 293K

State the Goal

Vpump(L) @ Volume of pump cylinder in liters. (Note: Using
this volume, a designer can select a pump diameter and then
calculate a stroke length.)

Generate Ideas and Make a Plan
Because the goal is ¥, apply the IGL to the pump.

MyumpReie T
¥pump = v a0 (O)
Ppump

In Eq. (a), all parameters are known except for the mass of

air inside the pump = (m,,,,p). To find this variable, apply

conservation of mass:

mass of air
stroke

Myre = mpumpN

(mass of air in tire) = ( )(number of strokes) (b)

In Eq. (b), the unknown, (m,;.), can be found using the
IGL. Thus, the problem is cracked! The steps for doing
calculations are

1. Calculate the mass of air inside the tire using the IGL.
2. Relate masses using: My, = (m,,7,)(20 strokes).

3. Calculate the volume of the pump using the IGL.

Take Action (Execute the Plan)
1. IGL (apply to tire)

_ m(0.45 m)’

D?
Wiire = (wT L ” (1.94 m) = 3.085 X 10 *> m’

pti.re¥!ire

Myire = _Ii;u.T_
{450 X 10°N (0.003085m’)( kg« K )( 1

- m? 287N - m/\293 F

= 0.0165 kg
2. Conservation of mass (Eq. b)
My  0.0165kg

= 0.000825 kg

3. IGL (apply to pump cylinder):
mpumpRmrT

pump =
~ (0.000825 kg) (287 J )(293 K)
(101 X 10° Pa) ‘kg - K/\ 1

= 0.687 L

Review the Solution and the Process
1. Skills. Notice how the system was idealized: a piston/
cylinder, a check valve, and a volume to hold air.
2. Discussion. The calculated volume is slightly less than the
volume of a typical wine bottle (750 mL).
3. Knowledge. The specific gas constant R was found in Table A.
Note that R is different than the universal gas constant R,,,
4. Discussion. To estimate the size of bike pump, assume the
typical user can comfortably apply a downward force of
about 125 N (28 Ibf). Thus, the area of the piston (using
gage pressure) is about
A = Fjp = (125N)/(350 X 10’ Pa) = 0.00036 m’.
The corresponding length of the pump is
Lyump = VA
= (0.000687 m*)/(0.00036 m®) = 1.92 m

A pump that is nearly 2 meters tall is not practical, so we
would not recommend this solution.

Learning the Wales-Woods Model

Learning the WWM is straightforward. Practice the six thinking operations and the embedded
skills. Get feedback from teachers or coaches. Recognize that learning the WWM requires a lot
of time and patience. It is much like learning the golf swing. Understanding the golf swing is
easy, but learning to swing the golf club consistently requires practice over a long period of time.

1.8 Checking for Dimensional Homogeneity (DH)

Checking for DH is a simple and effective approach for checking an equation. Because engi-
neers frequently check for validity, this topic is presented next.
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Dimensional Homogeneity (DH)

When the primary dimensions of each term of an equation are the same, the equation
Dimensionally Homogeneous, or DH for short. Example 1.4 shows how to check an equatis
for dimensional homogeneity.

EXAMPLE 1.4 Take Action (Execute the Plan)

Applying Dimensional Homogeneity to the Ideal Gas Law : 1. Primary dimensions (first term)

o From Table A.6, the primary dimensions are

Problem Statement

Show that the ideal gas law (density form) is dimensionally fp] = —Aiz
homogeneous. : LT

P2 Primary dimensions (second term)
Define the Situation . ; .
o From Table A.6, the primary dimensions are

The ideal gas law (density form) is p = pRT.

: [p] = M/L®
State the Goal [R] = L*/0T?
: [T] =0

Prove that the ideal gas law is DH.

« Thus
Generate Ideas and Make a Plan

: : MY/ L’ M
To check for DH, show that the primary dimensions of each : [pRT] = |5 5 )0) =

: L’J\6T LT
term are the same. The steps are :

. ) . ) i 3. Conclusion: The ideal gas law is dimensionally
1. Find the primary dimensions of the first term. : homogeneous because the primary dimensions of each
2. Find the primary dimensions of the second term. term are the same.

3. Prove dimensional homogeneity by comparing the terms.

Dimensionless Groups

Engineers often arrange variables so that primary dimensions cancel out. For example, co;
sider a pipe with an inside diameter D and length L. These variables can be grouped to form
new variable L/D, which is an example of a dimensionless group. A dimensionless group is a1
arrangement of variables in which the primary dimensions cancel.

: EXAMPLE. The Mach number M, which relates fluid speed V to the speed of sound c, is
i common dimensionless group.

Vv
M=
c
: EXAMPLE. Another common dimensionless group is named the Reynolds number ar
i given the symbol Re. The Reynolds number involves density, velocity, length, and viscosity |

Re = — (1.1

The convention in this text is to use the symbol [-] to indicate that the primary dimensions «
a dimensionless group cancel out. For example,

[Re] = [%] =[] nr

Dimensionless groups are also called w-groups.



Primary Dimensions of Derivative and Integral Terms

Because many equations in fluid mechanics involve derivatives or integrals, this subsection
shows how to analyze these terms and introduces the definition of the derivative and integral.
Let’s start with the derivative. In calculus, the derivative is defined as a ratio:

o _ A
dy A;I—I»lo Ay

where Afis an amount or change in a dependent variable and Ay is an amount or change in a
independent variable. Thus, the primary dimensions of a first-order derivative can be found by

using a ratio:
-1

The primary dimensions for a higher-order derivative can also be found by using the basic
definition of the derivative. The resuiting formula for a second-order derivative is

[g] - A}T,OA%@ = [i] - (1.14)

SRS
For example, applying Eq. (1.14) to acceleration shows that

Yy
2)-[2)-+
dr # T?

To find primary dimensions of an integral, recall from calculus that an integral is defined as an
infinite sum of terms that are very small (i.e., infinitesimal).

[ray= 1 Siran
Thus,
[ra] = vy s

For example, position is given by the integral of velocity with respect to time. Checking pri-
mary dimensions for this integral gives

Uth]=[V][t]=—LT--T=L

Summary One can find primary dimensions on derivative and integral terms by applying
fundamental definitions from calculus. This process is illustrated by Example 1.5.

EXAMPLE 1.5 Define the Situation

Finding the Primary Dimensions for a Derivative and an _d'u . d
Integral Term 1 is p.@. Term 2 is alP dv.
: ¥
Problem Statement : State the Goal
d? i b . ; :
Find the primary dimensions of p.d—,;, where p. is viscosity, Find the primary dimensions on term 1 and term 2.

y
u is fluid velocity, and y is distance. Repeat for ;Jp d¥ where
t is time, ¥ is volume, and p is density. g ¥ :
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o Combine the previous two steps:

dzu] B [dzu] B (M)(L/T)_ M
“‘d},z B dyz LT LZ LZTZ

Generate Ideas and Make a Plan

1. Because a second-order derivative is involved in term 1,
apply Eq. (1.14).

2. Because a first-order derivative and an integral is involved  : ) . ) d
in term 2, apply Eqs. (1.13) and (1.15). : 2. Primary dimensions of 7 | p d¥
: ¥
Take Action (Execute the Plan) « Find primary dimensions from Table A.6:
1. Primary dimensions of p.d-l_‘- : (=T
dy” [p] = M/L’
o From Table A.6: (¥ =1
(n] = M/LT : o Apply Egs. (1.13) and (1.15) together:
e -G
=L : ar)® t L’J\T T

» Apply Eq.(1.14): : ¥

[dzu] [ u] _ur
d}'z yZ L}

Primary Dimensions of a Constant

Some equations have constants, so this subsection shows how to analyze these terms. Tt
method is illustrated by the next two examples.

: EXAMPLE. The hydrostatic equation (below) relates pressure p, density p, the gravitation
i constant g, and elevation z. Find the primary dimensions on the constant C.

p + pgz = constant = C

: Solution. For DH, the constant C needs to have the same primary dimensions as p and pg
¢ Thus the dimensions of C are [C] = M/LT>.

: EXAMPLE. Suppose velocity V is given as a function of distance y using two constants
i and b (below). Find the primary dimensions of the constants.

V(y) = ay(b - y)

Solution. For dimensional homogeneity both sides of this equation need to have primary d
: mensions of velocity: [L/T]. By inspection, one can conclude that [b] = L and [a] = L ir-
: To validate this solution, check the primary dimensions on the right side of the given equatio

1 L

s = ) = Wyl - 51 = (5o = &

Because these dimensions match the dimensions on velocity, the equation is DH.
1.9 Summarizing Key Knowledge

Definition of Engineering Fluid Mechanics and Learning

¢ Engineering is an art and a process for applying math, science, and technology to design
products that benefit humankind.
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® Fluid Mechanics is the branch of physics that is concerned with forces, motion, and energy
as these ideas apply to materials that are in the liquid or gas phases.

® Learning is the process of (a) developing (or improving) one’s abilities to do something
useful, while also (b) increasing one’s capacity for future learning.

Fluids, Liquids, and Gases
® Both liquids and gasses are classified as fluids. A fluid is defined as a material that deforms
continuously under the action of a shear stress.

® A significant difference between gases and liquids is that the molecules in liquids
experience strong intermolecular forces, whereas the molecules in gases move about freely
with little or no interactions except during collisions.

® Liquids and gases differ in many important respects. Gases expand to fill their containers,
whereas liquids will occupy a fixed volume. Gases have much smaller values of density
than liquids. For other differences, see Table 1.1 (p. 4).

Ideas for Idealizing Material Behavior
® A microscopic viewpoint involves understanding material behavior by understanding what
the molecules are doing.

® A macroscopic viewpoint involves understanding material behavior without the need to
consider what the molecules are doing.

® In the continuum assumption, matter is idealized as consisting of continuous material that
can be broken into smaller and smaller parts.

® The continuum assumptions applies to most fluid flows.

® A fluid particle is a small quantity of fluid with fixed identity and with length dimensions
that are very small (e.g., 1/100th) as compared to problem dimensions.

Units and Dimensions

® Dimensions and units are the basis for measurement.
® A dimension is a category for measurement. Examples include mass, force, and energy.
® Units are the divisions by which a dimension is measured.

¢ Each dimension can be quantified using a variety of different units. For example, energy
can be quantified using joules, calories, ft-1bf, and N-m.

® All dimensions can be expressed using a limited set of primary dimensions. Dimensions
that are not primary dimensions are called secondary dimensions.

¢ Fluid mechanics uses four primary dimensions: mass (M), length (L), time (T), and
temperature ().

The Grid Method

¢ The grid method is a systematic way to carry and cancel units.

® The main idea of the grid method is to multiply terms in equations by the pure number
1.0 (called a conversion ratio).

® A conversion ratio is an equality relationship between units such that the pure number
1.0 appears on one side of an equation. Examples of conversion ratios are 1.0 = (1.0 kg)/
(2.21bm) and 1.0 = (1.0 Ibf)/(4.45 N).
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The Ideal Gas Law (IGL)

Many real gases can be idealized as an ideal gas.
In the IGL, temperature must be in absolute temperature units (Kelvin or Rankine).
In the IGL, pressure must be absolute pressure, not gage or vacuum pressure,
Three useful and equivalent ways to express the IGL are given here.

p = pRT (density form)

p = mRT (mass form)

p¥ = nR,T (mole form)

The universal gas constant R, and the specific gas constant R are related by R = R, /M
where M is the molar mass (kg/mol) of the gas.
For a summary of the equations of the IGL, see Table 1.5 (p. 14).

The Wales-Woods Model (WWM)

The WWM is an idealization of what experts do when they solve problems.

The WWM is comprised of six thinking operations: define the situation, state the goal,
generate ideas, make a plan, take action, and review the process and the results. Table 1.6
on page 17 summarizes the thinking operations.

Each thinking operation can be broken down into specific actions (skills); see Example 1
{p. 16) for a listing of relevant skills.

Dimensional Homogeneity (DH)

Dimension homogeneity means that each term in an equation has the same primary
dimensions. This means that each term will also have the same units.

To check to see if an equation is DH, calculate the primary dimensions on each term.

A dimensionless group (also known as a w-group) is a group of variables arranged so that
the primary dimensions cancel out.

From calculus
» The derivative is defined as a ratio:

¥ _ A
dy - A;I—EO Ay
b The integral is defined as a infinite sum of small terms:
N
J:fdy = lim > fAy
N—oo =]

To find the primary dimensions on a derivative or integral term, apply the definitions of
these operations.
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PROBLEMS

PLUs Problem available in WileyPLUS at instructor’s discretion.

Defining Engineering Fluid Mechanics (§1.1)
1.1 Read the definition of engineering in §1.1. How does this

compare with your ideas of what engineering is? What is similar?
What is different?

1.2 Given the definition of engineering in §1.1, what do you
think that you should be learning? How do you know if you have
learned it?

1.3 Should the definition of engineering in §1.1 include the idea
that engineers also need to be very good with humanities and
social sciences? What do you believe? Why?

1.4 Select an engineered design (e.g., hydroelectric power as in
a dam, an artificial heart) that involves fluid mechanics and is
also highly motivating to you. Write a one-page essay that
addresses the following questions. Why is this application
motivating to you? How does the system you selected work?
What role did engineers play in the design and development of
this system?

1.5 Many engineering students believe that fixing a washing
machine is an example of engineering because it involves
solving a problem. Write a brief essay in which you address the
following questions: Is fixing a washing machine an example of
engineering? Why or why not? How do your ideas align or
misalign with the definition of engineering given in §1.1?

Describing Liquids and Gases (§1.2)

1.6 Propose three new rows for Table 1.1, (p. 4, §1.2) and fill them in.

1.7 Based on molecular mechanisms, explain why aluminum
melts at 660°C, whereas ice will melt at 0°C.

PROBLEMS
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1&3\' Guided Online (GO) Problem, available in WileyPLUS

instructor’s discretion.
Idealizing Matter (§1.3)
1.8 PLU's The continuum assumption (select all that apply)

a. applies in a vacuum such as in outer space

b. assumes that fluids are infinitely divisible into smalle;
and smaller parts

c. is a bad assumption when the length scale of the prot
or design is similar to the spacing of the molecules

d. means that density can idealized as a continuous fun
of position
e. only applies to gases
1.9 @s A fluid particle
a. is defined as one molecule
b. is small given the scale of the problem being conside:

c. is so small that the continuum assumption does not a

Dimensions and Units (§1.4)

1.10 'PLUS For each variable given, list three common units.

a. Volume flow rate (Q), mass flow rate (m), and pressur:
b. Force, energy, power

c. Viscosity

- lll _ﬁ"&-'ln Table E2 (front of book), find the hydrostatic

equation. For each form of the equation that appears, list th
name, symbol, and primary dimensions of each variable.

1.12 FLU's For each of the following units in Table E1 (front
book), present in terms of its primary dimensions: kWh, poi:
slug, cfm, cSt.
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1.13 In the context of measurement, a dimension is:
a. a category for measurement
b. astandard of measurement for size or magnitude
¢. an increment for measuring “how much”
1.14 F{U's What is the approximate mass in units of slugs for
a. a 2-liter bottle of water?
b. a typical adult male?
¢. a typical automobile?

1.15 'PLU’s In the following list, identify which parameters are
dimensions and which paramenters are units: slug, mass,
kg, energy/time, meters, horsepower, pressure, and pascals.

1.16 FLUs Of the three lists below, which sets of units are
consistent? Select all that apply.

a. pounds-mass, pounds-force, feet, and seconds.
b. slugs, pounds-force, feet, and seconds
c. kilograms, newtons, meters, and seconds.

Carrying/Canceling Units: Grid Method (§1.5)

1.17 FiUs In your own words, describe what actions need to be
taken in each step of the grid method.

1.18 FLUs Which of these is a correct conversion ratio? Select all
that apply.
a. 1 =1hp/(550 ft-Ibf/s)
b. 1 = 101.3 kPa/(14.7 Ibf/in?)
c. 1=3.785US.gal/(1.0L)
1.19 'FLU If the local atmospheric pressure is 93 kPa, use the
| grid method to find the pressure in units of
a. psia
b. psf
c. bar
d. atmospheres
e. feet of water
f. inches of mercury
1.20 FLUS Apply the grid method to calculate the density of
an ideal gas using the formula p = p/RT. Express your answer
in Ibm/ft’. Use the following data: absolute pressure is p = 60 psi,

the gas constant is R = 1716 ft-1bf/slug-°R, and the temperature
is T=180°F.
1.21 PLU's The pressure rise Ap associated with wind hitting
a window of a building can be estimated using the formula
Ap = p(V?/2), where p is density of air and V is the speed of
the wind. Apply the grid method to calculate pressure rise for
p = 1.2 kg/m® and V = 60 mph.
a, Express your answer in pascals.

b. Express your answer in pounds-force per square
inch (psi).

¢. Express your answer in inches of water column
(in H,0).

1.22 Apply the grid method to calculate force using F = ma.
a. Find force in newtons for m = 10 kg and a = 10 m/s’,

b. 6" Find force in pounds-force for m = 10 lbm
and a = 10 ft/s%.
P

c. ‘PLU's Find force in newtons for m = 10 slugand a = 10 ft/
1.23 PLU’s When a bicycle rider is traveling at a speed of
V = 24 mph, the power P she needs to supply is given by
P = FV,where F = 5 Ibf is the force necessary to overcome
aerodynamic drag. Apply the grid method to calculate:

a. power in watts.

b. energy in food calories to ride for 1 hour.
124 o Apply the grid method to calculate the cost in
U.S. dollars to operate a pump for one year. The pump power

is 20 hp. The pump operates for 20 hr/day, and electricity costs
$0.10 per kWh.

Ideal Gas Law (IGL) (§1.6)
1.25 Start with the ideal gas law and prove that
a. Boyle’s law is true.
b. Charles’s law is true,
1.26 Calculate the number of molecules in
a. one cubic centimeter of liquid water at room conditio:
b. one cubic centimeter of air at room conditions

1.27 Start with the mole-form of the ideal gas law and show th
steps to prove that the mass form is correct.

1.28 Start with the universal gas constant and show that

Ry, = 297 J/(kg « K).

1.29 FiUsA spherical tank holds CO, at a pressure of 3 atmospher
and a temperature of 20°C. During a fire, the temperature is
increased by a factor of 4 to 80°C. Does the pressure also increase
by a factor of 42 Justify your answer using equations.

1.30 An engineer living at an elevation of 2500 ft is conducting
experiments to verify predictions of glider performance. To
process data, density of ambient air is needed. The engineer
measures temperature (74.3°F) and atmospheric pressure

(27.3 inches of mercury). Calculate density in units of kg/m®,
Compare the calculated value with data from Table A.2 and
make a recommendation about the effects of elevation on
density; that is, are the effects of elevation significant?

1.31 ?;—o\' Calculate the density and specific weight of carbon
dioxide at a pressure of 300 kN/m? absolute and 60°C.

1.32 Determine the density of methane gas at a pressure of
300 kN/m? absolute and 60°C.

1.33 6—5\' A spherical tank is being designed to hold 10 moles ¢

methane gas at a pressure of 2 bar and a temperature of 70°F.
What diameter spherical tank should be used?

1.34 ;}' Natural gas is stored in a spherical tank ata
temperature of 10°C. At a given initial time, the pressure in the
tank is 100 kPa gage, and the atmospheric pressure is 100 kPa
absolute. Some time later, after considerably more gas is pumpe



into the tank, the pressure in the tank is 200 kPa gage, and the

temperature is still 10°C. What will be the ratio of the mass of

natural gas in the tank when p = 200 kPa gage to that when the
pressure was 100 kPa gage?

1.35 FLUS Ata témperature of 100°C and an absolute pressure of
5 atmospheres, what is the ratio of the density of water to the
density of air, p,,/p,?

1.36 6" Find the total weight of a 6 ft* tank of oxygen if the
oxygen is pressurized to 400 psia, the tank itself weighs 90 Ibf,
and the temperature is 70°F.

137 66" Adm’ oxygen tank is at 20°C and 700 kPa. The valve
is opened, and some oxygen is released until the pressure in the
tank drops to 500 kPa. Calculate the mass of oxygen that has
been released from the tank if the temperature in the tank does
not change during the process.

1.38 @S What is the (a) specific weight, and (b) density

of air at an absolute pressure of 600 kPa and a temperature

of 50°C?

1.39 Fius Meteorologists often refer to air masses in forecasting
the weather. Estimate the mass of 1 mi® of air in slugs and
kilograms. Make your own reasonable assumptions with

respect to the conditions of the atmosphere.

1.40 A bicycle rider has several reasons to be interested in the
effects of temperature on air density. The aerodynamic drag force
decreases linearly with density. Also, a change in temperature
will affect the tire pressure.

a. To visualize the effects of temperature on air density,
write a computer program that calculates the air density
at atmospheric pressure for temperatures from —10°C
to 50°C.

b. Also assume that a bicycle tire was inflated to an absolute
pressure of 450 kPa at 20°C. Assume the volume of the
tire does not change with temperature. Write a program
to show how the tire pressure changes with temperature
in the same temperature range, —10°C to 50°C.

Prepare a table or graph of your results for both problems. What
engineering insights do you gain from these calculations?

1.41 A design team is developing a prototype CO, cartridge for
a manufacturer of rubber rafts. This cartridge will allow a user to
quickly inflate a raft. A typical raft is shown in the sketch.

//\ :;\
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Assume a raft inflation pressure of 3 psi (this means that the
absolute pressure is 3 psi greater than local atmospheric
pressure). Estimate the volume of the raft and the mass of C
in grams in the prototype cartridge.

1.42 A team is designing a helium-filled balloon that will fly
an altitude of 80,000 ft. As the balloon ascends, the upward fo
(buoyant force) will need to exceed the total weight. Thus, we
is critical. Estimate the weight (in newtons) of the helium ins
the balloon. The balloon is inflated at a site where the atmosp
pressure is 0.89 bar and the temperature is 22°C. When inflatc
prior to launch, the balloon is spherical (radius 1.3 m) and th
inflation pressure equals the local atmospheric pressure.

Engineering Calculations and the WWM (§1.7)

1.43 Apply the WWM and the grid method to find the
acceleration for a force of 2 N acting on an object of mass
7 ounces. The relevant equation is Newton’s second law of
motion, F = ma. Work in SI units, and provide the answer
in meters per second squared (m/s?).

1.44 In Example 1.2 (p. 16, §1.7), what are the three steps th
engineer takes to “State the Goal™?

1.45 For Problem 1.37 above, complete the “Define the Situa
“State the Goal,” and “Generate Ideas and Make a Plan”
operations of the WWM. '

Dimensional Homogeneity (DH) (§1.8)

1.46 The hydrostatic equation is p/y + z = C, where p is pres
v is specific weight, z is elevation, and C is a constant. Prove th
the hydrostatic equation is dimensionally homogeneous.

WiLEY'

1.47 "PLU's Find the primary dimensions of each of the follo
terms.

a. (pV?)/2 (kinetic pressure), where p is fluid density a
V is velocity

b. T (torque)

c. P (power)

d. (pV2L)/a (Weber number), where p is fluid density,
velocity, L is length, and o is surface tension

1.48 The power provided by a centrifugal pump is given by
P = mgh, where m is mass flow rate, g is the gravitational
constant, and k is pump head. Prove that this equation is
dimensionally homogeneous.
1.49 'PLU’s Find the primary dimensions of each of the follo
terms.

a. J pV?dA, where pis fluid density, V is velocity,and A is
A

d
b. —-J pV d¥, wher 3 is the derivative with respect
dtJ,, dt

time, p is density, and ¥ is volume. .



