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Example 6.11 illustrates the use of the equation for rocket burnout velocity for condi-
tions necessary to achieve orbital velocity for a earth satellite.

Water Hammer: Physical Description
Whenever a valve is closed in a pipe, a positive pressure wave is created upstream of the
valve and travels up the pipe at the speed of sound. In this context a positive pressure wave is
defined as one for which the pressure is greater than the existing steady-state pressure. This
pressure wave may be great enough to cause pipe failure. Therefore, a basic understanding of
this process, which is called water hammer, is necessary for the proper design and operation
of such systems. The simplest case of water hammer will be considered here. For a more
comprehensive treatment of the subject, the reader is referred to Chaudhry (1) and Streeter
and Wylie (2).

Consider flow in the pipe shown in Fig. 6.7. Initially the valve at the end of the pipe is
only partially open (Fig. 6.7a); consequently, an initial velocity V and initial pressure p0 exist
in the pipe. At time t 0 it is assumed that the valve is instantaneously closed, thus creating
a pressure increase behind the valve and a pressure wave that travels from the valve toward the
reservoir at the speed of sound, c. All the water between the pressure wave and the upper end
of the pipe will have the initial velocity V, but all the water on the other side of the pressure wave
(between the wave and the valve) will be at rest. This condition is shown in Fig. 6.7b. Once the
pressure wave reaches the upper end of the pipe (after time ), it can be visualized that
all of the water in the pipe will be under a pressure however, the pressure in the res-
ervoir at the end of the pipe is only p0. This imbalance of pressure at the reservoir end causes
the water to flow from the pipe back into the reservoir with a velocity V. Thus a new pressure
wave is formed that travels toward the valve end of the pipe (Fig. 6.7c), and the pressure on the
reservoir side of the wave is reduced to p0. When this wave finally reaches the valve, all the wa-
ter in the pipe is flowing toward the reservoir with a velocity V. This condition is only momen-
tary, however, because the closed valve prevents any sustained flow.

EXAMPLE 6.11   PROPELLANT MASS RATIO FOR 

ACHIEVING ORBITAL VELOCITY

A single-stage rocket utilizing a liquid oxygen kerosene 
propellant has a specific impulse of 3200 m s. The orbital 
velocity for an earth satellite is 7600 m s. What would be the 
ratio of propellant mass to total initial mass to achieve orbital 
velocity?

Problem Definition

Situation: Rocket launch to achieve orbital velocity.

Find: Ratio of propellent mass to initial mass.

Plan

1. Use Eq. (6.18) to calculate initial/final mass ratio.

2. Calculate the propellant/initial mass ratio using 

Solution

1. From Eq. (6.18)

2. Solve for propellant/initial mass ratio:

Review

For single-stage rockets, a very large fraction of the initial 
mass must be propellant to achieve orbital speeds. For this 
reason, multi-stage rockets are used in space applications.
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188 MOMENTUM EQUATION

Next, during time a rarefied wave of pressure travels
up to the reservoir, as shown in Fig. 6.7d. When the wave reaches the reservoir, all the water
in the pipe has a pressure less than that in the reservoir. This imbalance of pressure causes
flow to be established again in the entire pipe, as shown in Fig. 6.7f, and the condition is ex-
actly the same as in the initial condition (Fig. 6.7a). Hence the process will repeat itself in a
periodic manner.

Figure 6.7

Water hammer process.
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From this description, it may be seen that the pressure in the pipe immediately up-
stream of the valve will be alternately high and low, as shown in Fig. 6.7a. A similar obser-
vation for the pressure at the midpoint of the pipe reveals a more complex variation of
pressure with time, as shown in Fig. 6.8b. Obviously, a valve cannot be closed instanta-
neously, and viscous effects, which were neglected here, will have a damping effect on the
process. Therefore, a more realistic pressure–time trace for the point just upstream of the
valve is given in Fig. 6.8c. The finite time of closure erases the sharp discontinuities in the
pressure trace that were present in Fig. 6.8a. However, it should be noted that the maxi-
mum pressure developed at the valve will be virtually the same as for instantaneous clo-
sure if the time of closure is less than That is, the change in pressure will be the
same for a given change in velocity unless the negative wave from the reservoir mitigates
the positive pressure, and it takes a time before this negative wave can reach the
valve. The value is called the critical time of closure and is given the symbol tc.

Magnitude of Water Hammer Pressure and Speed of Pressure Wave
The quantitative relations for water hammer can be analyzed with the momentum equation
by letting the control volume either move with the pressure wave, thus creating steady mo-
tion, or be fixed, thus retaining the inherently unsteady character of the process. To illustrate
the use of the momentum equation with unsteady motion, the latter approach will be taken.
Consider a pressure wave in a rigid pipe, as shown in Fig. 6.9. The density, pressure, and ve-
locity of the fluid on the reservoir side of the pressure wave are #, p, and V, respectively, and
the similar quantities on the valve side of the wave are and 0. Because the
wave in this case is traveling from the valve to the reservoir, its distance from the valve at
any time t is given as ct. The momentum equation can now be applied to the flow in the
control volume. Let the x-direction be along the pipe. The equation for x-momentum, Eq.
6.7a, simplifies to

Figure 6.8
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The force terms are given by

The inlet momentum flow is given by The momentum within the control vol-
ume decreases with time because fluid that is in motion stops as the pressure wave passes by.
Evaluation of the momentum accumulation term gives

When force and momentum terms are substituted into the momentum equation, one obtains

This reduces to

In this equation the first term on the right-hand side is usually negligible with respect to the
second term on the right, because for liquids c is much greater than V. Consequently, the
equation simplifies to

(6.19)

The speed of the pressure wave can be obtained by applying the continuity equation to
the control volume in Fig. 6.9. The continuity equation is

and when applied to Fig. 6.9 results in

because there is no mass flow out of the control volume. The mass flow rate is given by
so the continuity equation reduces to

Figure 6.9

Pressure wave in a pipe.
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or (6.20)

However, by definition Therefore,

(6.21)

Now when  is eliminated between Eqs. (6.20) and (6.21), the result is

(6.22)

From Eq. (6.19), Therefore, Eq. (6.22) becomes

(6.23)

Thus, by application of the momentum and continuity equations, expressions for both
$p and c have been derived. 

Example 6.12 illustrates how to calculate the pressure rise due to the water hammer
effect. 

EXAMPLE 6.12   PRESSURE RISE DUE TO WATER 

HAMMER EFFECT

A rigid pipe leading from a reservoir is 3000 ft long, and 
water is flowing through it with a velocity of 4 ft s. If the 
initial pressure at the downstream end is 40 psig, what 
maximum pressure will develop at the downstream end when 
a rapid-acting valve at that end is closed in 1 s?

Problem Definition

Situation: Water flowing in pipe and valve closed quickly.

Find: Maximum pressure (psig) at downstream end.

Assumptions: Water temperature is 60oF.

Properties: From Table A.5, and

Plan

1. Calculate the speed of sound in the water from Eq. (6.23).

2. Calculate the critical closure time, tc.

3. Check to ensure that valve closure time is less than tc.

4. Calculate pressure rise using Eq. (6.19) and add initial 
pipe pressure.

Solution

1. Calculation for sound speed:

2. Calculation for critical closure time:

3. Closure time of 1 s is less than 1.23 s.

4. Pressure rise calculation:

Maximum pressure is
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As indicated by Example 6.12, water hammer pressures can be quite large. Therefore,
engineers must design piping systems to keep the pressure within acceptable limits. This is
done by installing an accumulator near the valve and or operating the valve in such a way
that rapid closure is prevented. Accumulators may be in the form of air chambers for rela-
tively small systems, or surge tanks (a surge tank is a large open tank connected by a
branch pipe to the main pipe) for large systems. Another way to eliminate excessive water-
hammer pressures is to install pressure-relief valves at critical points in the pipe system.
These valves are pressure-activated so that water is automatically diverted out of the sys-
tem when the water-hammer pressure reaches excessive levels.

Moment-of-Momentum Equation

The moment-of-momentum equation is very useful for situations that involve torques.
Examples include analyses of rotating machinery such as pumps, turbines, fans, and blowers.

Torques acting on a control volume are related to changes in angular momentum
through the moment-of-momentum equation. Development of this equation parallels the de-
velopment of the momentum equation as presented in Section 6.1. When forces act on a sys-
tem of particles, used to represent a fluid system, Newton’s second law of motion can be used
to derive an equation for rotational motion:

(6.24)

where M is a moment and Hsys is the total angular momentum of all mass forming the system.
Equation (6.24) is a Lagrangian equation, which can be converted to an Eulerian form

using the Reynolds transport theorem from Eq. (5.21). The extensive property Bsys becomes
the angular momentum of the system: The intensive property b becomes the
angular momentum per unit mass. The angular momentum of an element is and so

Substituting for Bsys and b into Eq. (5.21) gives

(6.25)

Combining Eqs. (6.24) and (6.25) gives the integral form of the moment-of-momentum equa-
tion:

(6.26)

where r is a position vector that extends from the moment center, V is flow velocity relative
to the control surface, and v is flow velocity relative to the inertial reference frame selected.

The moment-of-momentum equation has the following physical interpretation: The
sum of moments acting on the material within the control volume equals the rate of change of
angular momentum within the control volume plus the net rate at which angular momentum
flows out of the control volume. 
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