I. Introduction

Unsteady flow problems in engineering practice are of significant
importance because they can cause excessive pressures, noise, cavitation
and vibration far beyond that indicated by steady flow analysis. In fact,
the problems created by hydraulic transients may be so severe as to
constitute actual or performance failure of a system,

1.1 Unsteady Flow Analysis

The analysis of unsteady flow in pipeline systems can be divided into
two broad categories. The first, called “surge” or “rigid water column”
theory treats the fluid as an inelastic substance wherein pressure changes
Propagate instantaneously throughout the system and elastic properties of
the pipe walls are of no consequence. The equations describing this type of
flow are generally ordinary differential equations which can be solved in
closed form or with relatively straight-forward numerical techniques.
Where applicable, this approach is the easiest to apply and should always
be considered as a possibility to adequately approximate problems under
consideration.

The second category of problems are classified under “elastic” or
“water hammer” theory wherein the elasticity of both the fluid and the
pipe walls is taken into account in the calculations. Pressure waves created
by velocity changes depend on these elastic properties and they propagate
throughout the pipeline system at speeds depending directly on these
elastic properties. While the elastic theory more accurately reflects the
behavior of the unsteady flow system, successful analysis hinges on the
ability to solve two nonlinear partial differential equations. As a
consequence, the analysis is more complex and difficult to manage than
for inelastic theory. However, Streeter and Wylie [1] have demonstrated
that with the assistance of a highspeed digital computer, the method of
characteristics can be applied to solve the equations in a relatively general
and easily understood manner. Their text represents a compilation of
computer analysis techniques and is the most significant book in the area
of water hammer analysis to be published in years,

Before computer analysis the general equations describing water
hammer in pipeline systems were simplified in some manner to permit
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2 UNSTEADY FLOW IN PIPELINES

solution by arithmetic, graphical or algebraic means. Nonline?r terms
were neglected, friction was included by lumping or approximating, or it
was left out altogether. Matching of boundary conditions at pumps and
turbines was, at best, difficult and understood by relatively few engineers.
Today, modern analysis techniques, including numerical methods of
solving partial differential equations, has brought within reach of most
engineers the capability of solving accurately a wide range of water
hammer problems. Although digital computers are needed, they need not
be large. Undoubtedly in the near future certain simple types of unsteady
flow problems will even be solved on programmable "pocket”.calculators.

Accordingly, it is the purpose of this book to make available to the
engineering profession the means of employing both rigid water cglumn
theory and elastic theory in solving problems related to the design 9f
pipeline systems. Sophisticated and obscure points and developments will
not be included. Methods of analysis other than recent computer-oriented
methods will not be addressed. The emphasis will be placed on providing a
readable self-study book with which the engineer can instruct himself on
unsteady flow analysis with enough applications and computer programs
included to give him a start in building his own library of programs.

Because the emphasis in this work is on water hammer analysis, the
history of unsteady flow without elastic effects will not be included. Rather
a brief history of water hammer analysis will be presented to give the
reader a perspective on the evolution of this type of analysis over the last
100 years.

1.2 History of Water Hammer Analysis

While it is difficult to establish the beginnings of unsteady flow
analysis in pipelines in general, it certainly dates back to early in the 19th
Century. However, water hammer analysis history is more readily
documented. Some of the earliest work, according to Wood [2], was
when Wilhelm Weber in the 1850’s measured the effects of pipe wall
elasticity on wave propagation speed. He also developed the continuity
and fluid dynamic equations which were the basis for later analytical
studies. Wood [2] also states that in 1875 Marey published the results of
his careful laboratory work which proved wave speed was constant for a
given situation and depended on pipe elasticity. In 1878, Korteweg
considered both pipe and fluid elasticity in developing an equation for
wave speed and his equation is essentially that used today.

Again from Wood we learn that Jules Michaud first dealt
experimentally with water hammer in 1878 by using air chambers and
pressure relief valves in pipelines to reduce the effects of sudden gate or
valve closures. In 1883, Grameka published an analysis showing the
effects of friction but he was unable to solve the equations.

It is less difficult to identify the beginnings of water hammer analysis
wherein fluid and pipe elasticity are important in the computation of
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water hammer pressure. According to Rouse and Ince [3], Nicolai
Joukowsky in 1898 was clearly the first to show that the pressure rise in a
water line was related to the change in flow velocity, the wave speed and
the fluid density. However, Wood [2] states that in a less well known but
equally important study, J. P, Frizell in 1897 conducted an analysis of the
effect of water hammer pressures on speed regulation of a hydroelectric
plant turbine in Ogden, Utah. Apparently, without knowledge of
European work, he developed his own wave speed and pressure intensity
equations for sudden valve closure. He also noted the effect of branched
lines and wave reflection including the relationship between gate closure
time and wave period.

At virtually the same time, Nicolai Joukowsky in Moscow published a
report of his analytical and experimental studies of water hammer as it
related to the Moscow municipal water system. Joukowsky was
well-acquainted with previous work. He derived equations for wave speed
and pressure increase and considered the problems of pressure wave
propagation into smaller pipes, wave reflection from open pipes, the
relationship between gate closure time and wave period, effects of air
chambers, and the use of spring-controlled surge valves. Certainly, in
retrospect, Frizell and Joukowsky would have to share the title of fathers
of water hammer analysis.

The next giant to appear in the field of water hammer analysis was
Lotrenzo Allievi. According to Rouse et al. [3], in 1913, this Italian
hydraulician created a mathematical and graphical treatment of water
hammer problems which was the foundation for further developments in
the field for the next S0 years. His contribution is too monumental to
review in any detail.

The first part of the 20th Century was devoted to applying the work of
Joukowsky and Allievi to water hammer problems. By a quirk of history,
Frizell's significant contribution was largely ignored. Much of the work
seemed directed to the problems associated with hydraulic turbines in
hydroelectric plants. Most of the books available today [4, 5, 6, 7] are
largely related to this application.

In the 1930’s, friction was included in the analysis of water hammer
problems and the First Symposium on Water Hammer was held in
Chicago in 1933. Topics covered included high-head penstocks,
compound pipes, surge tanks, centrifugal pump installations with air
chambers and surge relief valves.

In 1937, the Second Water Hammer Symposium was held in New
York with presentations by both American and European engineers. The
leaders in the field were in attendance as papers were presented on air
chambers, surge valves, water hammer in centrifugal pump lines and
effects of friction on turbine governing.

During this period graphical techniques of analysis thrived under the
work of Allievi, Angus, Bergeron, Schnyder, Wood, Knapp, Paynter, and
Rich. In later years moves were made to more accurately incorporate
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frictional effects into the equations. Also more sophisticated boundary
conditions were employed and more general forms of the basic equations
were used in analysis.

The arrival of the 1960’s and the advent of the high-speed digital
computer heralded the beginning of a new era in water hammer analysis.
The work of Streeter and Wylie [1] in showing the application of the
computer to complete and comprehensive water hammer analysis opened
the door to the engineering profession at large to consider water hammer
analysis as part of normal design procedures without the need of h.iring
one of the few individuals previously capable of performing an analysis. _In
this way, as much as any other, Victor Streeter should rank along with
Allievi and Joukowsky as one of the outstanding contributors in water
hammer history. )

Today the emphasis on unsteady flow analysis is almost entirely
concentrated on computer applications. Since the appearance of Streeter
and Wylie’s [1] book only one other reference in recent_ years has
appeared. In 1970 Tullis [8] published the proceedings of an institute on
the control of flow in closed conduits held at Colorado State University.
Interestingly enough, this year two other works in addition to this one are
appearing in print. Wylie and Streeter [9] are offering a text on hydr.auhc
transients in closed conduit systems and Martin [10] is also preparing a
book on transient analysis. Hopefully, this trend to make available the
latest techniques in unsteady flow analysis will continue in future years.

II. Fundamental Concepts

Before moving into the details of the unsteady flow analysis it is
important to develop an understanding of the action of water hammer in a
simple situation. Such an understanding will help determine when to
apply elastic theory and understand the sequence of events occurring in
later more complicated problems.

Because including friction in unsteady flow analysis is important and
because it may be necessary to apply the analysis to a wide variety of
problems including other liquids as well as water, a pipe friction
formula must be used which is sufficiently versatile to encompass these
needs. Accordingly, the Darcy-Weisbach formula

L v?
= f= =
by d 2g

will be used in conjunction with the Moody Diagram which can be used to
find the friction factor f. The reader would be well-advised to review the
basis for this formula and its application by referring to any recent
clementary fluid mechanics text.

2.1 Simplified Description of Water Hammer

To grasp a basic understanding of the action of a liquid pipe system
under the action of water hammer waves, it is easiest to consider as simple
a system as possible. The system we will examine is shown in Figure 2-1 as
a horizontal, constant-diameter pipe leading from a reservoir to some
unknown destination far downstream. A valve is placed a distance L from
the reservoir. Friction in the line is assumed negligible to simplify the
analysis; and because velocity heads are generally quite small in relation to
water hammer pressures, the difference between the energy gradeline (EL)
and the hydraulic gradeline (HGL) will be neglected.

Water hammer will be introduced into the system by suddenly closing
the valve. The activity will occur both upstream and downstream of the
valve but for our purposes, we will observe only what occurs upstream of
the valve,

Upon sudden closure of the valve the velocity of water at the valve is
forced suddenly to zero. As a consequence, the pressure head at the valve
increases suddenly by an amount AH (see figure). The magnitude of AH is

b
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Figure 2-1. Steady state flow situation for simple water hammer,

just the amount of pressure head necessary to change the momentum of
the liquid flowing at velocity V at the valve to zero.

The increase in pressure at the valve results in a swelling of the pipe
and an increase in the density of the liquid. The amount of pipe stretching
and liquid volume decrease depends on the pipe material and size and the
liquid elasticity. Generally, for common pipe materials and liquids, the
percentage change is less than 0.5 percent. The deformation has been
greatly exaggerated in Figure 2-2 for purposes of illustration.

The pressure increase propagates upstream at a wave speed of a,
which is determined by the elastic properties of the system and liquid and
the system geometry. The wave speed will remain constant so long as the
above remain constant. Traveling at a speed a, the wave will reach the
reservoir in a time L/a. At this time the velocity in the pipe is everywhere
zero, the pressure head is everywhere H + AH, the pipe is stretched and
the fluid is compressed.

Under these conditions the liquid in the pipe is under a condition of
non-equilibrium because the pressure head in the reservoir is only H. As a
result, flow begins to occur toward the reservoir as the distended pipe
ejects liquid in that direction. The reverse velocity is equal in magnitude to
the initial steady velocity (as a result of neglecting friction) and the source
of liquid for the reverse flow is the liquid previously stored in the stretched
pipe walls as compressed liquid.

This process continues and at time 2 L/a, the pressure has returned
to normal (but with reverse flow occurring) throughout the pipe. However,
there is no source of liquid at the valve to supply the upstream flow hence
the pressure head drops an additional AH to force the reverse velocity to
zero. This drop in pressure causes the pipe to shrink and the liquid to
expand.
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Figure 2-2. Pressure wave propagation In a simple pipe system.
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At time 3 L/a this effect has propagated to the reservoir and the
velocity of flow is everywhere zero. However, the pipe pressure head is AH
below that of the reservoir. Consequently, the pipe sucks in liquid from
the reservoir creating a velocity of flow equal to and in the same direction
as the original steady flow. While this is occurring the pressure in the pipe
is also returning to its original value.

After time 4 L/a this wave has reached the valve and at this instant
the flow is identical to its original steady state configuration. This elapsed
time constitutes one wave period. As time goes on, this cycle of events will
continue without abatement (in the absence of friction).

Some fundamental concepts can be gained from examining more
closely what occurs in this system. For example, it is clear that the time
parameter which best describes the sequence of events in a meaningful
fashion is not time alone but the ratio L/a. It is informative to plot the
pressure head at various points in the pipeline as a function of time as
shown in Figure 2-3. Note the pressue head as the valve fluctuates between
H + AH whereas the pressure head at other locations also experiences
periods of time when pressure head is H.

One basic point can be made from Figure 2-3b. Note that the
pressure does not increase at a point until enough time has occurred for
the wave to travel from the closed valve. Once the pressure head has
increased, it remains there only long enough for “relief” to arrive back
from the reservoir. This idea of “time of communication” or “message
propagation time” is fundamental to a good understanding of the
happenings in a system undergoing water hammer.

A second important point can be seen by examining Figure 2-3Ja more
closely. Suppose that instead of closing the valve suddenly, we were to
close it in 10 steps, each increasing the pressure head at the valve by
AH/10. A further requirement would be that the complete closure of the
valve would be accomplished before 2 L/a seconds had elapsed. It is clear
that the pressure head at the valve would still build up to the full AH value
because “relief” from the resetvoir could not arrive before 2 L/a seconds.
The point to be made is that a valve need not be closed suddenly to create
the maximum water hammer pressure. Indeed, any closure time less than
the time necessary for relief to return from a reservoir (a larger pipe may
suffice) will result in full water hammer pressures. In fact, as we will see
later, because of the nature of the way a valve shuts off flow in a pipeline
by creating large head losses, it may be necessary to close the valve in a
time much greater than 2 L/a to prevent high pressures from occutring.

2.2 Unsteady Flow in Piping Systems

Unsteady flow in piping systems is a common occurrence. Indeed,
steady flow is so rare that one might question the advisability of devoting
so much time to a study of its behavior. Virtually, all hydraulic design is
based on steady flow analysis and to a significant degree, the unsteadiness
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Figure 2-3. Pressure head vs. time at three locations along the pipe.
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occurring in the pipeline systems is of little consequence because of its
transient nature and its small magnitude of change. 1t is with those few
cases wherein significant changes in velocity can cause large changes in
pressure that we are concerned.

As discussed earlier, unsteady flows are divided into two categories,
depending on the type of analysis required to accurately describe the flow
behavior. Often it is not clear which type of analysis should be used
because there is no distinct line of demarcation between the two arcas of
application. On the other hand, there are cases where it is obvious which
type of approach should be used. For example, if a large storage tank 50 ft
in diameter and 75 ft tall were to be drained through a 6-inch pipeline
1000 ft long, it would be foolish to use elastic theory in a traditional water
hammer analysis. Yet, if during the draining process, there was the
possibility of having to close the discharge valve suddenly, then significant
water hammer could occur and elastic theory should be used.

2.3 The Unsteady Flow Equation

From earlier discussions it is clear that whenever changes in velocity
in a pipe system are so slow that the elastic wave has time to propagate
throughout the system many times during the period of change, then rigid
water column theory can be applied. When elastic effects are ignored, the
development of an appropriate equation is relatively easy. The resulting
equation is referred to as the one-dimensional unsteady flow equation.
Two- or three-dimensional equations have no practical application to
pipeline flow so they will not be considered. ?

The unsteady flow equation, known widely in differential form as the
Euler equation, is derived by applying Newton’s Second Law to a small
cylindrical fluid particle. Considering only the streamline direction,

dv
ZF, = mag = m3

Substituting the force components and mass from Figure 2-4 into this
equation results in

PAA-(p*'-g';LAs) AA -Wsin 8 - TAsnd = —:—r %‘t-'- e (22

After some manipulation, we end up with the one-dimensional Euler
equation

.1 dp.oz
y 98 08

Expanding the particle diameter to the size of the pipe cross-section
and introducing the average velocity V gives a more useful equation
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where D is the pipe diameter and 1, is the shear stress at the wall,

Because‘the above form with the shear stress 1, is not directly useful
we will substitute a reaction between 1, and the Darcy-Weisbach frictior;
factor f. The result of this substitution is

SISOk
L gy T (2-5)

Recognizing thatzis a fut_1ction only of s and represents the elevation
above some datum of _the pipe centerline, we can change the partial
derivative to a total derivative. Finally, the equation has the form

Familiarization with the application of the i i i
lia, 1 equation will be gained b
examining several different flow situations. £ ’




III. Rigid Water Column Theory

The unsteady flow equation can be used to solve a wide range of
pipeline problems which fall within the domain of rigid water column
theory. We will begin with some of the simple problems and proceed to
more comprehensive ones.

3.1 Flow Establishment in a Horlzontal Pipe

If the discharge in the pipeline shown in Figure 3-1 is controlled by
the valve at the downstream end, the pressure in the pipe is everywhere
equal to H,, when the valve is closed. When the valve is suddenly opened,
the pressure at the valve drops instantly to zero and the fluid begins to
accelerate.

The equation describing this flow is obtained by integrating Equation
2-6 with respect to s.

1wy [ aeg. [ vy f1av
-1 7 3% ds fds ds f2gD ds fg N ds
L L L L

®

L |
1

Figure 3-1. Simple system for applying rigid water column theory.
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In a horizontal constant-diameter pipe, the integration is made quite easy
because (dz/ds}) = 0 and V is a function of time only. We also assume the
f-value in unsteady flow is the same as for a steady flow at a velocity equal
to the instantaneous value. The result is

i p2 fl" V2=£ﬂ

Yy v 2gD

Because the pressure head p,/y = constant = H,, and because p,/y = 0
for t > 0, the equation is reduced to

fL
Ho'i-él—)v

Integration is performed by separating the variables to form

L dv
dt = = | —————
f gfﬂo-%‘”

The integration gives the following equation for the time necessary to
accelerate the flow to a given velocity V.

-‘/2gDHo oy
(= LD T
7gfH, ¢ >
. gD v
L

Recognizing that V2g H\D/fL. = V,, the steady state velocity, the
equation for t becomes

LV Vo +V

]

= I
26H, °V_-V

t

It is important to note that as steady flow is approached, V =V and as a
consequence t = . Of course this answer is unacceptable so we propose
that when V. = 0.99 V,;,, we have essentially steady flow. With this
interpretation,

LV,
top T265 e (3-6)
0
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Example 3-1

A horizontal pipe 24 inches in diameter and 10,000 feet long leaves a
reservoir 100 feet below the surface and terminates in a valve. The steady
state friction factor is 0.018 and it is assumed to remain constant during
the acceleration process.

If the valve opens suddenly, calculate how long it will take for the
velocity to reach 99 percent of its final values. Neglect minor losses.

Solution

LV,  2.65x10,000x V,
(36)  toy =265 T~ 335x700

v?.
Solving for V, hy = f% %

0.018 x 10,000 x V2
100 = T ,V, =8.46 fps

- 2.65x10000x8.46
32.2x 100

Substituting into (3-6), ty,

tye = 70 sec.

The following graph illustrates how the velocity approaches its steady
state value with time.

1.0
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3.2 Pressure Caused by Valve Closure in a Horlzontal Pipe

Valve closure can cause some analysis problems beyond those of
instantaneous valve openings. This possibility is apparent when one
considers the rapid valve closure which caused the elastic water hammer
problem discussed in an earlier chapter. The difficulty occurring in this
problem is precipitated by the fact that the pressure just upstream of the
valve is no longer zero, but is determined by loss characteristics of the flow
through the valve.

Figure 3-1 can still be used to represent the problem. At t = Q the
velocity is V and the EL - HGL is approximately a straight line between
the reservoir surface and the pipe outlet (neglect minor losses) under
steady flow conditions.

The differential equation representing this problem is the same as
Equation 3-1

ML 2 _ LdV .
vV gdt' ....................... 3-7

Unfortunately, there are two dependent variables so we need another
equation.

The second equation devolves from an energy equation written across
the valve

where Kj_ is the valve loss coefficient. Substituting this equation into
Equation 3-7 gives

If K were a constant, integration would proceed as with the flow
establishment case. However, K] is a function of the amount the valve is
open. Further complicating the problem is the fact that there is not an
equation directly relating Ky to either time or velocity. Hence, the
solution to the differential equation must be a numerical one.

The approach would be to write the equation in finite difference
form. With a valve closing schedule specified, the value of Kj would be
known at any time and would be assumed constant over each At time
interval. One form of the equation would be

Ve ) = V(O + B2 I:Ho : (KL(t) . EQL) VTgQ:l

D
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:vi:l.rlxzri each of the variables on the right hand side would be evaluated at

That there is indeed a limit of applicability to this appr
seen with Equation 3-7. As faster and tPaster vage closure [t’ilr}n:sa c::': ?xlzege
dv/ dt.become§ quite large and, in the limit, goes to infinity. According t(;
Equation 3-7, in the limit p, /y — < also. The point at which rigid water
golumn theor;r fails to give acceptable results and a move to elastic theory
is necessary is hard to establish, because it depends on the individual
problem and the accuracy in analysis required.

Example 3-2

YVater flows from one reservoir to another through the pi
vel9c1ty pf 10 fps. The shutdown plan calls for a va!v% closurg pszhae:n:
which will cause the velocity to decrease linearly to zero in 100 seconds
The valv:e is located at the center of a 6440-ft long pipeline. -

Estimate the maximum and minimum pressures which will occur in
the system, locate them and give the time at which they will occur.

STEADY STATE E(-fa[

EPIPE MIDPOINT
VALVE

Solution

The general form of the unstead : . )
situation is nsteady flow equation applying to this

Y Y 28D g dt
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Given that the velocity will decrease linearly with time,

av _ 10
dt ~ 100

To solve the problem, we will consider it in two sections.

= .0.10 ft/sec?

Upstream section

fL 2 4 dv _
gDV t 0

_ fL 23220 (910
-100-——2gDv T (-0.10)

100 + 100 (0.10) - gg% v?

P2 qj0- L v2
Y

2¢D

Because we are looking for extreme values of pressure, it is clear that
(p2/Y)max = 110 ft when V = 0 which is at the instant of valve closure.

The minimum pressure occurs at steady flow where p, /y = 90 ft. An
instant after the valve begins to close, p,/y jumps to 100 ft.

In summary,

(pz /Y)max - 110 ftatt = 100 sec
(®,/Vmin = 90 ft just before valve starts to close

Downstream section
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Under steady flow conditions, py/y = 90 ft. At the instant the valve
begins to move, p,/y drops to 80 ft.

At the instant of valve closure, psly = 70 ft.
In summary,

(Py/Y)max = 90 ft at steady flow just before valve begins to close
(P;/Mmin = 70 ftatt = 100 sec

Both sections

(P/Ymax = 110 ft at upstream side of valve at t = 100 sec
®/YYmin = 70 ft at downstream side of valve at t = 100 sec

3.3 Unsteady Flow In Series Plpes

Engineers are generally confronted with piping systems which are
more complex than single constant-diameter pipes. This section illustrates
how to reduce a series pipe to a dynamically equivalent single pipe so that
the previous analysis techniques for single pipes can be used.

The concept of equivalent pipes is familiar to engineers. It is possible
to replace any minor loss or any given pipe with another pipe of any
convenient diameter. The only concern is that both the actual system and
the equivalent system have the same frictional losses at the given flow rate.

In applying the equivalent pipe idea to unsteady flow problems, the
concept of equivalence must be extended to include dynamic behavior as
well as friction. That is, the inertial effects of the actual and equivalent
systems must be similar.

Using the three-part series pipe below as a general model, we will
determine the relationships necessary to size the equivalent single
diameter pipe shown.

Equivalent Pipe

The first requirement is that the frictional head loss between A and B
be the same in each case. The equation is
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Hrl +Hf +Hfa = erq'

2
f,L, f,L, f,L, feqL e

K Q% +K 04K Q% =K
D} Dj D ng

where K is a collection of numerical values including pi and g. Bwause the
discharge in each section of the series pipe is the same at any instant, an
expression for friction loss equivalent follows from the above.

f L f,L, f f5L
fealeq _fils fla  fils
D Df Df  Dj
In more general terms for any number of pipes in series,
N

& - > 5
L = :
D? eq Di

i=1
where N is the number of pipes in series.

Now considering the dynamic behavior of the flow in the geries pipe,
we begin by writing the unsteady flow equations for each section.

P, ; aQ
3 7 dt

Py ch__ _ dQ

v v h dt

P, Pgq - dQ
e 4y =
v v s at

Adding the three equations together,

L, L L
%.p_d-(ﬂf +H, +Hf)=(_1 —2 3)£
¥ 1 2 3

+ +—
Y gA, A, gA;/ dt

Now, let us write the unsteady flow equation for the equivalent pipe.

pA - pB -H = Leq dveq _ dQ
vy dt dt
v Y eq g eq

Noting that p, = pA and pg = ppg, and that friction loss equivalence
gives
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erq Hy +Hg +Hg

we conclude

L, L, L, L

— =t
Aeq Al A2 AS

In more general form,

where N is the number of pipes in series. With Equations 3-11 and 3-12
and an arbitrarily picked f-value for the equivalent pipe, it is possible to
solve for the length and diameter of the equivalent pipe. Once the

equivalent pipe configuration is found, Equation 3-1 can be used to solve
for pressures.

3.4 Unsteady Flow in Parallel Pipes

The development of an equivalent pipe for a parallel pipe system is
similar to that previously done for series pipes. Again, we will use three
pipes and generalize the results to any number of pipes.

——’s_-O-J I 2 ]—ln_’
YLt .

1[a

—>= S o
s B

Equivalent Pipe
Following the criterion of frictional head loss equivalence,

B =h =
e = by, =y =y

This relationship leads to the equations

f L f.L f,L
]IQ12=K252Q22=K33

5 D} D D$
1 2 3

Qf =k-2A1
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where

Q, +Q, +Q, =Q
Substituting Equation 3-13 into the above expression for continuity gives

B o e st
feg Leq Dl Q +[feq Leq:l [ 2 ] Q
[ Deqg’ f,L, eq l)eq5 I eq

% %
foq L D$
+[Egeq!eq] [falaa] % =@

Dividing out Qeq and regrouping,

% %

D bl D?
(=] > [l
feqLeq 1 i

Now, addressing the dynamic behavior of the parallel system, we
write a dynamic equation for each pipe

dQeq
dt

Because of friction loss equivalence, the left hand side of the above
equations are equal, giving

A @
Writing the equation of continuity in differential form,
dQ, +dQ,+dQ, = dQ,

and substituting expressions for the dynamic equation gives

RIGID WATER COLUMN THEORY 23

L_ A L A
H o dQ+ 58 g, + 92 4 = do
eq L, “q L, €q Aeq L, eq eq
Dividing out dQeqv

A A
=_1 4+ 24
eq L, L, 3

Writing the areas in terms of diameter and generalizing

N 2
D;

i=1

An example problem is included to illustrate the use of the equivalent pipe
concept for complex pipe systems.

Example 3.3

A three-unit pumped storage facility is operating in the generating
mode. During emergency shut-down, the wicket gates on the turbines are
closed in such a manner that the velocities in the penstocks at the turbines
decrease linearly from 60 fps to zero in 30 seconds.

Compute the maximum pressure head at the wicket gates during
shut-down. Assume f-values are the same for all pipes.

EL 800" ¢
>

UNITS
L= ! =8'
L = 2000' T /

EL 400 J .—:))
D:=24' 1= — 5

Solution

First, the three parallel pipes are replaced by a single equivalent pipe.

D ? g
@G-16) =3 (—) = 0.240

L 800

€q
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& Y%
De?] 85
{3-15) I =3 [@(-)J = 19.20

eq
Solving the above two equations simultaneously gives

Dy = 11.54ftand L, = 555 ft
Now, the pipe system has been reduced to the series pipe shown below.

L= 2000' L=555"

.

D= 24 D=1il.54'

Next, using the series pipe equivalence relationships we reduce the
series pipe to a single constant-diameter pipe.

L
(3-12) 1= = 7.64
D 2
eq
L 555
(3-11) 8 - 22T 4 220 = (.00296
D} 248 i
eq
Solving these two equations simultaneously gives

Deq = 13.7 ft and Leq = 1437 ft

Computing the velocity in the equivalent pipe,

eq
Now, that we have a single constant di§meter pipe, we can use the
unsteady flow equation to solve for the maximum pressure.
LV: _ Ldv
g dt

\Y =—Ag— = 61.3 fps
eq

fLV? _(1437) 0-61.3

400- == - 3.0 “\322 30

fLVv?

2eD

The above equation for p,/y is good during the decs:leration process._lt is
ciear from this equation that the highest pressure will result when V = 0,

hence,

p!
— = 400+91.2-
Y

491 ft (213 psi) at the time valve is completely

p,/n
2 max |
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3.5 Accounting For Significant Minor Losses

If minor losses occur in the pipe system to the extent that they have a
noticeable effect on the results, then they must be incorporated into the
analysis. For a single pipe this can be done in two ways. In the first
method the pipe is broken into two pieces (as in Example 3.2) and each
portion is set up separately with the two solutions coupled at the minor
loss location via an energy equation. The second method includes the
minor loss in the differential equation along with the pipe friction term.
This can be done by absorbing it into the pipe friction term by increasing
the friction factor or simply adding it in as a separate term.

Assuming that the minor loss can be represented as hy = Ky
(V2/2g}. these two latter techniques result in the foliowing modifications
of Equation 3-1, respectively

v:i_Ldv 3-19

It is important not to use the traditional equivalent length method to
represent the minor loss. This technique adds length to the pipe and the
subsequent increase in liquid mass will distort the true dynamic behavior
of the system.

If the pipe system is complex, the previous techniques must be
applied to the individual components of the system. The second method
discussed earlier is reccommended with the technique of computing an f' to
distribute the minor loss along the entire pipe. After this has been
accomplished, the analysis proceeds as before.




IV. Elastic Theory

For situations in which the velocity changes suddenly and the pipeline
is relatively long, the elastic properties of the pipe and liquid enter into the
analysis. In Chapter II we saw how a pipeline behaves under the action of
a sudden closed valve. The suddenly closed valve caused an increase in
pressure head AH to occur, which propagated at a speed a, It remains now
to develop means to calculate AH and a and broaden the range of
applications from that of the simple example in Chapter II.

The previously derived and integrated unsteady flow equations
cannot be used because they have not included elastic effects. We will
employ the impulse-momentum equation and the conservation of mass
principle to develop an appropriate set of equations for an impulsive
change in velocity.

4.1 The AH Equation

The impulse-momentum equation will be used to develop an equation
for AH. We know that a change in velocity AV will cause a pressure head
change AH to propagate upstream at some speed a. To begin, we will use a
piece of pipe dL long, where dL is arbitrarily small but not differentially
small as dL would be. The pressure wave and the pipe bulge (which is
caused by the pressure head change AH) propagate upstream at a speed a.
The wave speed in this work is defined as the speed relative to the observer
at rest with respect to the pipe rather than the speed relative to the flowing
water. In the case of relatively rigid pipes, either approach used gives
essentially the same results. Because this is an unsteady flow situation, the
impulse momentum equation for steady flow cannot be used. However, in

—f v
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this case it is possible to use a translating coordinate system to transform

the unsteady flow into a “‘steady” flow.
If we move our reference system to the left at a speed a we have, for all

appearances, a steady flow.
l l 45 V-AVasa
—

3L

Steady Flow
From basic fluid mechanics we have available the one-dimensional
impulse-momentum equation

F,,, = (CQaV)

out” ZQev )in

where Q is the discharge, p is the liquid density and X Fexy is the sum of

the external forces acting. The momentum correction factor for

nonuniform velocity profiles has been assigned the value of 1.0.
Considering only the component of this vector equation patallel to the

pipe and noting that momentum enters and leaves the section of pipe dL

long at only one section each, we can write

(F,_ ), = Q00Voy Vi)

To apply the impulse-momentum equation we must specify a control
volume and take into account all forces acting on the fluid in the control
volume at a particular instant and at that same instant evaluate the
momentum fluxes into and out of the control volume. We will choose a
control volume coinciding with the inside of the pipe walls over the length
4L and including the flow cross-section at each end of the pipe section JL
long. This control volume, the fluid in it and the external forces acting are
shown below.

AREA = A+3A

. DENSITY zp*3

AREA zA il o
DENSITY =p
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_ _Th? s.icle shear force caused by friction will be neglected because its
size is lum.ted by a very small JdL. Also, because we are considering only
relatively rigid pipe (steel, concrete, etc.), the pipe bulge will be very small
and F, will also be negligible,

Application of Equation 4-2 gives

F, -F, = Qo(V-AV+a-V-a) = Q0(-AV)
where Qp = (V+a)Ap

s If the pressure at (1) were p,, then the pressure at (2) would be p, +
p.

P, A-(p, +Ap) (A +8A) = (V+a) Ap (-AV)
Expanding this equation and recognizing that Ap = yAH and dA is very

small compared to H,, AH, A and y, we can neglect the small terms with
the result

-AHYA = (V+a)Ap (- AV)

In slightly different form, this equation can be written

AH =%AV(V+a)

AH = 38V (1 +X)
g a

In most cases involving rigid pipes (even PVC with a wave speed of
abOl_lt 1200 fps), the value of V/a is less than 0.01. Accordingly, Equation
4-3 is generally used (and is always used in this text) as

a

AH = — AV
g

It .is clear i:rom Equation 4-4 that AH depends on a and cannot be
determined until a value of a is established.

4,2 The a Equation

. To develop an equation for a we will consider conservation of mass
into the section of pipe dL long, which was used in the previous section to
find an equation for AH. The procedure used will be to examine the mass
flow into and out of the portion of pipe dL long over the time period
required for the wave to pass through that portion of the pipe. The net
inflow of mass will be equated to the increased mass storage in dL to yield
an equation for a.

To.begin, we will look at the situation when the wave first reaches the
dL section and then at the time the wave has just passed through the
section &t later,
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A el

3L AL

time = t time =t + dt
It is clear that JL and dt are related via the wave speed by
dL = adt
Net Mass Inflow

During the time period dt an amount of liquid has accumulated in the
section of pipe given by the amount

5M = Mass accumulated = VAp&t-{V-AV)(p+8 pI(A+5A)5t

Expanding parentheses and neglecting small terms gives
5M = Ap AV5t
or writing in terms of wave speed and dL,

M = ApAV‘Sa_L. .................... 4-5)

This amount of extra liquid is accumulated in section dL by being
compressed slightly and by stretching the pipe slightly to provide storage
TOOM.

Change in Liquid Volume

Because the pressure has increased during the passage of the wave,
the volume of the liquid in the section will compress slightly to a higher
density. The equation describing this relationship is that defl_nmg the bplk
modulus of elasticity which can be found in any text on fluid mechanics.

where K = the bulk modulus of elasticity of the liquid and p, ¥ are th_e
pressure and volume, respectively. Recognizing that Qp = Ap (K is
relatively constant over a wide range of pressure), Equation 4-6 becomes
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5% = - Ap SLA kA .................... 4-7)
where d¥ is the change in volume of the liquid in the pipe section dL long
as the result of a pressure change of Ap.

Change in Pipe Volume

Because the increased pressure stretches the pipe, there is more room
made available to store the net mass inflow of liquid. When the pipe
stretches circumferentially it may also stretch longitudinally so both
contributions to change in pipe volume should be evaluated.

Before proceeding, it is important to recognize that there is an
interconnection or relationship between pipe wall strains in two
perpendicular directions. If a material is strained in one direction an
amount &£, then a strain e; will occur in the perpendicular direction
(provided the material is free to strain without developing stress in that
direction) such that €, = ue, where u is Poisson’s ratio. If there is a
restriction to strain in either direction caused either by restraint or applied
stress, the relationship is more complicated. In any case, Timoshenko [11]
gives, for thin-walled pipes,

o,

€, tue,

G, = Tz Eore, =+
where 0, and ¢, are the stress and strain, respectively, in the direction
parallel to the pipe axis and o0, and ¢, are the values in the circumferential
direction. E is the modulus of elasticity of the pipe wall material.

In the case of water hammer waves, there is generally a resident stress
and strain already occurring in the pipe before wave passage. Hence, we
will write the above equations in incremental form

Ae, +uA
Aoy = SR E or Ae 1 (Ao, -pAo,)
1-42 ! E z

Aey + uAe,
1-42

The change in volume caused by circumferential stretching is

5%, = 7D 22 5L

2
where 76D = nDAe,

Ag, =

E or Aeg, = % (Ao,- udo,)
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Combining the two equations gives
= 1op
¥, = 7 7D* 8L Ae,

The change in volume caused by longitudinal stretching is

ki
4

Adding the two equations together gives the total volume change

5%, =

Ae
av=21 D? 5L (

Change in circumferential stress in the pipe wall caused by Ap is
ApD
b0y = 5

where e is the pipe wall thickness.
So Equation 4-9b becomes

ApD _ Aez +|UAEI
2e 1-#2

Unfortunately, the longitudinal pipe restraint condition determines
Ao,. For example, if the pipe were anchored at some point and free to
stretch longitudinally (much like a long slender pressure vessel), the
longitudinal stress would be

. 4ApD
4e

under static conditions. However, the dynamic conditions of a water
hammer situation will cause the pipe to stretch axially in a dynamic
fashion wherein the hardware inertia is important. That is to say, any
valves, fittings, etc. in addition to the weight of the pipe itself must be
displaced by the pressure changes. The pipe may even be partially
restrained by supports. In order to determine the value of Ac,, we would
have to solve a rather complex coupled set of equations relating the fluid
dynamics to the hardware dynamics.

Rather than attempt this task, it is suggested that the dynamics of the
pipe be ignored and the above equation for Ao; be used. Because this type
of restraint is rare and because restraint does not have an excessive impact
on wave speeds in typical pipelines, we will not be greatly concerned with
precisely fixing this type of restraint.

On the other hand, if the pipe were rigidly anchored to prevent axial
strain then Ao; = udo; because Ag, = 0. If, however, the pipe had
functioning expansion joints throughout its length, then Acy = 0 and Ag
is of no interest. Following Streeter and Wylie {1}, we will identify the
above as case (a), (b), and (c) restraints, respectively. In a practical sense,
the pipe restraint lies between these values somewhere.

Ag,
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Because a buried pipeline might be expected to be restrained from
strain by soil friction and anchor blocks, we will pursue case (b) restraint
to develop an equation for wave speed.

Case (b) restraint — For this restraint, Az, = 0 and Equation 4-9a
becomes

nAe,
Ag, = W E = ulo,

and Equation 4-13 becomes

ApD _ _Ae
2e l-sz

Substituting this equation into Equation 4-12 gives

g () fo
s 2D’ﬁL(E o

Now co_nsidering conservation of mass, we already have Equation 4-5
expressing the amount of mass which has accumulated in the 6L pipe
section in dt seconds. We can write a different expression for the mass

change in the dL pipe section after wave passage. The mass change in the
section is

SM = (p+8p)(ASL+6¥)-pA3 L

Equating this expression with Equation 4-5, expanding and dropping
small terms gives

8pASL + 5% = Apav Sk @-15)

To arrange this equation in more useable form, note that for a mass of a

given substance, an increase in pressure causes a decrease in volume and
an increase in density.

pV = constant
¥optpb¥=20

5p = - 2%
P v °

Substituting Equation 4-6 into this equation gives

eofd)

Replacing Ap with yAH in the above equation, substituting it and
Equation 4-14 into Equation 4-15,

1 1.;12) D| . A
_+ — = —
vAH [K ( E e a

Combining this equation with Equation 4-4 gives
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1. D 1-u2)
2 —_ —_ =
apI:K+e (E } 1

or in a more conventional form for wave speed,

[K/p]®

|:1+ LS 2(1-;12)]

ac<=

E e

It is now possible for us to compute wave speed and pressure increase
in simple situations where Equation 4-4 can be used.

Streeter and Wylie [1] have shown that the equation for wave speed
can be more conveniently expressed as

[K/p] %

%
KD
ﬁ*ie—@}

where
C = 5/4-u for case (a) restraint

C = 1-4 for case (b) restraint
C = 1.0 for case {c¢) restraint

Recall that this set of equations applies only to thin-walled pipes where
D/e is generally greater than about 40 (see Art. 4.3).

To assist in calculating wave speeds in pipes constructed of common
materials, the following table of E-values and u-values is included. The
value of K for water can generally be taken as approximately 300,000 psi.

In the limit the pipe can become completely rigid without causing the
wave speed to become infinite. This limiting value is obtained by passing E
to % in Equation 4-18. With the nominal value of K = 300,000 psi, the
resulting wave speed is approximately 4720 fps. This number has no
practical value in design because it is far too high to serve as even an
approximate wave speed for preliminary design. With even a limited
amount of experience, the designer can make far better estimates for wave
speed in the pipe he is working with.

ELASTIC THEORY 36

Table 4-1. Moduli of elasticity and Poisson’s ratio for common pipe
materials.

0.30
0.28
0.30
0.34
0.33
0.45
-0.30
-0.24
0.30

0.30

30 x 10° psi
24 x 10° psi
16 x 10° psi
15x 10° psi
10.5 x 10" psi
4x10° ESi
4.0x 107 psi
1.3 x 10° psi
3.4x 10° psi

57,000 /T

Steel

Ductile Cast Iron

Copper

Brass

Aluminum

PVC

Fiberglass reinforced plastic (FRP)

¥ogou WU

Y
IR
n o

Asbestos Cement
Concrete

sl e Moo NesNes MM NesMesiss)
= tgg‘:ttttt
o~ R

It

where ', = 28 day strength.

Example 4-1

As an illustration of the elastic deformations and pressure head
changes caused by a water hammer situation and the effect of restraint on
wave speed, the following problem is analyzed.

Flow in the 24-inch pipeline above occurs at a velocity of 6 fps. The
pipeline is fabricated of steel and has a wall thickness of 0.25 inches.
a) Calculate the wave speed for all three cases of restraint.

Case(a) a 4720 = 3413 fps

3x10° 24
1+ =2 (5/4-0.30
\/ 3x107 25 ( )

4720

V1 +0.96 (1 -0.30%)
4720

V1+096 (1.0)

= 3448 {ps

= 3371 fps
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In a practical sense, the differences are negligible.
b) Find the head increase resulting from sudden valve closure for all
three cases of restraint.

3413
322

Case (b) aH =38 v 6=64211
32.2

Case (a) AH = X 6 =636 ft

3371
Case (C) AH = 322 X6 =628t

The variation in head increase among the three cases is about 2
percent.

¢) Compute the axial and circumferential pipe wall stresses before
and after valve closure for all three cases of restraint.

Case (a) Before o, =%§-32'—$—52—4 =4160 psi, 0, = % 0, = 2080 psi

Ag, =836x62.4X24 _ 13 530 psi Ag, =6615 psi
144x2x .25

After 0, = 0, + Ag, = 17,390 psi, 6, = 8695 psi
Case (b) Before 0, = same as above, 0, = [0, = 1250 psi
Ao, = same as above, Ag, = pAo, = 3970 psi
After o, =same as above = 17,390 psi, 0, = 5220 psi
Case (c) Before 0, = same as above, 0, =0
Ao, = same as above, Ag, =0

After 0, =same as above = 17,390 psi, 0, =0

d) Calculate the percent increase in diameter of the pipe caused by
sudden valve closure.

100 22 - 100 Ac, = 1P (a0, -ptay)

100
C % change =
ase (a) o ge T,

100
30x 108

—'—Qol? (13,230 -0.3x0) = 0.044%

(13,230-0.3x6615)=0.037%

Case (b) % change= (13,230 - 0.3 x 3970) = 0.040%
1
30x

This result substantiates many of our previous assumptions used in
neglecting small terms.

Case (c) % change =
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4.3 Wave Speeds In Other Types of Conduits

The simplest case of thin-walled pipes has been used previously to
derive equations for wave speed. It is obvious that many hydraulic
conduits are constructed of thick-walled pipe and often using two or more
materials (reinforced concrete). Also tunnels may be carved in rock, lined
with steel and back-filled with concrete. It is necessary to be able to
calculate wave speeds in all these cases.

A concise summary of the calculation of the wave speeds for these
cases is given by Halliwell [12]. The most obvious extension of the previous
example of thin-walled pipes is to thick-walled pipes. In a thick-walled
pipe, the wall thickness is so great that stress varies noticeably between the
inner and outer surfaces and this affects the expression for wave speed. An
analysis reveals that we may continue to use the same basic form for the
wave speed equation, but we must find a different value for the C in
Equation 4-18.

Thick-walled Pipes

Summarizing the results for thick-walled pipe for the same restraint
conditions as before with D as the inside diameter,

Case (a) — For pipes free to stress and strain both laterally and
longitudinally {anchored at only one point)

c=—15 [(5I4-u)+2§(l+u) (H%H

1+B

A limiting process shows that as e/D = 0, this equation degenerates to
Equation 4-19a.
Case (b) — For pipes anchored against longitudinal strain,

1 e e
C= 1-u)+2=(Q + (1+—):|
1+8 [( witlp U+ \l*p (4-20b)

Case (c) — For pipes with functioning expansion joints throughout
their length.

S 3 3
C-]+E |:1+2D(1+'")(1+DH
D

As in case (a), both cases (b) and (c) degenerate to the thin-walled
pipe values when e/D — 0.

The question arises as to when the more complex thick-walled
formulas should be applied. For deciding, it is helpful to examine the plot
of these equations in Figure 4-1. To assist in making this decision,
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CASE {¢) Thin- wolled

CASE (a} Thin-waolled

CASE {b) Thin-walled

0.95

= 0.30.

The effect of wall thickness on C-value for u

Figure 4-1.
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consider the uncertainties of pipe restraint and its effect on wave speed.
Figure 4-1 shows that uncertainty with respect to the type of restraint oc.
curring can cause differences of about 10 percent between C-values at the
two extremes of restraint. If we accept a similar error in deciding whether
to use thin-walled or thick-walled formulas, then a D/e value of 20 is an
appropriate dividing line. If, however, we decide to remove as much
uncertainty as possible, then the thick-walled formulas should always be
used. The additional computation required is negligible. In a practical
sense though, because of the relative size of terms in the denominator of
Equation 4-18, using thick-walled formulas beyond D/e values of 40
generally makes no significant improvement in the value of the wave speed
except in cases where softer pipes such as PVC are used. It should also be
noted that using the thin-walled formulas leads to higher {more

conservative) wave speeds. To see the effect, consider the following
example,

Example 4-2

A steel pipe 10 inches in diameter is used to convey water between two
reservoirs. The inside diameter of the pipe is 9.522 inches and the wall
thickness is 0.239 inches.

Compute the C-values and wave speeds using both thin and
thick-walled formulas and compare results.

Wave Speed-fps

Restraint Thin-walled Thick-walled Error (Dfe = 40)

Case (a) 4023 3999 0.6%
Case (b) 4047 4021 0.6%
Case (c) 3994 3971 0.6%

Circular Tunnels

Wave speed formulas which apply to circular tunnels can be found by
taking the thick-walled pipe formulas and letting the thickness go to
infinity. The portion of Equation 4-18 that we will use is

(D/e) C = Dje 1 ii [(5/4-;1)+2§(] +,u)(]+%)]

b
lim (D/fe) C = eﬂxg [2%(1“1)%] = 2(1 +p)

e > 00

The resulting equation of wave speed is
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[Kfel”

v %
e Zava)

For tunnels which are conctete-lined or steel-lined with concrete
backfill, the elastic analysis is more difficult. Refer to Halliwell {12] for
the rather lengthy equations which must be used to find the (D/e)C value
for Equation 4-18.

Reinforced Concrete Pipe

For reinforced concrete pipe, the transformed section technique can
be used to convert the pipe into an equivalent homogeneous pipe. Then
analysis can proceed according to the rules for homogeneous pipes.
Howevet, it should be emphasized that the manner in which the pipe is
constructed should be investigated thoroughly. In most cases some of
the concrete section should not be expected to carry load. This is true
particularly if the load to be carried is tensile.

The transformed section technique replaces the steel with concrete
(or vice versa) using the relationship

E

A . ——
1
L Esteel

The technique of replacing conctete with steel is recommended because
the resulting steel pipe is thin-walled and the computation of the wave
speed is straight forward. If the reverse technique is used, the
cross-section of concrete is t00 bulky to handle properly.

In working with reinforced concrete pipe that is not prestressed, the
concrete is generally assumed to take no load in tension. The teinforcing
steel is transformed into a thin-walled steel pipe having the same area in
the axial and circumferential directions as did the reinforcing steel in the
same respective directions. The wave speed is then calculated in the
normal manner using the equivalent thin-walled steel pipe.

If the reinforced concrete pipe is pre-tensioned or post-tensioned, the
area of the concrete placed in compression must be included in the
transformed section. This pre-stressing makes the pipe much stronger,
but it also results in higher wave speeds which give higher water hammer
pressures. An example problem is worked out to illustrate the application
of the transformed section technique.

Example 4-3

A reinforced concrete pipe, 30 inches inside diameter, is prestressed
using 3/8-inch diameter wrapping wire placed 1.25 inches o.c. The pipe is
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constructed by first fabricating the thin steel cyli i

: . ylinder, then centrifu

placlg%t a 0.75-inch cement lining inside the pipe. o
er curing, the prestressing is accomplished b i i

- ! y stressing the wire as

it is wrapped _al:oun'd the outside of the steel cylinder. This prgocess places

the cement hmt}g in compression. The ends of the wrapping wire are

welded to.the thlp steel cylinder to maintain the prestressing. A cover of

x:t.c;lete is applied over the wire wrap to give a one-inch protective

g.

Assuming that the 28-day stren f th i i i
- . y gth of the concrete is 6,000 psi, we will

-3/8" wire wrap 1.25" 0.c.

E_ _ = 57,000/6000 = 4.4 x 10° psi

Area of steel wire = 0.7854 x,fj-“il

= 0.0884 sq. infin.

In this example we will replace the cement lining (prestressed in

compression) by an equivalent area of steel.
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_ 44x 106
st 30 x 10°

Now the thickness of the equivalent steel pipe is

0.75 = 0.110 sq. infin.

€eq = 0.105 +0.0884 +0.110 = 0.303 in.
The wave speed is computed using Equation 4-18, case (b) restraint.
a= 4720 = 3384 fps

3x10° 315
—=(1-0.3%
\/; 30 % 10° 0.303" )

If the effect of the cement lining is neglected, the wave speed is 2994
fps. The engineer must make the judgment as to the proper wave sgeed to
use or he must analyze the system under both conditions to determine the
most extreme behavior.

Effect of Air Entrainment on Wave Speed

When free air occurs in a substantial portion of a pipel_ine, eitt!er as
small bubbles or in larger discrete lumps, the wave speed in the pipe is
decreased. As a consequence, the pressure extremes and the wave
propagation patterns are altered. . _

The wave speed of the air-liquid mixture is computed as prevpusly
done for a homogeneous liquid, but with the use of an average de.ns1ty for
the mixture. This approach implicitly assumes the mixture is .eyenly
distributed throughout a significant portion of the pipe. The elasticity of
the liquid-air mixture is dramatically affected by a sm?ll amount of
entrained air so the elasticity of both substances must be mc}uded.

Application of the momentum equation and conservation of mass
leads to the following equation for wave speed from Tullis, Streeter and

Wylie [13],
b KSLI Pave

K £
\/1 + fﬂ, ?C + (void fraction) E

where the subscripts £ and a refer to .proper‘ties ?f liquid and air,
respectively, and paye is the average density of the mixture. The value olf
K, is dependent on the thermodynamic process, €.8., for an isothermal
process, K, equals the absolute pressure. The void fraction is the volume
of air per unit volume of mixture at a given pressure.

Unfortunately, the wave speed depends on the pressure becapse the
void fraction is a function of pressure. Hence, an accurate analysis must
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consider this effect as water hammer progresses through the system.
Because a simple, reduced, constant value of wave speed should not be
used in the standard analysis, further discussion of the analysis of water
hammer with entrained air will be deferred to Chapter VI,

4.4 Basic Differential Equations of Unsteady Flow

To this point we have shown that for a known given impulsive change
in velocity at a section in a pipeline, we can comptite the pressure head
change AH which will result. It now remains to expand this capability so
that we may find the velocity and pressure head at any pipe section at any
time as the result of boundary conditions imposed at sections either
within or at the extremities of the system.

To accomplish this we will employ the previously derived unsteady
flow equation (Euler equation) and develop 2 second equation based on
conservation of mass (continuity).

Equation 2-4 is recopied here for convenience.

As before, the pipe wall friction will be difficult to evaluate directly.
Because we will be working with circular cylindrical pipes, we use the
equation

;o= %prlV[

o]

for relating wall shear to the Darcy-Weisbach friction factor. The peculiar

form of the velocity representation is introduced in the above equation to

point out how the proper shear force direction is preserved when the

velocity reverses. If we had used V2 instead, then the negative velocity sign

occurring on flow reversal would be lost in the squaring process.
Substituting this equation into Equation 4-24 gives

&v ,ldp, &

dt p 0s gas+_

It is appropriate to point out at this time that both V and p are functions
of time t and location s along the pipe. The term 3z/3s is the slope of the
pipe and can be written as the total derivative dz/ds. Equation 4-25 is an
equation with two dependent variables V (s,t) and p (s,t) hence, we need a
second equation relating the same dependent variables.

To obtain this equation the conservation of mass is applied to a
control volume coinciding with the interior of the pipe and of length ds.
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ly{

PAV +3/3's (pAV)ds

p AV

Conservation of mass gives

d
pAV- [pAV * 3 (pPAV) dS] = 53; (pAds)

’ _2

At this point we employ a rather unusual form of the control volume
concept in that we permit the ends of the control volume to move
longitudinally with the pipe as it stretches. This device is employed
because the pipe stretching affects the storage volume available and the
connection between pipe elasticity and the volume available for the fluid is
identical to that developed in the previous section.

Expanding the parentheses of Equation 4-26 gives

( BV 3A

9
OV g5+ oV 2245+ AVEL g
PA " ds + oV 3 ds 35 )

- ) JA ag
= pgA — + pds— + Ad
P ot (ds) s at * ot

Regrouping and dividing by pAds,
1/20 ,yo) (170A 0AY 1
p(at +Vas)+A(at Was ) e

Recognizing that
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Equation 4-27 becomes

ldo 1dA 3V 1 d
P at TA @ e T g @0

because ds, fixed to the pipe walls, varies only with time,
From the previous section,

K:- dp = dp
¥ dp
v P

dp 1

t K

To develop a useful expression for dA/dt in terms of pressure, the
elastic pipe deformations must be considered. For stretching of the
cross-sectional area, Equation 4-10 is used to give

2
GA = %aD* de; = ¥inl (o, - do))

lAdA = %(do,-udal)

In evaluating the stresses we will again use case (b) restraint
D
do, = dp —
2 P 7o
do, = udo,
D
s0 do, -udoy = (1-u?)do, = (1-1%) 5—dp
Finally,
LdA_ .,
A dt
Considering longitudinal expansion,
d(ds) = de,ds

which for case (b) restraint is zero. So,
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Combining all of these terms into Equation 4-28 results in

D dp .3V _g

+

eE dt  0s

\i
A T L]+9_=0
i [K (t-1*)

Ldp .2
< dt (1-p7)

eE s

B s 2

From Equation 4-17 it is clear that the term in brackets is 1/(a®p).

This statement is true for case (a) and case.(c) pipe restraint as well.
Substituting this term into the previous equation gives

._l_ gp.{-a?' _al=
p dt as

We now have the necessary set of two simultaneous independent
partial differential equations which will enable us to solve for p (s,t) and V

(5,1,

V. Solution by Method
of Characteristics

The history of water hammer analysis is marked by various clever and
practical schemes for solving the Euler and Continuity Equations 4-33 and
4-34. The methods generally reflect the level of numerical analysis
capability of their time as well as the ingenuity of the practitioners. It
remains, then, in the age of electronic digital computers, to bring their full
power to bear in solving more exactly and inexpensively these equations as
they apply to a wide range of problems.

At present the most general and exact technique for solving this set of
equations is the method of characteristics. Fortunately this technique is
also very compatible with numerical solution by digital computer. For
these reasons, this work will address only this solution approach and refer
the reader to other works such as Streeter and Wylie [1], Parmakian [6]
and Rich [4] for details on other analysis techniques.

5.1 Approximate Method of Characteristics
The Approximate Equations

In view of the likelihood that many engineers today are unfamiliar
with the method of characteristics as a solution technique, it seems
appropriate to introduce the method using approximate versions of
Equations 4-33 and 4-34. The approximate equations are obtained by
neglecting the spacial variation of V and p whenever both spacial and
time-varying terms appear in the same equation, because in general,
spacial variation is much less than time-varying variation.

In accordance with this approach, Equation 4-33 becomes

oV 1o, &, L e
at toas t8g Tap YISO

and Equation 4-34 becomes




