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Table 3.1
i I, {m) D, (m) A R,
| 600 04 0.02 96.83
2 600 04 002 96.83
3 300 03 003 306.00
4 300 03 003 306.00
5 300 03 003 306.00
6 300 0.2 0.04 3098.00
7 300 02 0.04 3098.00
8 300 0.2 0.04 3098.00
9 300 03 0.03 306.00
10 600 03 0.03 612.00
11 300 03 0.03 306.00
12 900 02 0.04 92955
13 300 02 004 3098.00
Table 3.2

12 3 4 05 6 7 8 9 10 1 12 =iy,

1 -1 +1 0 0 +I 0 ¢ +1 0 -1 0O O 0
2 0 0 +1 #1 -1 -1 0 0 O O O O 0
3 0 0 0 0 0 +1 +1I =1 =1 0 O0 O 0
4 ¢ 0 0 0 O 0 ¢ 0 +1 +1 -1 =1 -1

satisfy the continuity conditions at the nodes. The signs are given
according to the positive direction around each mesh (Table 3.2).
{3) The branch-node matrix is formed.

{4) The solution by the Hardy-Cross method is programmed.

c H.CROSS SOLUTION OF PIPE NETWORK
1BI(I:;/I(;ENSION R(40),0(40).M(40,40),U(40),DH(40)
)
READ(5,1) TEST,IMAX,KMAX
1 FORMAT(F7.0,214)

READ(5,10)(Q(l).1=1,IMAX)
READ(5,10)(D(1).1=1,IMAX)
DO 11 K=1,KMAX

11 READ(5,12){M(K.1).1=1IMAX,
READ(5,10)}(R(1).1=1,IMAX)

12 FORMAT(1314)

10 FORMAT(10F7.0)
ITER=0

40 ITER=ITER+1
IF (ITER.GT.500) STOP 1
DIFMX=0.
DO 20 K=1, KMAX
SUM1=0.

&
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SUM2=:0.
DO 25 I=1, IMAX
T=M(K.I)

SUM1=SUM1+T*R{1)*Q(1)**2

256  SUM2=SUM2+2.°ABS(T)*Q(1)*R(l)
DQ= - SUM1/SUM2
IF(ABS(DQ).GT.DIFMX) DIFMX=ABS(DQ)
DO 30 I=1, IMAX
a()=Q()+M(K,1)*DQ
IF(Q(1).GT.0.) GO'TO 30
a(l)=—a(l)
DO 35 KK=1, KMAX

30 CONTINUE

20 CONTINUE
IF(DIFMX.GT.TEST) GO TO 40
DO 70 I=1, IMAX
U(l)=0(1)*1.273/D(})"*2

70 DH(1)=R{1)*Q(1)**2
WRITE(6,75) ITER

75 FORMAT(//18//)
WRITE(6.45)(Q(1). 1=1, IMAX)
WRITE(6,45) (U(1), 1=1, IMAX)
WRITE(6,45) (DH(1), 1=1, IMAX)
DO 65 K=1,KMAX

65 WRITE(6,55)(M(K.1).1=1, IMAX)

45 FORMAT(10F10.4)

56 FORMAT(1016)
STOP
END

The final discharge values along the branches (for a convergence
criterion TEST =0.1) and the calculated pressure heads at the nodes
are depicted in Fig. 3.4.

3.3. NON-STEADY FLOW. WATER HAMMER

Unsteady flow in closed conduits becomes very important in the case
of sudden changes of discharge due to the interruption of a pump
operation, or the closing or opening of a vane. These variations create
pressure waves propagating with alternating sign (high pressure or
low pressure) along a pipe. The computational goal is usually to find
the extreme pressure values in order to check the safety of the conduit.

Assuming elastic conduit walls and compressible fluid the velocity
of an elastic wave along the pipe is found to be

®
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where p is the water density, K the water modulus of elasticity (K =
2 x 10% kp/m?), D the pipe diameter, ¢ the walls thickness, and E the
modulus of elasticity of the pipe material (E=2x 10'® Kp/m* for
steel pipes).

Approximating the pipe body by a series of rings (negligible
Poisson ratio} with uniform internal pressure, we can correlate the
relative pressure inside the pipe to the pipe diameter,

H = 2L (3.17)
g r

where ris the radius under pressure head H and ry the radius under
pressure head equal to zero (absolute pressure= | aim).

The mathematical model ts formed using the quantitative
expression for the principle of mass continuity and force equilibrium,
written with respecto the unknown funciions H, V (pressure head and
water velocity) as:

av av  oH 27
e W i e ] L
0t ax ty ox r (3.18)

O
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oH oH v

atV ety a0 (3.19)

where 1, is the wall shear stress, which can be cxpressed as
1, =KV|V| (3.20)

where
K=2p/8 (3.21)

a friction coefficient depending on the pipe diameter and roughness.

During the numerical integration of Equations 3.18 and 3.19 using
finite difference methods, some difficulties arise on the upstream and
downstream boundaries where the H, V values, on and outside these
boundaries are needed. This difficulty can be overcome using the
properties of the corresponding characteristic curves. A considerable
simplification is achieved by neglecting the non-linear terms VaV /dx
and VoH/ox.

As the frictional losses are usually small, due to the short duration
of the phenomenon and the moderate velocity values, the system of
Equations 3.18 and 3.19 can be simplified to the final form,

oV oH
05,0 (3.22)
aH c2av
atygas LS

The model is completed by the initial and boundary conditions.
The velocity and pressure heads are given before the initiation of
the velocity variations. The boundary conditions are usually either of
the reservoir type, where the pressure head is constant (equal to the
hydrostatic pressure) or of the vane type. In the case of a suddenly
closed vane the velocity is zero and in the case of a slowly closing or
opening vane the continuity principle leads to the condition,

S
=5, V2yH) (3.24)

where S = S(1) 1s the flow section, S, the initial vane opening and H the
pressure head.

The numerical integration of the system describing the
propagation of pressure and discharge waves along the pipe, with or

®
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withoul simultaneous encrgy dissipation duc to friction, can be done
by the developed FD schemes.

A simple explicit scheme will be used here directly applied 1o
staggered grid. The grid is characterised by temporal and spatial
eccentricity. The pipe is discretised in characteristic sections. The
velocity values arc computed for each section while the pressure
heads refer to the reaches between two sections. The H and V
computations are performed at different time levels. The H", H" LA
and V"L, vt values are interchangeably computed. The grid in
x 1 space and the integration procedure arc schematically given in
Fig.3.5. The approximation of Equations 3.22 and 3.23 by difference

equations leads to,

ntd2 __ ot/ a+) _pntl

S izl =0 3.25

A YT Ax (3.29)

H:Hi__Hn ‘.2 Vn+|l:2_vn+l/2

T Ty = 26
At + g Ax . 3.26)

where i and n are space and time indices respedtively.

An application for an isoluted pipe starting from a reservoir and
terminated by a closing vane is given in the following example. The
closing time is smaller than 2L/c where L is the pipe length.

EXAMPLE 32

To compute the pressure head variations on the downstream end of
pipe L=6000m long with D=0.5m, e=4 mm, H,= 5m and V=

O

FLOW IN CLOSED CONDUITS 39

V computation points (sections)

7

H o H computation points (reaches)
Sm t>x=600m

2 3 4 S5 6 7 8 9 10 1

tofoToTfoJoJo[o]ololofel]

HD = 5ll‘l, Vn =
Fig. 3.6

9.9 m/s. The discharge is interrupted through a downstream vine at
{ =2 s with a linear decrease of the flow section. Frictional losses are
negligible.

A general plan of the reservoir-pipe system and the pipe
discretisation is included in Fig. 3.6. The solution is performed by
means of Equations 3.25 and 3.26. At the upstream end the pressure
head, equal to the reservoir depth, is constant. At the downstream end
the boundary condition relates velocity and flow section. The wave
speed is computed [rom Equation 3.16 and is found to be ¢=
2980 m/s. The integration time step A1 is taken equal to 0.1 s so that
the Courant condition is satisfied.

Al _ 0496 <1 5
e es (3.27)

The solution is programmed in FORTRAN as follows:

Cc WATER HAMMER FINITE DIFF SOLUTION

DIMENSION V(100), H(100)
READ(5.1 )DX,DT‘C,HO,VO,TOL,IMA)(

1 FORMAT(6F7.0.14)
IMAX1 =IMAX—1
DO 2 |=1, IMAX
v(1)=VO

2 H{1)=HO
T=0
N =

-

0
100 T=T+D
N+1

(T.GT.TOL) GO 7O 3
R= (TOL-T)/TOL
0TO 4
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3 SR=0.

4 CONTINUE
V(IMAX)=SR*SQRT(2.°9.81*HO)
DO 5 1=2,IMAX1

5 V(I)=V(1)-9.81°DT*(H(l) - H(I-1))/DX
DO 6 I=2,IMAX1

6 H(1)=H(1)—-DT*C**2/9.81°(V(1+1)=V(I))/DX
WRITE(6,11) T

11 FORMAT (//F10.3//)
WRITE(6,12)(V(1}.I=1,IMAX)
WRITE(6,12) (H{1).1 = 1,IMAX)

12 FORMAT(12F10.4)
IF(N.LT.200) GO TO 100
STOP
END

IFor data values DX =600 m, DT=0.1 s, HO=5m, VO=99 m/s,
TOL=2s (closure time) and IMAX =12 scctions. The pressure
variation at the downstream end is graphically presented in Fig. 3.7

The aceuricy achieved by the numerical solution is satisfactory as
the analytical solution gives for the maximum excess pressure

.A]/
Au=‘q =3010m (3.28)

a value differing very little from the numerically computed one. The
method does not contiin any numerical diffusion as the maximum
and minimum pressure values are periodically repeated in the absence
of frictional losses.

The lincarised model, Equations 3.22 and 3.23, applied here
presents no dilficulty on the boundaries as the non-linear ¥ 31 /dx and
VoV /dx terms are dropped. The inclusion of these terms for rapidly
varying velocity fields, as in the case of very deformable pipe walls and
in the case of open conduits, would introduce some complications.

The property of characteristics is used here and in Chapter 4 at an
introductory level as this facilitates both the understanding of the
wave propagation mechanism and the computational procedures.

If Equation 3.23 is multiplied by g/c and successively added and
subtracted from Equation 3.22 the following relations result:

: (V+"”)+c ! (v+“")=0 (3.29)
o It ox ¢

) A

: (v-‘“‘”)—c‘ (w""):o (3.30)
ot ¢ ox IS

—
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If the dx/dt derivatives are replaced by +¢ und —c respectively in
Equations 3.29 and 3.30 they take the form

d [, yH\_ ) , dx

ar (I + . )—0. along = (3.31)
d gH dx

- - = é ] —— — 2
™ ( p ) 0, along dr c (3.32)

where d/dt denotes the total or material derivative.

The physical meaning of Equations 3.31 and 3.32 is that the
characteristic lines are straight lines of slope + ¢ and —c and the V+
(yH /¢) values are kept constant along those lines. Their numerical
integration can be realised on the characteristic lines or, for reasons of
easier geometric description of the flow domain, on an orthogonal
grid established in the x-t plane. A simple explicit procedure of
integration on the orthogonal grid will be presented below.

The notation 1o be used is presented in Fig. 3.8. The characteristics
AL, AR with slopes +c¢ and —c, respectively, pass through the point
A where the values of V and H are to be computed. If the inequality
Ax>cAt is satisfied, points L and R lie between points i—1,i and
i, i+ 1, respectively. The sums V+(gH/c), V—(gH /c) are known to be
constant along these lines.

The values of ¥, H on L and R (V,, H,, Vi, Hg) can be casily
computed by means of linear interpolation from the known values
Ve, vm v L HY | HY HL L Onthis basis, the following algorithm
can be formulated:
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Fig. 3.8

(1) Computation of V,, H, Vi, Hy:

V= Vi (K" — V")eAt/Ax (3.33)
V= Vo4 (V5 | = V7 )eAL/AX (3.34)
Hy=H"+(H?_ — HYeAt/Ax (3.35)
Hy=H+(H", | — H')cAt/Ax (3.36)

(2) Computation of the auxiliary quantities AL, AR by means ol
Equations 3.33-3.36:

AL=V, + H,_ (3.37)

AR =V, —"{ He (3.38)

(3) Computation of V!, H?*! from Equations 3.31 and 3.32:
prrl=(4L+ AR)2 (3.39)
H™" ' = (AL~ AR)/(2*¢/g) (3.40)

The M values are known on the upstream boundary and the V vulpcs
can be computed from the AR characteristic by means of the relation

@
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n g nv
VPtt=SHYT AR, (3.41)

The velocity values are known on the downstream boundary and the
H values can be computed from the AL characieristic

Hid = (AL — Vil )c/9.81 (3.42)

The algorithm can be programmed in FORTRAN as follows:

C  WATER HAMMER SOLUTION BY CHARACTERISTICS
DIMENSION AL(40), AR(40), V(40), H(40)
READ(5,1) DX,DT,C,HO,VO,TOL,IMAX

1 FORMAT(6F7.0,14)
IMAX1 =IMAX— 1
DO 2 1=1,IMAX
V(l)=VO0

2 H(l)=HO
N=0
T=0.

100 T=T+DT
N=N+1
DO 3 1=2,IMAX

3 AL(1)=V(I)+9.81/C H(l) + (- V(I) - 981/C H(l) +
1 V(I—-1)+9.81/C"H(1-1))*C*DT/

DO 5 1=1,IMAX1

6 AR(1)=V(1)—9.81/C H(l)+ (- V(1) +9.81/C*H(I) +
1 V(1+1)—9.81/C*H(I+1))*C*DT/DX
IF (T.GT.TOL) GO TO 33
SR=(TOL~-T)/TOL
GO TO 34

33 SR=0.

34 CONTINUE
H(IMAX) = (AL(IMAX) = V(IMAX))*C/9.81
H(1)=HO
V(1)=9.81/C*H(1)+AR(1)
V(IMAX) = SR*SQRT(2.°9.81°HO)

DO 6 |=2,IMAX1
V(1) = (AL(1) + AR{l})/2.

6 H({I)=(AL(I)-AR(1))*C/2./9.81
WRITE(6,10) T

10 FORMAT(//5X, ‘TIME',F10.3//)
WRITE(6,12) (H(1).l =1,)MAX)
WRITE(6.12)(V(1).1=1,IMAX)

12 FORMAT(11F10.4)

IF (N.LT.200) GO TO 100
STOP
END
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Repeat Example 3.2 using for the numerical integration the propertics
of characteristics. The pressure variation at the downstreamend is to
be computed for t=0.1s and 1=0.2s.

The application of the above program to the previous data values
results in the velocity and pressure head values at the characteristic
sections of the pipe. The pressure variation at the downstream end is
graphically represented in Fig. 3.9.

It 1s evident that the explicit scheme using the properties of
characteristics contains some inherent numerical dissipation not
apparent in the previous solution of Example 3.2. The dissipation
seems to vary in inverse proportion to the At value. As the value of
cAl/Ax tends 10 unity the numerical dissipation decreases. The
maximum pressure tends to that found analytically, ie. 3010 m.

4

Open channel flow

¥ 2

4.1. MATHEMATICAL MODELS FOR NON-STEADY
FLOW IN OPEN CHANNELS

Unsteady flow with a free surface forms one of the most interesting
arcas of hydraulics. Long waves and udal flow in estuaries, the
propagation of floods along nuatural water-courses, transicnt flow i
irrigation canals due to discharge and level fluctuations are only some
examples that fall into this category.

The mathematical model of flow in an open channel with variable
cross-section, extending in one dimension in the x difection, contains
as unknown functions the mean velocity over a cross section V=
¥{x, t)and the flow depth it = h(x, 1), measured from the lowest part of
the cross section o the free surfice. 1t can be synthesized from the
quantification of the basic principles of mass continuity and
conservation of momentum between two cross-sections. According (o
the notation of Fig. 4.1 1t can take the form

BN'+ ¢ 1V)=0 4.1)
& Ox (AV)= ;
oV av ch

7 — S — S - 4
a +1 P HSy—S,)+y ix 0 (4.2)

The slope of the energy line S, cun be approximated, even in the cise
ol unsteady How, by means of seon-empirical formulie valid lor
steady flow (the Manning or Chezy equations),

L

S'_' 3 - L3
ITRIRYTCR

(+.3)

where K and C are the Manning and Chézy friction coefficients,
respectively, and R the hydraulic radius, R=A/P. In the case ol a
channel of large width, B, in comparison to depth, Equation 4.1 can
take the form,
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