—
108 5 Turbines
330" ———>1 12. e¢¢ For the Kaplan turbine in Fig. E-5.6, draw
H the velocity diagrams at the trailing edge of the PT_O' Wat er H ammer
Wicket | |= peller turbine blade such that the tangential velocity
gate Er_‘ V,; = 0. Determine the blade angles 3, for » = 0.75 ft,
B 4 e
: 1 ft, 1.5 ft and 2 ft. -
LN
£l 461"  Additional Problems
13. From the Kaplan turbine at Wanapum Dam in
Fig. P-5.13, can you determine the blade angles? L ' . )
14. Consider the following turbines compiled from Moody Water compressibility effects in closed cenduits can be devastating and hydraulic
. and Zowski (1984) in Table P-5.14, calculate N; and structures like surge tanks are specifically designed to minimize the pressure fluctu-
Kaplan 120,000hp compare with the characteristics described in this B Section 6. l. presents important l'cnm.fvled‘ge On Water compress-
Net head 80 fi hapter ibility. It is followed with the celerity of wave propagation in pipes in Section 6.2. The
85.7 rpm chapter. concept of hydraulic transients and water hammer is detailed in Section 6.3 with
i prevention measures such as surge tanks in Section 6.4.
Fig. P-5.13 '
6.1 Water Compressibility
Table P-5.14. Sample of turbine characteristics : . 1 The bulk modulus of elasticity £, is a measure of fluid compressibility. It measures
Location Type Rotation (rpm) Head (ft) Power (hp) Outside diameter (in.) | relative changes in volume and fluid density under pressure, ‘
Paucartambo, Peru  Pelton 450 1,580 28,000 ' . Ydp pdp 6.1
Smith Mtn Dam Francis 100 179 204,000 246 I R A '
. » 150 90,000 223 . . .
Garrison Dam anc"s = a0 . where dp is the increase in pressure required to decrease the volume @V from the initial
Hoover Dam Francis 180 3'000 fluid volume ¥. From the definition of the mass density p = m/¥, we note that the mass
Oxbow power plant ~ Francis 100 115 73, change dm = pd¥ + ¥dp = 0 such that —dVv/V = dp/p. A typical elasticity value for
R. Moses Niagara  Francis 120 300 210,000 water is E, = 2.1 x 10° Pa = 3 x 10° psi. The bulk modulus of elasticity for water )
i Scotland Deriaz 300 180 30,500 increases slightly with temperature and pressure, as shown in Table 6.1. Example 6.1
Cullingran, ) Y
Priest Rapids Kaplan 86 78 114,000 284-in. runner illustrates how to calculate the bulk modulus of elasticity of a fluid.
86 80 120,000 285-in. runner
Wanapum Kapla; o 81 29.000 240-in. runner Table 6.1. Water modulus of elasticity £, in GPa vs temperature and pressure
St-Lawrence Power  Propeller ? o - - - _ -
Pierre Benite, France Bulb 83 26 27,000 240-fn. runner Pressure E.(Tm=07C) E,(T"=107C) E.(T°=20"C)
COzark L&D Tube 60 26 33,800 315-in. runner 1 — 25 % 10° Pa 1.93 2.03 207
25 - 50 x 10° Pa £.96 2.06 2.13

+ Example 6.1: Bulk modulus of elasticity of a fluid

A liquid has a volume of 2.0 ft* at a pressure of 100 psi. When compressed to 180 psi, the
volume decreases to 1.8 ft’. Find the bulk modulus of elasticity of this fluid.

Solution: dp = 180 — 100 = 80 psi = 11,520 psf and d¥ = 1.8 — 2 = —0.2 ft*, and thus

Vdp 2 x 11,520
Egig = ———=———_""" = .
fluid ~ 02 115,200 psf

Note that 1 psi = 144 psf = 6.89 kPa.
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6.2 Wave Celerity

We start with the celerity of a compressed water wave in an infinitely rigid pipe in
Section 6.2.1, and in elastic pipes in Section 6.2.2. Celerity reduction methods are then

discussed in Section 6.2.3.

6.2.1 Celerity in an Infinitely Rigid Pipe

The term celerity describes how fast pressure variations travel in water. It is equivalent to
the speed of sound in air. Consider a pressure wave in a large body of water, or an
infinitely rigid pipe shown in Figure 6.1. The wave is held stationary by moving with
the wave at a constant celerity ¢, the mass flux entering the compressed area is
i = pA(c + V) and the velocity decreases by AV = —V across the wave front.

Moving wave Stationary wave
<«
R PP PP P77 777777 LLLELELLLLLLL I LLLLLLL,
______ AV V V+c
SR | Area A o | |
p¥ | [ptap

rrrrrddilad brrrrrr it

P prap P ptdp

p p+ap P p+ bp

Figure 6.1 Compressible wave c@lerity in a rigid pipe

The force analysis in the flow direction includes an increase in pressure force from pA4
to (p + dp)A, which corresponds to the rate of change in linear flow momentum of the
mass flux i = pA(V + ¢), where ¢ >> V, or

pA — (p+dp)A = mbV = pA(c+ V)(-V) = —pAVe.

The pressure increase becomes
dp = p¥e. (6.2)

Now, looking at the conservation of mass during a time interval dt, the mass entering the
pipe pAVd: equals the mass heing compressed dpAcdt, which gives pV = cdp. This is
combined with the modulus of elasticity dp = E,dp/p to eliminate V' as

dp E.dp
d —-pcV=pc(c ) =—
P P 4

_ e fe
c-—\/;—\/;p. (6.3}

Thus, by application of the momentum and continuity equations, we have derived
equations describing the increase in pressure dp (Eq. {6.2)) and the wave celerity ¢
(Eq. (6.3)). From values of E,, in Table 6.1, the compression wave celerity in water is

approximately ¢ = /2.1 x 107/1,000 = 1,450 m/s = 4,750 ft/s.

or

6.2 Wave Celerity

6.2.2 Celerity in Elastic Pipes

In elastic pipes, the mass of water is not only stored by compression, but also in the
expanded volume of the pipe under increased pressure. Table 6.2 lists values of the
modulus of elasticity £, for various pipe materials. Note that the values change at very

high temperature, and the table li
: . sts commonly used values to solve i
engineering problems. e

Table 6.2. Modulus of elasticity £, for various pipe materials

Pipe material E,(Pa) E, \psi) E,/E.
Steel 1.9 x 10" 28 x 10° 90
Reinforced concrete 1.6 x 10" 25 % 108 83
Cast iron 1.1 x 10" 16 x 10° 52
Copper 9.7 x 10" 14 x 10° 47
Glass 7.0 x 101 10 x 108 33
Concrete 3.0 % 10" 4.3 x 10° 14
f;;i:polyVInyl chloride) 2? x 10: 3.6 % 10° 1.2
A% 10 3.0 x 10° 1.0
HDPE (high-density polyethylene) I x 19° 1.4 % 10° 0.5
Lead 30% 10% 4.5%10% 0.15

Figut:e 6.2_ provides a schematic illustration for the analysis of wave propagation in
expanding pipes. The main pipe parameters include the wall thickness ¢, the tensile force

per unit length 7', the pipe modulus of elasticity E,, and i i
' ; the radial
the pressure increase Ap. ’ cpansion drundet

. Thickness Sudden pipe closure
'y e Pipe expansion \
c
-
YHD
Expansion 4 ! i
Ty

PP piap, piap

Figure 6.2 Wave propagation in an elastic pipe
Per unit pipe length, the pipe tension is

o, = —L :
P e 2e e’

dpD 2dr
9 = e =E”(D)

and its increase is

in
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or

which gives

The volume change in the pipe therefore has two components: (1) the volume
compressed for rigid pipes; and (2) the elastic pipe expansion volume. Therefore, when
compared to the rigid-pipe analysis,

E.D '
A elasric = [I + (Epe)]dvﬁgfd‘

Accordingly, the wave celerity in elastic pipes ¢’ will be less than ¢ for rigid pipes:

7 E, E.D -

=BG
¢y [1 . (_E_D)] (6.4)
c Epe

Obviously, the celerity in rigid pipes (E../£p = 0} reduces to Eq. (6.3). The compressibil-
ity wave celerity in elastic pipes is shown in Figure 6.3.

or

4,000 \I\ 1200
Steef re; 1000
g 3000 —WW 800
= % — <
= =
2,000 N ——1 600
= H) \ COnC L b
g Tt | ] T/ 400 s
S 1,000 i ' “

’ | —1 200

L PVC
0 0
0 50 100 150 200 250 300

Ratio Die

Figure 6.3 Wave celerity in elastic pipes

6.2 Wave Celerity

Example 6.2 indicates how to calculate the wave celerity in an elastic pipe.

¢ Example 6.2: Wave celerity in a pipe

Consider a 125-psi cast-iron pipe (Table 2.2) and calculate the wave-propagation celerity
for a diameter D = 42 in. = 1,068 mm and thickness e = 0.5(45.1 — 42.02) in. = 39 mm.

Solution: Consider p = 1,000 kg/m?, E,, = 2.1 x 10° Pa and E, = 1.1 x 10'' Pa to get

2.1 x 10° 2.1 x 10° x 1068\] "
! entied Ol B _ /
€= \/ 1,000 [1 +( 1.1 % 107 x 39 )] L174 mfs,

compared to ¢ = 1,450 m/s.

Notice that this celerity reduction from the elasticity of the pipe results in significant
decreases in pressure surge (Eq. (6.2)) from sudden valve closures.

6.2.3 Wave Celerity Reduction with Air

Let us consider water containing air bubbles. The total volume V = V., + V, equals the
sum of the water volume V,, and the gas volume V,, and the concentration of gas
C, =V, /¥. The density of the mixture is p =p, (¥,/V}+p,(V,/¥). A pressure
change brings about a volume change equal to AV = AV,, 4 AV,. The bulk modulus of
elasticity of water E,, = -—Vjﬁ? 2 2.1 x 10° Pa, compared to the high compressibility
of gas £, = —%‘fg ~ 9,000 psf (or 430 kPa). Combining these expressions yields the
combined air-water bulk modulus £ = E,/{1 + C;[—1 + (E\./E;)] }, and the celerity
with air bubbles is ¢/ = \/E_/p Figure 6.4 illustrates the significant decrease in wave

1 500 T
e Experimental
1250 4,000
L]
000 |\ 2
E : —13.000 &
kS 250 s 1 450 m/s ©
z pe
5 /. \/T+4800 Cy 2000 &
S 500 S S
250 e
0 0
0 0.2 0.4 0.6 0.8 1.0
Cyg (%)

Figure 6.4 Wave celerity propagation in water with air bubbles
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celerity as a function of C,. The presence of air bubbles in water at low concentrations
(e.g. C; > 0.20%) will significantly reduce the celerity of compression waves, as shown in
Example 6.3.

Example 6.3: Wave celerity reduction with air
Calculate the wave-propagation speed in water containing 0.5% air (C, = 0.005}.

Solution: Consider E, = 9,000 psf, £, =3 x 10° psi = 4.32 x 107 psf and the mass
densities of air p, = 0.00238 slug/ f® and water p = 1.94 slug/ft*. The modulus is

- E o4 x10
T 1+ Co[—1+ (Ew/E;)] 1+ 0.005(4,800)

=1.73 = 10° psf.

The celerity becomes ¢ = \/E/p = +/1.73 x 10°/1.94 = 943, ft/s = 288 m/s. Air sig

nificantly reduces the pressure surge dp = p¥c’ from sudden valve closures in pipes.

6.3 Hydraulic Transients

This section deals with the maximum pressure generated by a sudden valve closure
(Section 6.3.1) and a gradual closure (Section 6.3.2), followed by the timescale for valve
opening (Section 6.3.3} and emptying large tanks (Section 6.3.4).

6.3.1 Sudden Valve Closure
In a pipe, the time of the valve closure ¢¢ is compared to the travel time 17 = 2L /¢’ for
the wave to propagate back and forth between the valve and the reservoir. A sudden
closure occurs when ¢¢ < 2L/c’. The pressure increase is dp = p¥¢’ and the correspond-
ing pressure-head increase is

Ap p¥d WV

AH = =F_—
y v 8

Figure 6.5 sketches the main propagation features of a water compressibility wave in
a pipe after a sudden valve closure. At (a), the water enters the pipe and the pressure
increase propagates to the reservoir at celerity ¢’. At (b), the water comes out of the pipe
as pressure returns to hydrostatic condition and the wave propagates back to the vaive
at the same celerity. Upon return (c), and reaching the valve, the water is still pulled out
of the pipe and a zone of pipe contraction develops as the change in pressure now
becomes negative. This zone of lower pressure propagates from the valve to the
reservoir. Upon reaching the reservoir in {d), water reenters the pipe to reestablish
hydrostatic pressure conditions and the wave propagates to the valve. At the end of this
double sweep, we reach the starting point from which the cycle is repeated. This series
of “coup de bélier” or hydraulic ram is called a water hammer, leading to vibrations in
short pipes.

6.3 Hydraulic Transients

Pressure increase b)

c
l s Ap , v + AP L f."

g

* Pipe burst?
* Vailve damage?

h o Sudden_closure-\
L ipe expanston—\
——1 Yhd4 e !
V, —» V=0 le— «——Vy=.,! V=0 !

d)

Pressure decrease

il A =
"‘:!*p * Vapor pressure?

* Cavitation?
* Pipe collapse?

Pipe contraction

Figure 6.5 Wave propagation in a pipe after a sudden valve closure

Of course, the very high pressures induced by the product of high flow velocities and
high wave celerities can lead to pipe bursting. Also, during the phase of pipe contraction,
the pressure may become close enough to the vapaor pressure to cause cavitation. At all
times, the minimum negative pressure head can only be —10 m and cannot be below the
absolute zero pressure, as shown from experiments in Figure 6.6. Example 6.4 deter-
mines the maximum pressure from a sudden pipe closure.

160 ‘ .
140 — SWCM ID
—~~" Experimental

120

100 P

80
60

40

20

O a

=20 !

0 0.2 0.4 0.6
r{s)

P s

i

Figure 6.6 Pressure-head measurements from a water hammer in a pipe (Pezzinga and Santoro 2017)
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+¢ Example 6.4: Sudden valve cosure in a pipe

A 3,000-ft-long, 36-in.-diameter pipe conveys water at a velocity of 4 ft/s. If the initial
pressure at the downstream end is py = 40 psi, what maximum pressure will develop at
the downstream end when a valve is closed in 1 second? Would a 125- or 250-psi cast-

iron pipe hold the pressure increase?

Solution: As a first approximation, consider the celerity in a rigid pipe

¢ = VEw/p = /(300,000 x 144)/1.94 = 4,720 fi/s.
Next, the travel time for the wave to propagate back in forth in the pipe is
tr =2L/c =2 % 3,000/4,720 = 1.27 s.

Since the closure time f¢ < ¢7, the maximum pressure increase Ap = p¥ec = 1.94 x 4 X

4,720 = 36,630 psf = 254 psi. The maximum pressure p,,. = p+ 4p =40+ 254 =

294 psi. (Note that a 125-psi cast-iron pipe would burst open from this sudden closure.)
From Table 2.2, a 250-psi cast-iron pipe is 2 in. thick. The celerity becomes

d=cfy / [1 + (i‘:f)] = 4,720/\/[T+ (-13'6;%)] = 4,080 ft/s

Prax = Po + Ap = 40 + p¥c' = 40 + (1.94 x 4 x 4,080/144) = 260 psi.

and

This pipe would burst open from a sudden closure. Options include a slower flow
velocity and/or a gradual closure (tc > 2L/c' = 2 x 3,000/4,080 = 1.5 5).

6.3.2 Gradual Valve Closure

In the case of a gradual pipe closure without friction losses with (tr = 2L/¢), the
attention turns to the force required to slow down a large mass of water moving in
the pipe. In general, converting the momentum flux pQV = pA ¥? into pressure
pA = pgHA gives V = C/H. Figure 6.7 shows a valve fully open under the initial
pressure head Hy. In this case, the conversion of potential to kinetic energy results in

' Vo = \/2gH,, or Vo = C\/H,. A gradual valve closure

Hy is assumed ¥V = Vo(1— ).

5

Under a slow closure, the head at the valve is expected
Gradual to increase to Hg -+ H 4 such that the exit velocity would
H, L . .
closure reach ¥V = C\/Hy + H 4. This gives the main approxi-
T mation for the velocity as a function of time:

Aread V—» 2

[

"

{I_

'k

Ho+ H4

hd
—

3

Figure 6.7 Gradual valve dosure

6.3 Hydraulic Transients

and its derivative

ﬂ: Vo [Ho+Hy
dt Ic Hy ’

The maximum pressure-head increase H#, is obtained from the force difference at both

ends of the pipe F = yH 44, which decelerates the fluid mass M — pAL at an acceleration
a=F/M = —gH,/L or

SV _—eH, v, H,¥H,
dt L Ic Hy ’
Hi_ o [T
Hy gHyte Hy

The solution to this quadratic equation is known as Allievi's formula, in memory of the

Italian Lorenzo Allievi. It defines the maximurm head increase #{; (or pressure increase
Ap = yH 4] from

ar

== 4 /1N, (6.5)

B 2
?N’l‘lf.?l"e N= fLVo/gHotc') = (_pLVg/potc)z, given the fluid mass density p; the
lf‘ll'[lal pressure pq, velocity ¥y and head #,; the pipe length L; and the pipe closure
time /c. The maximum head becomes Hy + H,, and the total pressure is p = p, + Ap.,

Example 6.5 shows how to calculate the pressure increase in a pipe after a gradual
valve closure,

+ Example 6.5: Gradual valve closure in a pipe
A 2-km-long cast-iron pipe conveys a discharge of 27 m’fs in a 5-m-diameter pipe

with an exit in air through a 1-m-diameter valve. The initial pressure head is 60 m and '

the pipe is 5-cm thick. If the valve closes in § seconds, what pressure surge would
develop?
Solution:

Step (1}: The main conditions for this pipeare D =5m, 4 = 19.6 m%. Assume /' = 0.015
and find the steady friction losses: V' = 40/2D? = 4 x 27/x5*=137Tm/s o

_LV? 0015 % 2,000 137

AH =2 = -
D2g 5 2 x 9.8

0.6m

and friction is negligible;
or Ap = yH, = 9,810 x 60 = 589 kPa (or 85.4 psi).
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Step (2): Is it a sudden or gradual closure?
The bulk modulus for water is £,, = 2.1 x 10° Pa and, for the cast-iron pipe,

E, = 1.1 x 10" Pa. The wave celerity in the pipe is

9
g |Eej__1___|_ (2ix10 : — 850 m/s.

9
p l+(EwD) 1,000 I ( 21 x 107 x5 )
Ee

1.1 x 10" x 0.05
The back-and-forth travel time for the waveistr = 2L/c = 2 x 2,000/850 = 4.7 s,
which is less than the closure time 1c = 5 s, resulting in a gradual valve closure.
Step (3): Calculate the pressure increase.
The pressure increase from Allievi’s formula is estimated as

2 2 2
v (PLYOY _ (LYo ) _ (2,000 x 1.37) ~0g67
Dolc gHytc 9.81 x 60 x5

H, N N? 0.867 0.867°
Z4a_D 4 /_ ———— 1} .867 = 1.46.
L +1/3 +N o+ 0 +0.867 =146

This corresponds to a pressure head H,y = 1.46Hy = 1.46 x 60 = 88 m, and a
corresponding maximum pressure p = p, + Ap = py + yHo = 589 + (9.81 x 88) =
589 + 863 = 1,452 kPa {or 210 psi).

For comparison, the sudden closure formula would yield a pressure increase Ap =
p¥e’ = 1,000 x 1.37 x 850 = 1,173 kPa (or 170 psi) and a total pressure p = p, +
Ap = 589 + 1,173 = 1,762 kPa {or 255 psi} which would burst a 250-psi pipe.

With reference to Figure 6.5, each high-pressure pulse for a sudden pipe closure
would reoccur every period T = 4L/c’ = 4 x 2,000/850 = 9.4 5.

The benefits of a gradual closure to prevent pipe bursting can be significant.

Then,

6.3.3 Valve Opening
Opening valves in long pipes with friction can require a long time to reach steady flow
conditions. After a valve is suddenly opened in Figure 6.8, the total head H accelerates
the flow. As the velocity increases, the pressure head is reduced by friction f until steady
flow conditions are reached.

The steady velocity ¥y is given from

_1Vs

H—ID2g1

gH Vi

1E 2D

6.3 Hydraulic Transients

and

2D LV}
S gH’
The equation of motion,

2
D2g dt g dt’
reduces to

dv g_]-{sz_f
d L 2D 2D

By solving for dr and integrating gives

(Ve —¥?).

[a=22f o vyl av
0 Sl Vz_g_H-LV(Z)—V2

or

_Lvy L+ (V/Vy)
‘T ogH " [l -(V/V-;’J '

. We can also use the hyperbolic tangent function tanh () = (" —e™)/(ef + &)
since we also know that In[(1 +x}/(1 — x)] = 2tanh~! (x). Therefore, we get

LV
=222 ann-t{ V)
gH Vo

v gHt
VO' - tanh (m) . (6'7)

(6.6)

or

From Figure 6.8, we notice that 1 ~ 2LV, /gH, with more details in Example 6.6.

1.0
| ol
h 7 ]
9 = R
L yE 0.6 4
AH =% — 3 0. AV g At
2 D% Soal o,
! VT
v—» D X 02
f f L o o
— 0 05 10 15 20 25
F
riction f g Hi
LV,

Figure 6.8 Definition sketch for a valve opening
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Example 6.6: Valve opening
Consider a pipe L = 10,000 ft, D = 8 ft, f = 0.03 and A = 60 ft. How long does it take

after opening the valve to reach 90% of the steady-state flow velocity ¥ = 0.9 V?

Solution: The equilibrium velocity is ¥ = ,/ESE—D = | /R22x€0t — 10.2 fit/s and after
substituting ¥ = 0.9V, we get

LVo . (19Y 10,000 x 102
= BV (L2) S 100090 X 102 gy g,
09 = 2eH l"(o.l) 2x322x60 " =Ts

6.3.4 Emptying Large Tanks

To empty a circular tank of diameter D through an orifice of diameter 4, as shown in
Figure 6.9, we consider the exit flow velocity through the orifice is ¥ = C,/2gh where
C, is the orifice coefficient. The outflowing jet forms a
contracted vein of fluid called “vena contracta,” a term
coined by Evangelista Torricelli in the seventeenth cen-
tury. Torricelli was a student of Galileo.

3
v

D

3

i

/
: ) I The second condition with 0 = (xdz_,m) ¥y stems from
: = I h h'2 continuity which implies that the volumetric change is
/ 7 ¥ Qdt = AgVodt = (nd”[4)C,/2ghdt = — (xD? [4)dh.

1 «— Vena contracta Separating ¢ and A gives

3 N
Figure 6.9 Orifice flow - dC.2gh’

which is integrated from h; to # as

to1 =22 (Vb - V). ©8)

T Cd g

Orifice flow through a large tank is analyzed in Example 6.7.

Example 6.7: Draining a tank
A 28-ft-diameter tank contains 18 ft of water. What is the time to drain the tank through

a 1-inch orifice (a = 90°) at the bottom of the tank, as shown in Fig. E-6.7.

Solution: The area of the tank is Ay = 7r(28)2/4 = 616 fi’ and the area of the orifice is
Ao =m/(4 x 127} = 0.00545 f*, and C. = 0.61 for « = 90° from Fig. E-6.7.
The time needed to empty the'tank is '
207 2 x 287 x 122
= (Vo= V) = (V18 - 0} = 195,000 s
RGN (‘/— ‘/_') 0.61v2 x 32.2( )
= 2.26 days :

6.4 Surge Tanks 121
> 1.0
Je———D——»
Z 0.9
]
7
g l 0.8 a®
% 4 Ce 45
Z 0.7 f ,
; ____/
e=d 0.6 _—f 90 .
“ L1355 |
0.5

Vi d'D
Fig. E-6.7 Vena contracta coefficient

The reader will notice that the tank would empty faster when a < 907,

6.4 Surge Tanks

Surge tanks are covered in Section 6.4.1 and pressure reduction in Section 6.4.2.

6.4.1 Surge Tanks

Surge tanks are a major part of hydropower projects

and serve to reduce pressure surges when turbines or Surge tank
pump operations are stopped. A surge tank is typically a
large vertical pipe connected to the main pipe. We are o 4 s = |

concerned with the flow oscillations hetween the large
reservoir and the surge tank. As sketched in Figure 6.10, ‘
the water level in the tank rises to a level S above the Ai

initial level.
The fluid motion is analyzed for the case of negligible Arcad V—> \
friction losses between the reservoir and the surge tank. _L‘ L —
The flow discharge O, through the pipe is given by the Penstock
pipe cross section 4 and steady flow velocity ¥, before '
the closure. The flow will enter the surge tank of cross- Figure 6.10 Surge tank

sectional area 4, and the velocity in the tank corres-

ponds to the change in water level S over time dS /dt; therefore, the continuity relation-
R : 45 __ AV . . . .

.shlp 15 written as ¢ = £ The momentum equation F = m% is applied to the fluid mass

in the pipe (pAL)% = —pgAS, which gives

dv _ —gS _dVdS Avav
dt L dSdt A4, dS

Integrating VeV = '—gjfig, with ¥ = Vyand S =0 ats =1y, gives V2 = 1;,“5—2 + V3.
The maximum surge S, is obtained when V = 0,

—
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AL
Spar = Vor/=—
o 0 Aig
and
=22 % (6.9)
Ag

Chapter 7 will provide more details on the derivation of the oscillation period 7'. Both

Smax and T depend on the tank area 4,, the pipe length L, the pipe area A4 and the initial _

flow velocity Vg. Typical surge tank calculations are shown in Example 6.8; and Case
Study 6.1 provides some details of a surge tank.

+ Example 6.8: Surge tank

A 10-ft-diameter pipe carries 843 cfs over a length of 3,000 ft before reaching a
surge tank witha 3 14-ft* cross-sectional area. During a sudden turbine shutdown, what
will be the magnitude and time to reach the maximum water level S, in the
surge tank?

Solution: The pipe area is 4 = 0.25zD% = 25 and the velocity Vo = O/4 = 843/25x =
10.7 ft/s. The maximum surge height is

AL 357 % 3,000
oy AL o, BR300 o
Smax = Voy[ 7= = 1013375332 = 8

at a quarter of the flow oscillation period, or

T _z [AL_x [314x3000
4 2\ ag 2V 2smx322 T

tma.r =

+ Case Study 6.1: The Edmonston surge tank, USA

This case study supplements the information presented in Case Study 4.1 from the
California Department of Water Resources (Deukmejian et al. 1985). The A.D.
Edmonston Pumping Plant has a surge tank located at the top of the two pipelines, as
shown in Fig. CS-6.1. At the top, the water enters a cylindrical surge tank which is 62 ft
high and 50 ft in diameter. The normal water level in the surge tank is 3,165 ft with a
maximum at 3,180 ft. The two main pipes are 8,400-ft long and each conveys 2,205 cfs.
The pipe diameters are 12.5 ft for the lower half and 14 ft for the upper half. Each pipe
contains 1.2 x 10 ft* of water. The closure time for the 4-ft-diameter ball valve at the
base of the pipelines is 80% in 10 s and the remainder in the next 20 s. The reader can
check that this time of closure is shorter than: {1) the time to fill or drain the surge tank;

Exercises

Surge tank, EIl. 3180

Normal water level, El, 3163

— Energy dissipator

- 168-inch Butterfly valve

Air release valve

¢ = 168-inch

Fig. C5-6.1 Edmonston surge tank

{2) the period of oscillations in the pipeline and surge tank; and the time to drain the
pipeline through the ball valve at the base.

6.4.2 Pressure Reduction

Other devices to reduce excessive pressure in pipes include compressed air chambers
and relief valves in Figure 6.11. They are usually placed beside pumps to prevent the,
pressure surge caused by power outages. These devices are connected to pipe systems to
reduce the pressure surge when a pump suddenly stops operating.

Additional Resources

Benjamin Wylie from Michigan advanced the analysis of fluid transients (Wylie and
Streeter 1978). Additional resources on water hammer and surge tanks include
Parmakian (1963), Rich (1984a and b), Ghidaoui et al. (2005), Chaudhry (2014) and
Guo et al. (2017). Recent reviews on hydraulic transients and negative pressure include
Chaudhry (2020), Ferras et al. (2020) and Kamey (2020).

EXERCISES

These exercises review the essential concepts from this chapter.

What does the modulus of elasticity measure?

What is a wave celerity?

Is the wave celerity of water greater in the ocean or in a pipe? Why?
Why is the wave celerity in pipes important?

Why should we care about air bubbles in pipes?

ol B e
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Compressed air chamber

Surge tank _Hydray; .
o " «— Gas or air

v:f?Tffz:J = =53

¥
FFITTITTT 777777 7777777

el

Relief valve
Air chamber et H e
Compressed air E
Water 4__2‘
Connecting pipe o 22z
Main pipe —
L -
X ‘
Pump Check w
valve

Figure 6.11 Pressure reduction in pipes

o 0PN

12.
13.
14.

0.
1.

Why do we use twice the pipe length in the analysis of water hammer?
What is the lowest pressure generated from a sudden valve closure?
Why is the time of closure of valves important?
Are the water compressibility effects included in Allievi’s formula?

Is the pipe friction loss included in Allievi's formula? ‘
What is a vena contracta? Does it increase or decrease the flow rate of a given
opening?

What does a relief valve do?

What is the purpose of a surge tank?

True or false? '

{a) The modulus of elasticity of water does not change significantly with tempera-

ture or pressute.

(b) The wave celerity in a pipe is approximately one mile per hour.

(¢} Water is more elastic than steel.

(d) The pipe expansion under pressure increases with pipe thickness.

{e) Thicker pipes contribute to higher pressures from sudden closures.

(f) Lower wave celerities reduce the pressure increase from a sudden valve closure.
(g) Compared with steel, PVC pipes reduce the pressure from 51:1dd(=:n valve cl'osures.
{h) The time required to establish the flow in a valve opening is approximately

2LV/gH.

Compressed air is an effective way to reduce the pipe pressure fluctuations.
cost of infrastructure over long

(i)
() The present worth analysis distributes the
periods of time.

Problems

SEARCHING THE WEB

Find photos of the following features, study them carefully and write down your
observations.

1. ¢ Burst pipes.

2.+ Surge tanks.

PROBLEMS

Hydraulic Transients and Surge Tanks

1. #¢ A cast-iron 18-in.-diameter pipeline carries water at 70 “F over 1,000 ft from a
reservoir to a powerhouse. The flow velocity is 5 ft/s and the initial pressure is
46 psi. If the cast-iron pipe is 1-in. thick, consider the following questions.
{a) The wave celerity in this pipe.
(b) The added pressure generated by a sudden closure.
(<) Would the sudden closure cause cavitation or burst the 175-psi pipe open?
(d) How long would the closure time have to be to reduce the maximum pressure?
(e} What is the increased pressure if the time of closure is 1 second?
(f) A 10-ft-diameter surge tank is built halfway in the line. Find the maximum

surge height?

{g) What is the period of oscillations in the surge tank?

2. ¢ The City of Thornton considers a water pipeline. From a 2015 newspaper article,

you extract the main statements: (a) current population 138,000; {b) demographic

expansion up to 242,000 in 10 years; (c) pipeline delivery of 14,000 ac. - ft of water

per year; (d) 60-mile length; (e) 48-inch pipe diameter; (f) preliminary cost estimate

$400 million; and (g) on line in 2025. A second newspaper article in 2017 indicates

that 1 ac. - ft of water meets the demand of three—four urban households and the

value of water recently increased from $6,500 to $16,700 per ac. - ft. Consider the

following questions.

{a) What is the cost of the pipeline per linear foot?

(b) If the population starts at 138,000 residents, what is the annual population
increase?

{c) What is the continuous equivalent discharge: (i) in cfs for 14,000 ac.- ft per
year; and (ii) in gallons per household per day?

(d) Assuming po = 40 psi, what is the pressure head in the pipe?

{e) How long would it take to establish 95% of the equilibrium flow velocity after a
sudden opening?

(f) Assuming that friction is negligible, what is the period of oscillations in
this pipe?

() Assuming a rigid pipe with /= 0.02 and p, = 40 psi, what would be the
pressure generated from a sudden closure?

(h) What if a valve closure requires 10 seconds?

(i) Based on the value of water from the second article, do you think this project
has a high or low benefit to cost ratio?
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-l Cost Analysis (see also Appendix A) 7

| 3. #¢ The cost to build a hydropower plant is $50,000,000. The annual energy gener-
] ation is equal to 52,000 MWh (megawatt-hours) and the value of electricity is
constant at $70 per MWh. The period of contract for energy supply is 20 years
and the annual interest rate is 5%. -
T o (a) Is this contract lucrative? [Hint: use present worth analysis.] | i
(b) What should be the minimum value of electricity to break even in this contract? |

(c) Suppose that value of electricity is fixed, but you can sell the hydropower plant |

at the end of the contract. What should be the minimum sale value?

4. ¢ Consider the 7.5-m-diameter penstock in Case Study 5.1. You could increase

H your revenue by $250,000 per year over a period of 30 years by enlarging the
penstock diameter to 9.5 m. Consider interest rates of 0% and 5% and compare

Pipe Flow Oscillations

This brief chapter supplements Chapter 6 and is normally not covered in under-
graduate courses. The material helps graduate and honors students bridge the gap
b'etween spring-mass systems covered in engineering mechanics and flow oscilla-
penstock 3 tlf)ns in. pipes. .Tl'-liS r.nore advanced treatment focuses on fluid oscillations in

pipes without friction in Section 7.1, with laminar friction covered in Section 7.2,

(a) What is the incremental construction cost? t C e )
urbulent friction in Section 7.3, and oscillati i i -
(b} Is this contract lucrative over 30 years if the interest rate is 0%? Section 7.4 ’ cillations between reservoirs considered in

(c) Is this expansion project valuable if the interest rate is 507
(d) Is this contract profitable if the interest rate is 4% but you lose the first year of

revenue because of the project construction? ‘ 7.1 Oscillations without Friction

| We first review spring-mass systems in Section 7.1.1, with applications to water in
|i Section 7.1.2.

7.1.1 Spring—Mass Oscillations

Let’s consider the free vibrations of a spring-mass system in Figure 7.1.

x
. — .
Spring constant Free body diagram
k ¥ ko
 — M
X
NT l W= Mg |

x=Csin(w, ! +¢) |

v

«——— Natural period 7', —

Figure 7.1 Oscillations of a spring-mass system
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7 Pipe Flow Oscillations

The short-hand notation uses dots for time derivatives, ¥ = dx/dr and ¥ = d"x/d¢?,
and the force balance from the free-body diagram is 3 F, = —kx = M %, or

k
ji_.e_A_/[x:O. (7.1)

The solution for the displacement x as a function of time ¢ is x = Csin (w,? + @) where
C is the amplitude of the motion, @, is the natural circular frequency and ¢ is the initial
angle at r = 0. The velocity and acceleration are V = ¥ = w,Ccos {w,t + ¢} and
a =¥ = —w,*Csin (wyt + ). Substitution into Eq. (7.1) gives —w,>Csin (w,¢ + ¢) +
& Csin (wyt + @) = 0 from which we obtain the natural circular frequency @, in radians
per second,

[¥s
Wn = Ao (7.2)
The corresponding natural frequency is f, = ‘2"; in cycles per second or hertz (1 Hz =
60 rpm), and the natural period of oscillations without friction is T, = fl = i—: Instead
of using the initial angle ¢, the equation of motion can be written as
x = C, cos (wyt) + Cysin {w,t). The initial displacement and velocity (= 0) are
xo = Cy =Csing and Vo = %y = ©,C; = @,Ccosgp, or ¢ = tan™ ' (w,x0/ Vo).

7.1.2 Flow Oscillations without Friction

The oscillations of a liquid without friction in the U-tube skeiched in Figure 7.2 are now
considered. Given the cross-sectional area A of the tube and the length L of the water
column, the mass to be accelerated is p4L. Euler's equation of motion considers that the
pressure force pg(z; — 2, )4 equals the fluid mass times its acceleration:

dv
pA=pglza — )4 = _pALE'
@z 1 Dividing by pAL, and considering both (z; — 2z} = 2z and
I U I O A a=3; %. we obtain the main equation Z +gfz =0
s This equation is simply Eq. {7.1) where mﬁ = ,114 = %
@ with the natural period of oscillations,
Tube =
2 L
area | 2 Ty Do 2wy f—. (7.3)
A 1 Wy 2g
The fluid elevation z in a water column without friction
\_/ varies with time ¢ as
2
obe leng{h\)

12 2
z=C,cos fgt -+ Cy sin Tgt. (7.4)

Figure 7.2 Oscillations without friction

7.1 Oscillations without Friction

The position z; at ¢t = 0 defines C) = zp and the initial velocity ¥y gives

Cr = Vo/w, = Vo \/L/2g.

Numerical solutions to the equation of motion are also possible (and often preferable).
The acceleration z is furst solved and used to calculate the velocity from V = V,y + 7As,
The displacement over this short time interval At is then simply obtained from
2 = zg + VAr. The method becomes increasingly accurate as Ar — 0. Example 7.1 shows
detailed calculations for pipe flow oscillations without friction.

+¢ Example 7.1: Pipe flow oscillations without friction
A frictionless fluid column 4.025-ft long has an initial upward velocity of Vg = 4 fi/s at
zp = | ft. Find: {1} the period; (2) the equation of motion; and (3) the maximum elevation

Zmax And velocity V...
Solution:
(1) The natural circular frequency is

2g 2 x32.2
wy, =/ — =/ ——T — f
) 7 3,005 4rad/s

and the natural period of oscillations is

1 2r
Thi=—=""=1. .
" 7o 57s
(2) From the initial conditions C, = zg=1and C; = Vy/w, = 4/4 = 1, we obtain the
equation of motion z = cos (47) + sin (4¢).

Alternatively, C = /C? + C:= V2 and @ = tan~'C,/Cy = n/4 = 45°, and
z = \/2sin (4¢ 4 n/4).

(3) The maximum elevation z,,, when sin (4r, + T/4) =1 gives zpp =C = 2 =
1.41 fi.

The time for z,,,. occurs when 2 = —4sin (4¢) + 4 cos (4¢) =0 or tan (4 1,,) = |
and ¢,,,, = 17e=0.19s.

The maximum velocity occurs when the acceleration 3 = —16cos (41)—
16sin (41) = 0, which is tan (4¢y,..) = —1, or the time where the vecocity is
maximum is

T n
HWopaxr = ——, e =l
v T or T3 1.374 s,

and the maximum velocity becomes

I . -4 —4x
V s = Zmax = —4sin (F) +4cos (—F) = 5.66 ﬁ/S

Alternatively, we simply obtain the maximum velocity from Ve = 0,0 = 42 =
5.66 fifs as shown in Fig. E-7.1.

i
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6 (-~ Velocity ¥ (Us)
4 \\ /f
i Position z ({t)
g 2 /‘([\l N /
g e
s 0 / \
g -2
z /
-4
-6 0 25 3.0
0 0.5 1.0 1.5 2. .

Time (s)

Fig. E-7.1 Pipe flow oscillations without friction

7.2 Oscillations for Laminar Flow

We first review damped spring-mass systems in Section 7.2.1 with applications to
laminar flow in capillary tubes in Section 7.2.2.

7.2.1 Damped Spring—Mass Oscillations | .
Let us first consider the damped vibrations of the spring-mass zf.ystem shown- in
Figure 7.3. The damping coefficient represents resistance to the motion. The damping

X
7 Spring constant Damping Free body diagram
kx
/ g < M

x cx NT lw=Mg

Spring force F = - kx
Damping force F = - ¢%

XA X A Oscillations when £ < |
A=

4 Over damped gt _ Ao Eont
\."--. ____________ C - | ==, )
L Time - \/’ = Time

Critically damped Wy

S D'.:.:mped period Ty —*

Figure 7.3 Oscillations of a damped spring-mass system

7.2 Oscillations for Laminar Flow

force is opposite to the velocity such that when the mass moves to the right (x = 0), the
force is applied to the left (F = —cx).

The sum of forces in the x direction includes the damping force component of
magnitude —cx in the direction opposite to the velocity x, or SF.= —hx—ci =M%,
ori+£x+4x=0.

The general form of this differential equation is

¥+ 2w, % +wix =0, (7.5)
with the dimensionless damping coefficient ¢ = sifm. and the natural circular frequency
qmzfﬁ.

The general equations for the position and velocity are, respectively,
x = Ae "' sin (wyt + o), (7.6)
X =Ae " {|wycos (wyt + ¢)] — [Cw, sin (wat + o)}, (7.7

where w; = w,\/1 —* is the damped circular frequency (the system only vibrates
when " < 1}, with the phase angle , damped frequency f, = 54 and damped period
—d_z
Ta=7 =2
The solution to the problem of damped oscillations with laminar flow is illustrated for
two practical cases: (1} case A with initial displacement; and (2) case B with

initial velocity.

Case A: initial displacement at t = 0, xo = C and ¥, = %4 = 0.
From the displacement in Eq. (7.6) at ¢ = 0, we obtain 4 = C/sing.

From the velocity in Eq. (7.7) at t = 0,tan g = (—‘:’uﬂ'— or ¢ = tan~! (ﬂﬁ—)

Cw,

The successive maximum/minimum positions are at times ¢ = 0, 12¢ =X T4= i_: ..

The successive maximim/minimum velocities are at times ¢ = %i = 5, 3%1 ﬁ—fd ..

The graph of the position as a function of time is sketched in Figure 7.4.

Case A: Initial displacement Case B: Initial velocity

XA X4
A ‘-'."max=c_x,, A
= ..‘Ae-gm,,l
g /\
"= 2
| = L.
. —>
Time
2 . i
— T~ — Ty ="ay,

Figure 7.4 Position of a damped spring-mass for initial displacement and velocity
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Case B: initial velocity at 1 = 0, xo = 0 and Vy = Aw,.

From the position and velocity in Egs. (7.6) and (7.7), we obtain ¢ = 0 and 4 = Vy/w,.
The successive maximum/minimum positions are at times 7 = 7—}1 = Sy A = Gy
The successive maximum/minimum velocities are at times £ = 0, Izi =5 Te= [—25 ..
We are now ready to study the unsteady fluid motion in capillary tubes with viscous

damping.

7.2.2 Damped Flow Oscillations in Capillary Tubes

This section is applicable to damped oscillations for laminar flow (Re < 2,000]. in
capillary tubes of constant area A. With reference to Figure 7.5, the equation of motion
includes the friction losses Ay

dv
Diameter D »| |« pg(z2 — 21)4 + pghyd = —pAL
R where the friction loss are
z
Laminar -z hf = B“ég_
friction ‘ B
18] For laminar flow, the Darcy-Weisbach friction factor
Tl::: = & = & depends on the kinematic viscosity v of the
a < N -
a1 fluid. Therefore, the friction loss is given by
. ad
Viscosity v . 640 [ 1\ V|1
T VYD\D) 2g
M Dividing the equation of motion by p4 with z3 — z; = 2z
Datum e ]eng\“" gives
_a ———————————
dV  32ulV
Figure 2.5 Oscillations with viscous friction L o + - + 2gz = 0.

This is simplified further with ¥ = dz/d¢t = # and dV /dt = Z; thus,

. 320, 2g
Z+FZ+TZ—09

which is equivalent to Eq. (7.5} where w, = \/2g/L, and 2{w, = 320/D? gives
¢ = 16v/w, 07, and wy = w1 — &2

In summary, the displacement can be analytically defined from Eq. {(7.6)
z = Ae ' sin (wgt + ¢) (7.8)
and the velocity is given as

V =3 = de” " {[wy cos (waf + ¢)] — [{w,sin {wat + ¢)]}, (7.9)

where w, = /2g/L,{ = lét)/m,,D2 and wy = w, /1 — 7

7.2 Oscillations for Laminar Flow

Finally, 4 and ¢ depend on the initial displacement and velocity conditions. For
instance, the boundary conditions for an initial displacement C without velocity is
A=C/sing, and ¢ = tan! {4/ w, ). This may sound complicated without the appli-
cation detailed in Exampie 7.2.

+ Example 7.2: Laminar flow oscillations in a capillary tube

Consider oscillations in a 10-ft-long and 1.0-in.-diameter U-tube containing a fluid
more viscous than water, v = 1 x {04 ft* /s. The initial head difference between both
ends of the tube is 16 in. Can you find the equation for the position z as a function of

time? Also find the maximum velocity and Reynolds number to double check that the
flow is laminar.

Solution:
Step (1): The natural circular frequency is

- /2 /2 %322
! Wy = Lﬁ = —XI-O— = 2.54 radians per second.

The damping coefficient is

160 16 x 107% x 122

¢= w, [P 2.54

= 0.091,

with oscillations, because ¢ < 1.
The damped circular frequency is

W4 = wp\/1 = ¢ =2.54V1 - 0.091% = 2.53 rad/s and {, = 0.091 x 2.54 — 0.23].

Step (2): As in case A, the initial conditions give the phase angle:

0= tan“(“’") -
{w,

The initial conditions are € = 0.5 = 16/12 = 0.667 fi, and

C 0667
sing  sin 85°

=1 —_— = —

= 0.669 fi.

Step (3): From Egs. (7.8) and (7.9), the height in ft and velocity in ft/s at time tin seconds
are, respectively,

z = 0.66% "*Vsin (2.53¢ + 1.48 rad)

and

V =0.669¢ *#1{(2.53cos (2.53¢ + 1.48 rad)] - [0.231 sin (2.53¢ + 1.48)]}.

Step (4): The minimum velocity V., at ¢ = Tafd =n/2w;=7/(2 % 2.53) = 0.62
gives V,,, = —1.46 fi/s and

= T TR
[
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1.46 x 1
Reyin = lVlD = . 3 1,220
12 x 10
and the flow is laminar because Re < 2,000.
1.5 : ‘
1 0l C=0.667 | o~ Velocity (fUs)

s Elevation (ft)

205t
S 0.5 \J __// \ 7
T-1.0
-1.5 <
220 Vrmin
0 0.5 1.0 1.5 20 25 3.0 3.5 4.0

Time (3)

Fig. E-7.2 Pipe flow with viscous oscillations

7.3 Oscillations for Turbulent Flow

The case of oscillations for turbulent flows in large pipes is far more complicated because
the equation of motion becomes nonlinear. The governing equation was derived in
Section 7.2.2, except that the Darcy-Weisbach friction coefficient is now constant:

AV dv
- = U A = —pAL—.
pglz —21)4 +pg (D 2 pAL—
Dividing by pAL and given (z; —z,) = 2z, with ¥ = Z and a = dV/dt = Z, we obtain
. f oL, 28
z+2Dz[z|+ I =0. (7.10)

This is a nonlinear differential equation because of the squared velocity term. The
absolute value of the velocity term is needed to ensure that the resistance opposes the
velocity in both flow directions. The equation can be integrated once with respect to ¢ and
the first integration is given here without derivation (see Rainville 1964, Streeter 1971):

dz\’ 4gD? fz or
—] = 1 +— Ce(ﬁ)
(dr) L )"

The integration constant C is evaluated for minimum/maximum values, i.e. z = z, at
dz/dr = 0 (where the subscript m represents the maximum or minimum),

_ 4gD2 fzm\ (L
T ( +F)e( ),

7.3 Oscillations for Turbulent Flow
and the velocity relationship becomes

@A) () e

This equation is useful to determine the successive peaks (high z* and low z,..1) obtained
when V' = 7 = 0, and the equation simplifies to

(l +%) exp (—%) = (] + fz_;‘f_') exp (_fzg_:).

The main equation to be solved with ¢ = fz/D is

F(gy=(1+¢)e (7.12)

With changes in flow direction, the successive values of ¢ are obtained by alternating

th'e signs of ¢ and solving F(¢) = (1 + ¢)e™? = (1 — ¢)e™. This is plotted on Figure 7.6
with an iflustrated example.

1.0 ]| 040 T 1
— T 0.56 ,1__(]+¢)€-¢
- S ,{ f
0.8 ™~ 1 T 0.92
N ) T
0.6 \
S (1-9)e? TN
. N
0.4 N
0.2
0

0 61 02 03 04 05 06 07 08 09 .0
¢

Figure 7.6 Plot of F(¢) = (1 + ¢)e* for turbulent pipe flow oscillations

The graphical procedure to determine successive peaks is illustrated in Figure 7.6.
With an example starting at ¢, = 0.92, we obtain F(¢) = (1 + ¢)e~? = 1.92¢092 —
0.77,  which ~ corresponds  to ¢, = ~0.56 because F(g) = (1 + ¢)e? =
(1 —0.56)e*03¢ = 0.77.

To find the next minimum, we reverse the sign of the last value ¢, = +0.56 to find
F(0.56) = (1 + §)e = 1.56e ® = 0.89, and the subsequent value is ¢; = —0.40

because F(~0.40) = (1 +¢)e™? = (1 — 0.40)e*°% = 0.89, and this results in
¢y = 0.40, and so on.

—
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The successive peaks are therefore ¢, = 0.92, ¢, = ~0.56 and ¢; = 0.40, etc. and
the corresponding successive maximum/minimum elevations using f and D are
zy = $ D/f, 22 = ¢; D/f , ete. g

The maximum value of ¥ is found by equating d¥*/dt = 0 from Eq. {7.11) at the

position Z’:
i

dVZ _f fz,,, 'f(z’ "zmm":li'r f
o5 (=

which gives

D Zonas
Z = Zmax f_]n (I fD'“)

The result is substituted back into Eqg. (7.11) for the maximum velacity:

5 . 4gD2 fzma.x _ fz"m_r -l'
Vma.‘,—ﬁ-[(—-l)—) In (1 | D )-. (713)

This procedure looks awfully complicated, and Example 7.3 should be very helpful.

Example 7.3: Turbulent flow oscillations in a large pipe

A 1,000-ft-long U-tube consists of 2.0-ft-diameter pipe with f = 0.03. The initial water-
level difference between both ends is z, = 20 fi. Find the successive minimum and
maximum elevations.

Solution:

Step (1): The initial value is ¢, =73 =292 =03 and F(0.3) =(1+4) et =
1.3e 93 =0.963.

This corresponds to ¢, = —0.25 because F(¢) = (1 + ¢)e™* = (1 — 0.25) et025 =
0.963.

Step (2): The sign of ¢, =025 is reversed to give F(0.25)=(1+4) et =
1.25¢°93 = 0.973.

The third peak is ¢; = —0.215 because F(—0.215) = (I - 0.215)e™02t = 0.973,
and ¢, = 0.215.

Step (3): The corresponding sequence of maximum/minimum elevations for ¢, = 0.3,
g, — —0.25 and ¢, = 0.215 is z = 20 ft, 2 = §,D/f = —0.25 % 2/0.03 = —16.7 &,
and z3 = ¢, D/f = +0.215 x 2/0.03 = +14.3 &.

Step (4): The maximum velocity from Eq. (7.13) correspends to the first maximum
¢, = 0.3, and

AgD? [ {f Zuwas ( fz,,m> 4 %322 x2?
y: o= S~ In | 1 =— "= 7" [(0.3)— In{1 + 03
mex = g7y [( 5°) - m+757) ] = oot xr000 @3 ~ (03]

= 21.5 f2/s,

7.4 Oscillations between Reservoirs 137

or
Vmax = —4.64 ft/s; this occurs when

! D fzma): 2
Z=Z,,m_r—7|n(l+ D )=20—mln(l+03)=25ﬁ
The .basic equation of motion (Eq. (7.10)) can alsc be solved numerically at very
s‘hort time increments to show the displacement and the velocity as a function of
t:me.. Figure E-7.3 shows a comparison of the numerical method and the successive
maximum/minimum elevation and velocity values.

209=<.z) =20 ft
Elevation (ft) zy3= 143 ft

10 NI
¢ |
<, z=25f P
s N — -
EN, o Vinin = - 4.64 ft/s Velocity (ft/s)

" \/22 -16.7 ft

0 5 10 15 20 25 30 35 40
Time (s)

Fig. E-7.3 Turbulent pipe flow oscillations

7.4 Oscillations between Reservoirs

Two reservoirs are connected by a pipeline of length L and diameter D in Figure 7.7. We
study the flow oscillations given the reservoir surface areas 4, and 4, with water
elevations z) and z, respectively. For the analysis, the equilibrium position from the
volumetric relationship zA = 214 = z34;, gives
z1 =zA/A, and z; = zA/A4>. Also, given H =z, -+ z,, we
find z) = HAz/(A) + A2) and z; = HA| /(4) + 43). Minor  Equilibrium elevation
losses are considered by using the equivalent friction / z{f
factor f, = f + KD/L with the pipe friction factor /' and |[=— B
minor-loss coefficient K.

The equation of motion when neglecting the momentum
flux (pQV << pA) is

Az Length L
Af L d. 2 i
_},(22+ZI)A_Yfe _Zé =&g72, A:_A-.ZI—A')22 \ Diameter D
2gD dt |di g dr Friction f°
which gives Figure 7.7 Oscillations between reservoirs
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d’z f,dz

dz
2 T apdild

gd 1 1
—+—jz=0.
al L (A1+A,)z
We are already very familiar with this formulation and the solution is the same as in
Section 7.3 after replacing f with f,, using ¢ =f.5 and replacing 2g/L by
gAl(1/4,) + (1/43)]/L. Notice that oscillations can be independent of the original
elevation zj9, because F{¢) = (1 +¢)e ¥ —+0 when ¢>35 The application in

Example 7.4 considers the oscillations between two large tanks.
i

+ Example 7.4: Oscillations between large tanks
A valve is opened in a pipe connecting two water tanks of surface areas 4, = 200 ft? and
A; = 300 fi%. The initial head difference between the two tanks is 66.7 ft. The 2,000-ft
pipe has a 3-ft diameter with a friction factor ' = 0.024 and minor losses 3.5 V 2/2g.
Find the high and low water levels in tank 1.

Solution:

Step (1): The initial head of tank 1 is zyp = HA»/ (4| + 42) = 66.7 x 300/(200 + 300) =
40 ft and the initial level in tank 2 is zy = 5{{}%1 = 40 x %: 26.7 ft below the
reference elevation.

Step (2): The equivalent friction factor is f, = f + KD/L = 0.024 + (3.5 x 3/2,000) =
0.02925.

The initial high level in the first tank z,o = 40 ft gives

_Z]()A] _40 x 200 x 4

= = 1,132 fi.
o= 7% 3
The corresponding ¢ is
fuzm  0.029 x 1,132
=1L = = “.0;
¢0 D 3

note that ¢, > 5 here, and F(gy) = (1 + gp)e % = (1 + 11)e”!! = 0.0002,
The first oscillation starts when ¢, < 5, or after

Zmd _ AggD _ mx 3 x5 x3

= = - = 18.1 ft.
B0 T T A, 4% 200 x 0.029
Step (3): The first minimum will happen when ¢, = —1, which corresponds to
gD —1=3
== = —102.6 ft,
m T T 0.02925
and thus
_ 2
le=2m1A= 1026 xmT %3 — _36f.

200 x 4

|

Additional Resources

Step {4): For the next maximum, the absolute value of ¢ = +1 gives Fig,} =
(1+¢)e® =(1+1)e! =0.736, which corresponds to $> = 0.593 given that
F(#y) = (1 — ¢5)e? = (1 — 0.593) "% — 0.736, This second peak is at

i 2=¢2D—0'593X3—609ﬁ
" f. T 002925 U
which is at elevation
z]z_z,,,zA__60.9><:r><32_2 R
A 00x4 =
Step (5): The maximin/minimum sequence in the first tank is: Zp =401, 2, = -3.62 1

and iz = 2.15 ﬂ, etc.
Step (6): The numerical methods become increasingly accurate as At — 0. The numerical
scheme consists of three parts:

(a) Eq. 7.10 is solved for the acceleration given the initial values of elevation
and velocity.,

{(b) The velocity is then calculated from ¥ - Vi + ZAr
(c) The displacement is then simply obtained from z — zp + VAL

This maximum/minimum calculation sequence is compared with numerical
calculations in Fig. E-7.4.

40 <
\-
30—
g 20 \'\ > Oscillations start
< '\_v/ Level in tank # 1 (ft)
S 10 | ¥e—] |~ Flow velocity (fi/s)
g, N 'l zp=+215M
v Or e —
S10lk L=  zp=-3.621t
s -y B
-%/— Level in tank # 2 (ft)
-20
1 2 3 4 5 6 7 8
Time (s)

Fig. E-7.4 Turbulent flow in a pipe connecting two reservoirs

Additional Resources

Additional information on transients and flow oscillations in pipes can be found in
Streeter (1971), Wylie and Streeter {1978), Naudascher and Rockwell (1994), Ghidaoui
et al. (2005) and Chaudhry (2014). Numerical methods which successively solve
Eq. (7.10) for acceleration, velocity and position at very short time intervals are
quite popular and effective nowadays on fast computers. Alternatively, analytical
solutions for flow oscillations with turbulent friction losses are now becoming possible
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140 7 Pipe Flow Oscillations
with the use of Lambert functions and elliptic integrals readily available in Matlab
pro Steady Uniform Flow
3 ' EXERCISES .
These exercises review the essential concepts from this chapter. -
. 1. What is the source of elasticity in pipe flow osc1llat|0.ns?‘ - 1
B 2. What is the effect of friction on the frequency of oscillations?
3. When do oscillations start in laminar flow?
illati i t flow? . |
4. When d? :)sc;l]atlons start in tufbulen As opposed to pressurized flow in closed conduits, open-channel flows convey water
i i i by gravity in man-made channels and natural waterways. The cross-sectional area of
tion (midpoint) in the pipe remains constant Y gravity -
S pres}slure arllthte' e levation (mic open channels varies with discharge as described in Section 8.1, Section 8.2 examines
The meriod of sl istance to flow, the normal depth is considered in Section 8.3 and shear stress i
i illati in pipes without friction only depends on the resistance . P side n Secti ) ear stress in
(b) The {)enoﬁ of oscillations in pip [eostanee |
pipe length. -
{c) Friction increases the frequency of oscillations.
I ' (d) Friction decreases the period of oscillations. ‘ 8.1 op en-Channel Geometry
The cross section of a channel is measured perpendicular to the main flow direction.
PROBI;\EMS 1 5 diameter U-shaped plastic tube is holding water at 20 "C. Figure 8.1 depicts the geometric elements of a typical cross section. The main parameters
. ¢ A 10-m-long, 5-mm-di o . . . ‘
1 There is a l—mghead difference between both ends when the pressure is suddenly | are: flow (?epth , surface width W, wetted perimeter P,
released at ¢ = (. Determine the following: (a) the natural circular frequency of the cross—se.ctlona.\l area A, ayeraged depth 4 = A/W and
oscillations; (b) the damping factor; (c) the circular frequency of the damped | hydraulic radius R;,f: AP, X | ‘ )
oscillations; (d) the period of the damped oscillations; (e) the lowest water level; The geom.etry' of open-channel cross sections is B
(f) the max'imum flow velocity; and (g) whether or not the flow is laminar. | summarized in Figure 8.2: o 3
2. ¢¢ A 25-m-long, 25-cm-diameter U-shaped pipe has an 8-m difference between | For the c?mpound .?ECtIOI’lS sketched in Figure 8.3a,
. both ends as the,system is released from rest. If /= 0.04, calculate the successive the hydraulic radius 1s‘ calculated frc_)m the sums of '
. during the oscillations and find the maximum velocity in the pipe. partial areas and partial wetted perimeters. Typical
maxima during ) ith f = 0.08 river cross-section profiles in Figure 8.3b indicate the Figure 8.1 Cross-sectional geometry
compsre fhe caleutations v o substrate material and floodplain vegetation types in )
|

terms of deciduous and coniferous trees, shrubs and
grasses. The bankfull elevation is usually important because floodplains can extend
laterally over long distances. The vegetation on the floodplain alse increases roughness
while the main channel will tend to limit vegetation growth.
Three typical calculation examples are presented for: (1} a circular section for sewers '

and culverts in Example 8.1: (2) a trapezoidal canal in Example 8.2; and a compound
section in Example 8.3.

Example 8.1: Circular cross section

Define the hydraulic geometry of a circular open-channel cross section shown in
Fig. E-8.1.




