FIGURE 3.1

The first man-made structure to exceed the masonry mass of
the Great Pyramid of Giza was the Hoover Dam. Design
of dams involves calculations of hydrostatic forces. [Photo
courtesy of U.S. Bureau of Reclamation, Lower Colorado
Region)
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Chapter Road Map

This chapter introduces concepts related to pressur
and describes how to calculate forces associated v
distributions of pressure. The emphasis is on fluids
hydrostatic equilibrium.

- Learning Objectives

STUDENTS WILL BE ABLE TO

* Define hydrostatic equilibrium. Define pressure. (§3.1)

* Convert between gage, absolute, and vacuum pressure. (§3
* Convert pressure units. (§3.1)

® List the steps to derive the hydrostatic differential equatior

(§3.2)

* Describe the physics of the hydrostatics equation and the
meaning of the variables that appear in the equation. Ag
the hydrostatic equation. {§3.2)

® Explain how these instruments work: mercury barometer,
piezometer, manometer, and Bourdon tube gage. (§3.3)

* Apply the manometer equations. (§3.3)

® Explain centerofpressure and hydrostatically equivalent for
Describe how pressure is related to pressure force. (§3.4)

° A%pIZ the panel equations to predict forces and moments

* Solve problems that involve curved surfaces. (§3.5)

* Describe the physics of the buoyancy equation and the
meaning of the variables that appear in the equation. Ap
the buoyancy equation. (§3.6)

* Determine if floating objects are stable or unstable. (§3.7



SECTION 3.1 DESCRIBING PRESSURE

As shown in Fig, 3.2, the hydrostatic condition involves equilibrium of a fluid particle.
Hydrostatic equilibrium means that each fluid particle is in force equilibrium with the net
force due to pressure balancing the weight of the fluid particle. Equations in this chapter are
based on an assumption of hydrostatic equilibrium.

=
Weight
| i
Weight \Pressure Y |/~ Fluid particle
\s distribution @
e
I” Net force
| 1"1 of pressure

(8) (b)

3.1 Describing Pressure

Because engineers use pressure in the solution of nearly all fluid mechanics problems, this
section introduces fundamental ideas about pressure.

Pressure

Pressure is the ratio of normal force to area at a point.

magnitude of normal force  |AF o
p= atapoint — A}QHEO AA (3'”
due to a fluid

unit area

Pressure is defined at a point because pressure typically varies with each (x, y, z) location in a
flowing fluid.

Pressure is a scalar that produces a resultant force by its action on an area. The resultant
force is normal to the area and acts in a direction toward the surface (compressive).

Pressure is caused by the molecules of the fluid interacting with the surface. For example,
when a soccer ball is inflated, the internal pressure on the skin of the ball is caused by air mol-
ecules striking the wall.

Units of pressure can be organized into three categories:

® Force per area. The SI unit is the newtons per square meter or pascals (Pa). The traditional
units include psi, which is pounds-force per square inch, and psf, which is pounds-force

per square foot.

® Liquid column height. Sometimes pressure units give an equivalent height of a column of
liquid. For example, pressure in a balloon will push a water column upward about 8 inches
as shown in Fig, 3.3. Engineers state that the pressure in the balloon is 8 inches of water: p =
8 in-H,0. When pressure is given in units of “height of a fluid column,” the pressure value can
be directly converted to other units using Table E.1. For example, the pressure in the balloon is

p = (8in-H,0)(248.8 Pa/in-H,0) = 1.99 kPa

® Atmospheres. Sometimes pressure units are stated in terms of atmopheres where 1.0 atm is
the air pressure at sea level at standard conditions. Another common unit is the bar, which
is very nearly equal to 1.0 atm. (1.0 bar = 10° kPa)

FIGURE 3.2

The hydrostatic conditi
{a) A fluid particle in a
body of fluid.
(b} Forces acting on the
fluid particle.

FIGURE 3.3

Pressure in a balloon
causing a column of w
to rise 8 inches.
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FIGURE 3.4

Example of pressure
relations.

Standard atmospheric pressure in various units is

1.0 atm = 101.3kPa = 14.70 psi = 33.9 ft-H,0 = 760 mm-Hg = 29.92 in-Hg = 1.013 b

Absolute Pressure, Gage Pressure, and Vacuum Pressure

Absolute pressure is referenced to regions such as outer space, where the pressure is essential
zero because the region is devoid of gas. The pressure in a perfect vacuum is called absolu
zero, and pressure measured relative to this zero pressure is termed absolute pressure.

When pressure is measured relative to prevailing local atmospheric pressure, the pressu
value is called gage pressure. For example, when a tire pressure gage gives a value of 300 ki
(44 psi), this means that the absolute pressure in the tire is 300 kPa greater than local atm
spheric pressure. To convert gage pressure to absolute pressure, add the local atmospher
pressure. For example, a gage pressure of 50 kPa recorded in a location where the atmospher
pressure is 100 kPa is expressed as either

p = 50kPagage or p = 150 kPa abs (3.

In SI units, gage and absolute pressures are identified after the unit as shown in Eq. (3.2).]
tradtional units, gage pressure is identifed by adding the letter g to the unit abbreviation. Fc
example, a gage pressure of 10 pounds per square foot is designated as 10 psfg. Similarly, tt
letter a is used to denote absolute pressure. For example, an absolute pressure of 20 pounc
force per square inch is designated as 20 psia.

When pressure is less than atmospheric, the pressure can be described using vacuum pre.
sure. Vacuum pressure is defined as the difference between atmospheric pressure and actu
pressure. Vacuum pressure is a positive number and equals the absolute value of gage pressus
(which will be negative). For example, if a gage connected to a tank indicates a vacuum pre:
sure of 31.0 kPa, this can also be stated as 70.0 kPa absolute, or —31.0 kPa gage.

Figure 3.4 provides a visual description of the three pressure scales. Notice that pj -
7.45 psia is equivalent to —7.25 psig and +7.25 psi vacuum. Notice that p, = of 301 kPa abs
equivalent to 200 kPa gage. Gage, absolute, and vacuum pressure can be related using equ:
tions labeled as the “pressure equations.”

Pgage = Pabs — Pam (3.3(
Dvacoum = Patm — Pabs (3.3l
Pvacuum = ~Pgage (3.3

P=pPy

P4=200kPa gage
(p4=289 psig)

Local atmospheric pressure (gage ref.)  p=0 Pa gage = 101 kPa abs

p.4=301 kPa abs | (p=0 psig= 14.7 psia)
(p=43.6 psia) Pp=-50 kPa gage
(pg=-7.25 psig or 7.25 psi vacuum)
P=pPg
Parm = 101 kPa abs
(Parm = 14.7 psia)
wm P pg=51.0 kPa abs
(pg=17.45 psia)
Absolute zero (*Folute)
p=0Paabs

(p =0 psia)
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i EXAMPLE. Convert 5 psi vacuum to absolute pressure in SI units.
Solution. First, convert vacuum pressure to absolute pressure.

Pabs = Pam — Pvacum = 14.7 psi — 5psi = 9.7 psia.
Second, convert units by applying a conversion ratio from Table E1.

101.3 kP
p=(97 psi)( 3 ‘a) = 66,900 Pa absolute.
14.7 psi

i Review. It is good practice, when writing pressure units, to specify whether the pressure is
¢ absolute, gage, or vacuum.

EXAMPLE. Suppose the pressure in a car tire is specified as 3 bar. Find the absolute pressure
i in units of kPa.

Solution. Recognize that tire pressure is commonly specified in gage pressure. Thus, convert
i the gage pressure to absolute pressure.

(101.3 kPa)
Pabs = Pum T Pgsge = (101.3 kPa) + (3 bar)(—lm = 401 kPa absolute

Hydraulic Machines

A hydraulic machine uses a fluid to transmit forces or energy to assist in the performance of a
human task. An example of a hydraulic machine is a hydraulic car jack in which a user can
supply a small force to a handle and lift an automobile. Other examples of hydraulic machines
include braking systems in cars, forklift trucks, power steering systems in cars, and airplane
control systems (3).

The hydraulic machine provides a mechanical advantage (Fig. 3.5). Mechanical advantage
is defined as the ratio of output force to input force:

(output force)

(mechanical advantage) = (3.4)

(input force)

Mechanical advantage of a lever (Fig. 3.5) is found by summing moments about the fulcrum to ) .FIGiJRE 3.5 -
give F\L, = F,L,, where L denotes the length of the lever arm. Both the lever and

hydraulic machine prov
(output force) _ F_L (3.5) © mechanical advantag

(input force) F, L, . le
3

To find mechanical advantage of the hydraulic machine, apply force equilibrium to each piston = A~
(Fig.3.5) to give F, = p\A, and F, = p,A,, where p is pressure in the cylinder and A is face area F
of the piston. Next, let p; = p, and solve for the mechanical advantage F, { l

=

(mechanical advantage; lever) =

. . ) (outputforce) F, A, D3
(mechanical advantage; hydraulic machine) = (inputforce) _ F, A,  Di
The hydraulic machine is often used to illustrate Pascal’s principle. This principle states that
when there is an increase in pressure at any point in a confined fluid, there is an equal increase
at every other point in the container. This principle is evident when a balloon is inflated
because the balloon expands evenly in all directions. The principle is also evident in the
hydraulic machine (Fig. 3.6).



64 CHAPTER 3 o FLUID STATICS

FIGURE 3.6

The figures show how the
hydraulic machine can be
used to illustrate Pascal’s
principle.

Pascal’s principle. An applied
force creates a pressure change
that is transmitted to every
point in the fluid and to the
walls of the container

v’ CHECKPOINT PROBLEM 3.1

What is the mechanical advantage of this hydraulic machine?
(neglect pressure changes due to elevation changes)

W= 2tons,§ =09

h = 3inch, D, = 6 inch, D, = 1 inch

a.2:1
b. 4:1
c. 6:1
d. 16:1
e. 36:1

EXAMPLE 3.1

Applying Force Equilibrium to a Hydraulic Jack

Problem Statement

A hydraulic jack has the dimensions shown. If one exerts a
force F of 100 N on the handle of the jack, what load, F,, can
the jack support? Neglect lifter weight.

F

5 cm diameter

| Lifter

1.5 cm diameter

A, [~ 4;

AY
Check valve

Weight =

Piston: Diameter = D,

Hydraulic oil: §

< Input Force: F

Piston: Diameter = D,

Define the Situation

A force of F = 100 N is applied to the handle of a jack.
Assumption: Weight of the lifter (see sketch) is negligible.

State the Goal

F,(N) 4m Load that the jack can lift

Generate Ideas and Make a Plan

Because the goal is F,, apply force equilibrium to the lifter.
Then, analyze the small piston and the handle. The plan is

1. Calculate force acting on the small piston by applying
moment equilibrium.

2. Calculate pressure p; in the hydraulic fluid by applying
force equilibrium.

3. Calculate the load F, by applying force equilibrium.

i Take Action (Execute the Plan)

1. Moment equilibrium (handle)
>M =0

(0.33 m) X (100 N) — (0.03 m)E, = 0
_0.33m X 100N

Fy
0.03m

= 1100 N
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2. Force equilibrium (small piston) Review the Results and the Process

2 Faipison = iy — F1 =0 1. Discussion. The jack in this example, which combines
piA, = F, = 1100N : a lever and a hydraulic machine, provides an output
Th i force of 12,200 N from an input force of 100 N.
us . - -
F Thus, this jack provides a mechanical advantage of
1100 N :
pi= =y = 622X 10°N/m’ ;12211
A wdi4 . 2. Knowledge. Hydraulic machines are analyzed by applying
3. Force equilibrium (lifter) force and moment equilibrium. The force of pressure is
Note that p, = p, because they are at the same elevation typical given by F = pA.

(this fact will be established in the next section).
thfm =FKR-pA =0

3.2 Calculating Pressure Changes
Associated with Elevation Changes

Pressure changes when elevation changes. For example, as a submarine dives to deeper depth,
water pressure increases. Conversely, as an airplane gains elevation, air pressure decreases.
Because engineers predict pressure changes associated with elevation change, this section in-
troduces the relevant equations.

Theory: The Hydrostatic Differential Equation

All equations in fluid statics are based on the hydrostatic differential equation, which is derived
in this subsection. To begin the derivation, visualize any region of static fluid (e.g., water
behind a dam), isolate a cylindrical body, and then sketch a free-body diagram (FBD) as shown
in Fig. 3.7. Notice that the cylindrical body is oriented so that its longitudinal axis is parallel to
an arbitrary £ direction. The body is A¢ long, AA in cross-sectional area, and inclined at an
angle a with the horizontal. Apply force equilibrium in the € direction:

SF=0
Foressure — Fweight = 0
pAA — (p + Ap)AA — yAAA¥€sina = 0
Simplify and divide by the volume of the body A¢AA to give
Ar
A€

= —ysina

A . FIGURE3.7
: I The system used to der

(p+Ap)ad ﬁm ¢ the hydrostatic differen

equation.

pAA
Weight = yA4AL
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From Fig. 3.7, the sine of the angle is given by

sin Az
o S
AL
Combining the previous two equations and letting Az approach zero gives
i Ap
a0 dz Y

The final result is

dp o , .

P (hydrostatic differential equation) (3

Equation (3.7) is valid in a body of fluid when the force balance shown in Fig. 3.2 is satisfie:

Equation (3.7) means that changes in pressure correspond to changes in elevation. If ¢
travels upward in the fluid (positive z direction), the pressure decreases; if one goes downwz
(negative z), the pressure increases; if one moves along a horizontal plane, the pressure remai
constant. Of course, these pressure variations are exactly what a diver experiences when
cending or descending in a lake or pool.

Derivation of the Hydrostatic Equation

This subsection shows how to derive the hydrostatic equation, which is used to calculate presst
variations in a fluid with constant density. To begin, assume that specific weight vy is constant a
integrate Eq. (3.7) to give

P + ¥z = p. = constant (3

where the term z is the elevation (vertical distance) above a fixed horizontal reference pla
called a datum, and p, is piezometric pressure. Dividing Eq. (3.8) by v gives

P = <£ + z> = h = constant (3.
Y Y
where h is the piezometric head. Because h is constant Eq. (3.9) can be written as:
_P_l'+21:&+22 (3.]0
Y Y

where the subscripts 1 and 2 identify any two points in a static fluid of constant density. Mu
tiplying Eq. (3.10a) by 1y gives

it Yn=ptyzn (3.10
In Eq. (3.10b), letting Ap = p, — p; and letting Az = z, — 2, gives
Ap = —vyAz {3.1C

The hydrostatic equation is given by either Eq. (3.10a), (3.10b), or (3.10c). These thr
equations are equivalent because any one of the equations can be used to derive the other tw
The hydrostatic equation is valid for any constant density fluid in hydrostatic equilibrium.

Notice that the hydrostatic equation involves

piezometric head = h = (‘_ly—7 + z) (3.1

piezometric pressure = p, = (p + vyz) (3.1
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To calculate piezometric head or piezometric pressure, an engineer identifies a specific loca-
tion in a body of fluid and then uses the value of pressure and elevation at that location. Piezo-
metric pressure and head are related by

FIGURE 3.8
Oil floating on water.

(3.13)
A vARRPE——
Piezometric head, h, a property that is widely used in fluid mechanics, characterizes hydrostatic T. @® //‘
equilibrium. When hydrostatic equilibrium prevails in a body of fluid of constant density, then h ©
will be constant at all locations. For example, Fig. 3.8 shows a container with oil floating on water. °
Because piezometric head is constant in the water, h, = h;, = h,. Similarly the piezometric head is —-%L .
constant in the oil: h; = h, = hy. Notice that piezometric head is not constant when density changes. é / r
For example, h, # h, because points c and d are in different fluids with different values of density. o
s ®
v CHECKPOINT PROBLEM 3.2
In the glass of water shown, which location has the highest value of piezeometric head? Which loca-
tion has the highest value of the piezometric pressure?

a A

b.B

c.C

d. None of the above
Hydrostatic Equation: Working Equations and Examples
The hydrostatic equation is summarized in Table 3.1.
TABLE 3.1 Summary of the Hydrostatic Equation

Name and Description Terms

Head Form:

Physics: (pressure head + elevation head
at point 1) = (pressure head + elevation
head at point 2).

Another way to state the physics: The
piezometric head in a static fluid with
uniform density is constant at every
point.

Pressure Change (Ap) Form:

Physics: For an elevation change of Az,
the pressure in a static fluid with
uniform density will change by yAz.

—t+z1=—+12
Y

Ap = —yAz = —pgAz

p = pressure (N/m?)
(use absolute or gage pressure; n
vacuum pressure)
(p/v is also called pressure head

z = elevation (m)
(sketch a datum and measure z f
this datum)
(z is also called elevation head)
~ = specific weight (N/m®)
p/y + z = piezometric head (m)_

Ap = change in pressure between
points 1 & 2 (Pa)

Az = change in elevation between
points 1 & 2 (m)

p = density (kg/m°)

£ = gravitational constant (9.81 m/s’

Example 3.2 shows the process for applying the hydrostatic equation.
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EXAMPLE 3.2

Applying the Hydrostatic Equation fo Find Pressure in a Tank

Problem Statement
What is the water pressure at a depth of 35 ft in the tank shown?

% Elevation = 250 ft

Water
T=50°F

Elevation = 200 fi

Define the Situation

Water is contained in a tank that is 50 ft deep.
Properties. Water (50 °F, 1 atm, Table A.5): y = 62.4 Ibf/ft>.

State the Goal
P (psig) 4m Water pressure at point 2.

Generate Ideas and Make a Plan
Apply the idea that piezometric head is constant. Steps:

1. Equate piezometric head at elevation 1 with piezometric
head at elevation 2 (i.e., apply Eq. 3.10a).

2. Analyze each term in Eq. (3.10a).

3. Solve for the pressure at elevation 2.

Take Action (Execute the Plan)
1. Hydrostatic equation (Eq. 3.10a)

&+Zl=&+22
Y Y

2. Term-by-term analysis of Eq. (3.10a) yields:
* P1 = Pum = 0 psig
e 2, =250t
e 2,=215ft

3. Combine steps 1 and 2; solve for p,

& + |=p_2+Zz
¥
0+250f = —22 1 215h
62.4 Ibf/f°

P, = 2180 psfg =

Review the Solution and the Process

1. Validation. The calculated pressure change (15 psig) is
slightly greater than 1 atm (14.7 psi). Because one
atmosphere corresponds to a water column of 33.9 ft and
this problem involves 35 ft of water column, the solution
appears correct.

2. Skill. This example shows how to write down a governing
equation and then analyze each term. This skill is called
term-by-term analysis.

3. Knowledge. The gage pressure at the free surface of a liquid in
contact with the atmosphere is zero (p, = 0 in this example).

4. Skill. Label a pressure as absolute or gage or vacuum. For this
example, the pressure unit (psig) denotes a gage pressure.

5. Knowledge. The hydrostatic equation is valid when density
is constant. This condition is met on this problem.

Example 3.3 shows how to find pressure by applying the idea of “constant piezometric heac
to a problem involving several fluids. Notice the continuity of pressure across a planar interface

EXAMPLE 3.3

Applying the Hydrostatic Equation to Oil and Water in
a Tank

Problem Statement

Oil with a specific gravity of 0.80 forms a layer 0.90 m deep in
an open tank that is otherwise filled with water (10°C). The
total depth of water and oil is 3 m. What is the gage pressure at
the bottom of the tank?

Problem Definition

Oil and water are contained in a tank.

o
1 ¥ m
@ "]

W,
PR 240m
@] 4
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Water (10°C, 1 atm, Table A.5) y,.t.r = 9810 N/m’.
Ol v = $Vyarer e'c = 0.8(9810 N/m?) = 7850 N/m”.

State the Goal
P3 (kPa gage) € pressure at bottom of the tank

Generate Ideas and Make a Plan

Because the goal is p;, apply the hydrostatic equation to the
water. Then, analyze the oil. The plan steps are

1. Find p, by applying the hydrostatic equation (3.10a).
2. Equate pressures across the oil-water interface.

3. Find p, by applying the hydrostatic equation given in
Eq. (3.10a).

Solution

1. Hydrostatic equation (oil)

— + Z) === + 2y

Yoil oil
OP
—2 43m= B im
Yoil 0.8 X 9810 N/m’

p; = 7.063 kPa

Pressure Variation in the Atmosphere

2. Oil-water interface
P2loit = P2 water = 7.063 kPa

3. Hydrostatic equation (water)

Ywater Ywater
7.063 X 10° Pa ps
e e L im=——— 40
9810 N/m’ ™= 9810N/m T

Py = 27.7 kPa gage

i Review

Validation: Because oil is less dense than water, the answer
should be slightly smaller than the pressure corresponding
to a water column of 3 m. From Table E1, a water column

of 10 m = 1 atm. Thus,a 3 m water column should produc:
i apressure of about 0.3 atm = 30 kPa. The calculated value

appears correct.

This subsection describes how to calculate pressure, density and temperature in the atmo-
sphere for applications such as modeling of atmospheric dynamics and the design of gliders,

airplanes, balloons, and rockets.

Equations for pressure variation in the earth’s atmosphere are derived by integrating the
hydrostatic differential equation (3.7). To begin the derivation, write the ideal gas law (2.5):

-
P T RT
Multiply by g:

_
RT

(3.14)

(3.15)

Equation (3.15) requires temperature-versus-elevation data for the atmosphere. It is com-

mon practice to use the U.S. Standard Atmosphere (1). The U.S. Standard Atmosphere defines
values for atmospheric temperature, density, and pressure over a wide range of altitudes. The
first model was published in 1958; this was updated in 1962, 1966, and 1976. The U.S. Standard
Atmosphere gives average conditions over the United States at 45° N latitude in July.

The U.S. Standard Atmosphere also gives average conditions at sea level. The sea level
temperature is 15°C (59°F), the pressure is 101.33 kPa abs (14.696 psia), and the density is
1.225 kg/m’ (0.002377 slugs/ft’).

Temperature data for the U.S. Standard Atmosphere are given in Fig. 3.9 for the lower
30 km of the atmosphere. The atmosphere is about 1000 km thick and is divided into five
layers, so Fig. 3.9 only gives data near the earth’s surface. In the troposphere, defined as the
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FIGURE 3.9
Temperature variation

with altitude for the U.S.

standard atmosphere in
July (7).
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Temperature, °C

layer between sea level and 13.7 km (45,000 ft), the temperature decreases nearly linearly wit!
increasing elevation at a lapse rate of 5.87 K/km. The stratosphere is the layer that begins at th
top of the troposphere and extends up to about 50 km. In the lower regions of the stratosphere
the temperature is constant at —57.5°C, to an altitude of 16.8 km (55,000 ft), and then th
temperature increases monotonically to —38.5°C at 30.5 km (100,000 ft).

Pressure Variation in the Troposphere
Let the temperature T be given by
T="Ty~ afz — z) (3.1¢

In this equation T, is the temperature at a reference level where the pressure is known,and a i
the lapse rate. Combine Eq. (3.15) with the hydrostatic differential equation (3.7) to give

d
2. B 3.17
Substituting Eq. (3.16) into Eq. (3.17) gives
P _ Pg
dz R[Ty, — afz — zy)]
Separate the variables and integrate to obtain
p Ty = a(z — zp) |¥*
” [ T, ]
Thus, the atmospheric pressure variation in the troposphere is

Example 3.7 shows how to apply Eq. (3.18) to find pressure at a specified elevation in th:
troposphere.



Pressure Variation in the Lower Stratosphere

In the lower part of the stratosphere (13.7 to 16.8 km above the earth's surface as shown in Fig. 3.9),
the temperature is approximately constant. In this region, integration of Eq. (3.17) gives

zg
Inp=—+
np RT C

At z = zy, p = pq, so the preceding equation reduces to

g = e-(z-zq)gIRT

Po

so the atmospheric pressure variation in the stratosphere takes the form

p = poe—(z_%)g'{RT

(3.19)

where p, is pressure at the interface between the troposphere and stratosphere, z, is the eleva-
tion of the interface, and T is the temperature of the stratosphere. Example 3.5 shows how to
apply Eq. (3.19) to find pressure at a specified elevation in the troposphere.

EXAMPLE 3.4

Predicting Pressure in the Troposphere

Problem Statement

If the sea level pressure and temperature are 101.3 kPa and

23°C, what is the pressure at an elevation of 2000 m, assuming

that standard atmospheric conditions prevail?

Situation

Standard atmospheric conditions prevail at an elevation of
2000 m.

Goal
p(kPa absolute) 4m atmospheric pressure at z = 2000 m

EXAMPLE 3.5

Calculating Pressure in the Lower Stratosphere

Problem Statement

If the pressure and temperature are 2.31 psia (p = 15.9 kPa

absolute) and —71.5°F (—57.5°C) at an elevation of 45,000 ft

(13.72 km), what is the pressure at 55,000 ft (16.77 km),

assuming isothermal conditions over this range of elevation?

Situation

Standard atmospheric conditions prevail at an elevation of
55,000 ft (16.77 km).

Goal

p 4@ Atmospheric pressure (psia and kPa absolute) at an
elevation of 55,000 ft (16.77 km)

Plan
Calculate pressure using Eq. (3.18).

Action
Ty — afz — zp) [k
P =D R
1]

where py = 101,300 N/m? T, = 273 + 23 = 296 K,a = 5.87
10~ K/m, z — z, = 2000 m, and g/aR = 5.823. Then

296 — 5.87 X 107 X zooo)f'-“’
= 101.3
P ( 296

= |80.0 kPa absolute

Plan

Calculate pressure using Eq. (3.19).

Action

For isothermal conditions,

T = =715 + 460 = 388.5°R
p= poe--fz-q,)ngT = 2.3] ¢ (10000(32.2)/(1716  388.5)

= 231e""
Therefore the pressure at 55,000 ft is

p = 1.43 psia

UJ = 9.83 kPa absolute’

SI units
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A mercury barometer.

Vapor
/ pressure

7 of Hg
AN

Column of
mercury rises
/] to height

Atmospheric
pressure
pushes

NI | Iu down.

YYVYY

3.3 Measuring Pressure

When engineers design and conduct experiments, pressure nearly always needs to be me
sured. Thus, this section describes five scientific instruments for measuring pressure.

Barometer

An instrument that is used to measure atmospheric pressure is called abarometer. The mc
common types are the mercury barometer and the aneroid barometer. A mercury baromet
is made by inverting a mercury-filled tube in a container of mercury as shown in Fig. 3.1
The pressure at the top of the mercury barometer will be the vapor pressure of mercw
which is very small: p, = 2.4 X 1075 atm at 20°C. Thus, atmospheric pressure will push tl
mercury up the tube to a height h. The mercury barometer is analyzed by applying the hydr
static equation:

Patm = 'Yth + py = 'Yth (3.2'

Thus, by measuring h, local atmospheric pressure can be determined using Eq. (3.20).

An aneroid barometer works mechanically. An aneroid is an elastic bellows that h
been tightly sealed after some air was removed. When atmospheric pressure changes, tk
causes the aneroid to change size, and this mechanical change can be used to deflect a need
to indicate local atmospheric pressure on a scale. An aneroid barometer has some adva
tages over a mercury barometer because it is smaller and allows data recording over time.

Bourdon-Tube Gage

A Bourdon-tube gage, Fig. 3.11, measures pressure by sensing the deflection of a coiled tut
The tube has an elliptical cross section and is bent into a circular arc, as shown in Fig. 3.11
When atmospheric pressure (zero gage pressure) prevails, the tube is undeflected, and for tt

FIGURE 3.11

Bourdonube gage. (a) View of typical gage. [Photo by Donald Elger) (b} Internal
mechanism (schematic).

A Pointer

h Bourdon-tube
spring

Section 4-4
through tube

Sector

Pivot

Socket

(b)
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condition the gage pointer is calibrated to read zero pressure. When pressure is applied to the
gage, the curved tube tends to straighten (much like blowing into a party favor to straighten it
out), thereby actuating the pointer to read a positive gage pressure. The Bourdon-tube gage is
common because it is low cost, reliable, easy to install, and available in many different pressure
ranges. There are disadvantages: dynamic pressures are difficult to read accurately; accuracy of
the gage can be lower than other instruments; and the gage can be damaged by excessive pres-
sure pulsations.

Piezometer

A piezometer is a vertical tube, usually transparent, in which a liquid rises in response to a
positive gage pressure. For example, Fig. 3.12 shows a piezometer attached to a pipe. Pressure
in the pipe pushes the water column to a height h, and the gage pressure at the center of the
pipe is p = yh, which follows directly from the hydrostatic equation (3.10c). The piezometer
has several advantages: simplicity, direct measurement (no need for calibration), and accu-
racy. However, a piezometer cannot easily be used for measuring pressure in a gas, and a
piezometer is limited to low pressures because the column height becomes too large at high
pressures.

Manometer

A manometer, often shaped like the letter “U,” is a device for measuring pressure by rais-
ing or lowering a column of liquid. For example, Fig. 3.13 shows a U-tube manometer
that is being used to measure pressure in a flowing fluid. In the case shown, positive gage
pressure in the pipe pushes the manometer liquid up a height Ah. To use a manometer,
engineers relate the height of the liquid in the manometer to pressure as illustrated in
Example 3.6.

4
—
Flow _I_

—1

T
e

—2

¥{manometer liquid)

MEASURING PRESSURE

FIGURE 3.12

Piezometer attached
to a pipe.

&

—_—

—

—_—
Flow

FIGURE 3.13
U-tube manometer.

RINE 6 Define the Situation

Pressure Measurement (U-Tube Manometer) : Pressure in a pipe is being measured using a U-tube

manometer.

Problem Statement
Properties:
Water at 10°C is the fluid in the pipe of Fig. 3.13, and mercury

is the manometer fluid. If the deflection Ah is 60 cm and € is

Water (10°C), Table A.5,y = 9810 N/m".

180 cm, what is the gage pressure at the center of the pipe? : Mercury, Table A.4: y = 133,000 N/m’.
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State the Goal

Calculate gage pressure (kPa) in the center of the pipe.

2. Find the pressure at point 3.
o The hydrostatic equation with z; = z, gives

P3lwater = Pa2lwater = 79.8 kPa

Generate Ideas and Make a Plan

o When a fluid-fluid interface is flat, pressure is constant

Start at point 1 and work to point 4 using ideas from Eq. (3.10c). : across the interface. Thus, at the oil-water interface

When fluid depth increases, add a pressure change. When fluid
depth decreases, subtract a pressure change.

Plémercury i PJ!mm- = 79.8 kPa

3. Find the pressure at point 4 using the hydrostatic equation

Take Action (Execute the Plan) given in Eq. (3.10c).

1. Calculate the pressure at point 2 using the hydrostatic

equation (3.10c).

p2 = p\ + pressure increase between 1and 2 = 0 + vy, Ah,,

ps = p; — pressure decrease between 3and 4 = p; — «v,.€
= 79,800 Pa — (9810 N/m®)(1.8 m)
= 62.1 kPa gage

= v,(0.6 m) = (133,000 N/m*)(0.6 m)

= 79.8kPa

EXAMPLE 3.7

Manometer Analysis

Once one is familiar with the basic principle of manometry, it is straightforward to wr
a single equation rather than separate equations as was done in Example 3.6. The single equ
tion for evaluation of the pressure in the pipe of Fig 3.13 is

One can read the equation in this way: Zero pressure at the open end, plus the change in pre
sure from point 1 to 2, minus the change in pressure from point 3 to 4, equals the pressure
the pipe. The main concept is that pressure increases as depth increases and decreases as dep
decreases.

The general equation for the pressure difference measured by the manometer is:

p=pt+ 2 Yihi — E‘Yihi (3.2

down up
where v; and h; are the specific weight and deflection in each leg of the manometer. It does n
matter where one starts; that is, where one defines the initial point 1 and final point 2. Wh
liquids and gases are both involved in a manometer problem, it is well within engineering a
curacy to neglect the pressure changes due to the columns of gas. This is because yjquiq => ¥,
Example 3.7 shows how to apply Eq. (3.21) to perform an analysis of a manometer that us
multiple fluids.

Problem Statement

What is the pressure of the air in the tank if £, = 40 cm, €, =
100 cm, and €; = 80 cm?

Mercury

(8=08)
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Define the Situation : Generate Ideas and Make a Plan
A tank is pressurized with air. Apply the manometer equation (3.21) from location 1 to locatio

ions: b . )
Assumptions: Neglect the pressure change in the air Take Action (Execute the Plan)

column.

Properties: : Manometer equation

o Oil: Yy = Sy,uer = 0.8 X 9810 N/m® = 7850 N/m’. pt dgnv. hi ~ EP Yihi = p,

* Mercury, Table A.4: y = 133,000 N/m’. P+ Yoerauy®s = Yarls + Yosls = py

State the Goal 0 + (133,000 N/m’)(0.8 m) — 0 + (7850 N/m’)(0.4 m) =
Find the pressure (kPa gage) in the air. P2 = P = 110 kPa gage |

Because the manometer configuration shown in Fig. 3.14 is common, it is useful to derive an
equation specific to this application. To begin, apply the manometer equation (3.21) between
points 1 and 2:

nt Z‘Yihi - E‘thi =p
up

P+ va(Ay - Ah;m:n YsAh = ya(Ay + 2, — z)) = p,
Simplifying gives
. (21 + vaz) = (P2 + Yaz) = Ah(ys —~ v,)
Dividing through by -y, gives

Ya Ya YA
Recognize that the terms on the left side of the equation are piezometric head and rewrite to
give the final result:

Iy = by = Ah(ﬁ - 1) (3.22)
Ya

Equation (3.22) is valid when a manometer is used as shown in Fig. 3.14. Example 3.8 shows

how this equation is used.

FIGURE 3.14

Apparatus for determini
change in piezometric
head corresponding to

Fluid A 2Ta . ;
flow in a pipe.

-, 2\ e

Flow Ah

Fluid B
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EXAMPLE 3.8

Change in Piezometric Head for Pipe Flow

Problem Statement

A differential mercury manometer is connected to two
pressure taps in an inclined pipe as shown in Fig. 3.14. Water

at 50°F is flowing through the pipe. The deflection of mercury

in the manometer is 1 inch. Find the change in piezometric
pressure and piezometric head between points 1 and 2.

Define the Situation
Water is flowing in a pipe.

Properties:
1. Water (50 °F), Table A.5, Yyuer = 62.4 Ibf/ft’.
2. Mercury, Table A.4, v = 847 Ibf/ft’.

State the Goal

Find the

o Change in piezometric head (ft) between points 1 and 2.
« Change in piezometric pressure (psfg) between 1 and 2.

Generate Ideas and Make a Plan

1. Find difference in the piezometric head using Eq. (3.22).

i 2. Relate piezometric head to piezometric pressure using

Eq.(3.13).

Take Action (Execute the Plan)

1. Difference in piezometric head

y
h — by = Ah(—-H-g- = 1) - (i
Ywater 12

[0

ﬁ)(m = 1)
62.4 Ibf/fe

: 2. Piezometric pressure

P: = MYuater

= (1.05 ft)(62.4 Ibf/ft’) =

Summary of the Manometer Equations

These manometer equations are summarized in Table 3.2. Because the equations were deriv
from the hydrostatic equation, they have the same assumptions: constant fluid density a

hydrostatic conditions.

The process for applying the manometer equations is

Step 1.

For measurement of pressure at a point, select Eq. (3.21). For measurement of pr.

sure or head change between two points in a pipe, select Eq. (3.22).

Step 2.

information.
Step 3.
Step 4.

TABLE 3.2 Summary of the Manometer Equations

Select points 1 and 2 where you know information or where you want to fi

Write the general form of the manometer equation.
Perform a “term-by-term analysis.”

Description

Equation

Terms

Use this equation for a manometer that
has an open end (for an example of
this type of manometer, see Fig. 3.13
on page 73).

Use this equation for a manometer that
is being used to measure differential
pressure in a pipe with a flowing fluid
(for an example of this type of
manometer, see Fig. 3.14 on page 75).

hl_h2= Ya

A,,(zz _

P2=h +d2 vihi — Dy vili (321
own up

)

p, = pressure at point 1 (N/m’)

p, = pressure at point 2 (N/m’)

v; = specific weight of fluid i (N/m’)
h; = deflection of fluid inleg i (m)

h, = py/ya + 2, = piezometric head at point 1 (m)
hy = palya + 2, = piezometric head at point 2 (1
Ah = deflection of the manometer fluid (m)

w4 = specific weight of the flowing fluid (N/m’)
~p = specific weight of the manometer fluid (N/n

(3.22)




Pressure Transducers

A pressure transduceris a device that converts pressure to an electrical signal. Modern fac-
tories and systems that involve flow processes are controlled automatically, and much of their
operation involves sensing of pressure at critical points of the system. Therefore, pressure-
sensing devices, such as pressure transducers, are designed to produce electronic signals that
can be transmitted to oscillographs or digital devices for record-keeping or to control other
devices for process operation. Basically, most transducers are tapped into the system with one
side of a small diaphragm exposed to the active pressure of the system. When the pressure
changes, the diaphragm flexes, and a sensing element connected to the other side of the dia-
phragm produces a signal that is usually linear with the change in pressure in the system. There
are many types of sensing elements; one common type is the resistance-wire strain gage
attached to a flexible diaphragm as shown in Fig. 3.15. As the diaphragm flexes, the wires of the
strain gage change length, thereby changing the resistance of the wire. This change in resis-
tance is converted into a voltage change that can then be used in various ways.

Pressure
pipe
Amplifier
O O [s]ofef2|
Strain gage  Diaphragm Digital voltage

Another type of pressure transducer used for measuring rapidly changing high pressures,
such as the pressure in the cylinder head of an internal combustion engine, is the piezoelectric
transducer (2). These transducers operate with a quartz crystal that generates a charge when
subjected to a pressure. Sensitive electronic circuitry is required to convert the charge to a
measurable voltage signal.

Computer data acquisition systems are used widely with pressure transducers. The analog
signal from the transducer is converted (through an A/D converter) to a digital signal that can be
processed by a computer. This expedites the data acquisition process and facilitates storing data.

3.4 Predicting Forces on Plane Surfaces (Panels)

Engineers predict hydrostatic forces on large structures such as dams. Thus, this section ex-
plains how to relate pressure to force. Next, this section describes how to calculate hydrostatic
forces on panels, where a panel is a flat surface.

The Pressure Distribution

A pressure distribution (Fig. 3.16) is a visual or mathematical description that shows how pres-
sure varies from point to point along a surface. For example, in the figure the pressure will be high
in the front of the cylinder and low in the back of the cylinder. Notice that the pressure distribution
is always compressive and that pressure is always normal to the surface.

—_— . \ ~ N Pressure distribution: How pressure varies
’

—— <\ from point-to-point along a surface (in this
i N ‘J, example, pressure is large in front and low
—_— R ;

%/ in back
— AN / t.? )

Flow R

Schematic diagram of
strain-gage pressure
transducer.

FIGURE 3.16

The pressure distribution
caused by a fluid flowir
over a circular cylinder.
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FIGURE 3.17

Terms used fo define the
pressure force.

FIGURE 3.18

{a) Uniform pressure
distribution, and
(b) equivalent force.

Relating Pressure to Force

To relate pressure to force, select a small area dA (Fig. 3.17) on a surface. Then, define a norn
vector n that is positive in a direction outward from the surface. The magnitude of the force
dF = pdA, and the direction of the force is inward toward the surface. Thus, the force dF is

dF = (—p) ndA

/“ n is an unit vector that is
\\ outward from a surface.

small area d4
dF is the force on (shown in blue)
a small area dA

where the negative sign is used because the force acts inward. To obtain the total force, add
the forces acting on each small area:

Net force due to a pressure distribution = F, = 2 dF = > (—p)ndA

Because an integral is defined as an infinite sum, this equation can be written as

Net force due to a pressure distribution = F, = J (—p)ndA (3.
Area

In summary, the net force due to pressure can be found by integrating pressure over a
while using a normal vector to keep track of the direction of incremental force on each u
of area.

Force of a Uniform Pressure Distribution

When pressure is the same at every point, as shown in Fig. 3.18a, the pressure distribution is cal
a uniform pressure distribution. For a uniform pressure distribution, Eq. (3.23) reduces to

F,= J pdA = pA
A
The resultant force of pressure F, passes through a point called the center of pressure (C
Notice that the CP is represented using a circle with a “plus symbol” inside. For a uniform pi
sure distribution on a panel, the CP is located at the centroid of area.

Uniform
pressure

/ distribution Line of action
/
,’ ~ /- Resultant force
'} \ S
I ~
/
/
/
I
/ \ ~
~
\ Center of

pressure

(CP)



Hydrostatic Pressure Distribution

When a pressure distribution is produced by a fluid in hydrostatic equilibrium (Fig. 3.19a), then
the pressure distribution is called a hydrostatic pressure distribution. Notice that a hydrostatic
pressure distribution is linear with depth. In Fig. 3.19b, the pressure distribution is represented
by a resultant force that acts at the CP. Notice that the CP is located below the centroid of area.

Hydrostatic FIGURE 3.19

pressure distribution {a) Hydrostatic pressui

v \ distribution, and
¥ (b} Resultant force F a
at the center of pressu

~
~
~

- Line of action
-~
o ’\\‘ - /’_/— Resultant force
H ~
~
\ Centroid
Center of pressure
I ~

(a) (b)

Force on a Panel (Magnitude)

Next, we will show how to find the force on one face of a panel (e.g., a gate,a wall, a dam) that is acted
on by a hydrostatic pressure distribution. To begin, sketch a panel of arbitrary shape submerged in a
liquid (Fig. 3.20). Line AB is the edge view of a panel. The plane of the panel intersects the horizontal
liquid surface at axis 0-0 with an angle c. The distance from the axis 0-0 to the horizontal axis
through the centroid of the area is given by ¥. The distance from 0-0 to the differential area dA is y.

¢ FIGURE 3.20
N

Distribution of hydrostc
pressure on a plane
surface.

Y-

p=yysina

Centroid

Center of pressure
View C-C

The force due to pressure is given by Eq. (3.23), which reduces to
F,= j pdA {3.24)
A

In Eq. (3.24), the pressure can be found with the hydrostatic equation:
p =vAz = yysina (3.25)
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Combine Egs (3.24) and (3.25) to give
F, = deAZ J'yysinadA='ysinaJydA (3.2
A A A

Because the integral on the right side of Eq. (3.24) is the first moment of the area, replace tl
integral by its equivalent, yA. Therefore

F,=yyAsina = (yy sina)A (3.2

Apply the hydrostatic equation to show that the variables within the parentheses on the rig
side of Eq. (3.27) is the pressure at the centroid of the area. Thus,

F,=pA (3.2

Equation (3.28) shows that the hydrostatic force on a panel of arbitrary shape (e.g., rectal
gular, round, elliptical) is given by the product of panel area and pressure at the centro
of area.

Finding the Location of the Force on Panel (Center of Pressure)

This subsection shows how to derive an equation for the vertical location of the center of pre
sure (CP). For the panel shown in Fig. 3.20 to be in moment equilibrium, the torque due to tl
resultant force F, must balance the torque due to each differential force.

YopFp = Jde

Note that y,, is “slant” distance from the center of pressure to the surface of the liquid. The lat
“slant” denotes that the distance is measured in the plane that runs through the panel. The d
ferential force dF is given by dF = p dA; therefore,

}'ch = J}'P dA
A
Also, p = yysin a, so
YoF = J vy sin a dA (3.5
A
Because -y and sin o are constants,
YpF = vy sin oLJy2 dA (3.2
A

The integral on the right-hand side of Eq. (3.30) is the second moment of the area (often call
the area moment of inertia). This shall be identified as I,. However, for engineering applic
tions it is convenient to express the second moment with respect to the horizontal centroic
axis of the area. Hence by the parallel-axis theorem,

Iy=1+57A (3.



Substitute Eq. (3.31) into Eq. (3.30) to give
YoF = ysina(I + y2 A)
However, from Eq. (3.25), F = y¥ sin aA. Therefore,

Yop(¥P sina A) = ysin a(I + y*A) (3.32)
.
Yp =Y JA

—-y= 'z‘ {3.33)

In Eq. (3.33), the area moment of inertia I is taken about a horizontal axis that passes
through the centroid of area. Formulas for I are presented in Fig. A.1. The slant distance ¥
measures the length from the surface of the liquid to the centroid of the panel along an axis
that is aligned with the “slant of the panel” as shown in Fig. 3.20.

Equation (3.33) shows that the Center of Pressure (CP) will be situated below the centroid.
The distance between the CP and the centroid depends on the depth of submersion, which is
characterized by ¥, and on the panel geometry, which is characterized by I/A.

Due to assumptions in the derivations, Egs. (3.28) and (3.33) have several limitations.
First, they only apply to a single fluid of constant density. Second, the pressure at the liquid
surface needs to be p = 0 gage to correctly locate the CP. Third, Eq. (3.33) gives only the verti-
cal location of the CP, not the lateral location.

Summary of the Panel Equations

The panel equations (Table 3.3) are used to calculate the force on a flat plate that is subjected to
a hydrostatic pressure distribution.

TABLE 3.3 Summary of the Panel Equations

Description Equation Terms
Apply this equation to predict the F,=pA ' (3.28) | F, = resultant force due to pressure distribution (N)
magnitude of the hydrostatic force. P = pressure at the depth of the centroid (Pa)

A = area of the surface of the plate (m?)

Apply this equation to locate the center _ (e — y) = slant distance from the centroid to the
of pressure (CP). Yo =V = }—; (3.33) center of pressure (m)
I = area moment of inertia of panel about centroidal
axis (m*) (for formulas, see Fig. A.1 on page A-1)
y = slant distance from centroid to liquid surface (m)

Th_is_ﬁgure defines terms.

(»,,~ ) = slant distance between CP and centroid
(this distance)\

=

e -

P = pressure at depth of the F \/

centroid (this depth) NG “*— y=slant distance
\, / between centroid

and surface
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EXAMPLE 3.9

Hydrostatic Force Due to Concrete

Problem Statement

Determine the force acting on one side of a concrete form
2.44 m high and 1.22 m wide (8 ft by 4 ft) that is used for
pouring a basement wall. The specific weight of concrete is
23.6 kN/m’ (150 Ibf/ft’).

Define the Situation

Concrete in a liquid state acts on a vertical surface.

The vertical wall is 2.44 m high and 1.22 m wide
Assumptions: Freshly poured concrete can be represented as a
liquid.

Properties: Concrete: y = 23.6 kN/m”.

State the Goal
Find the resultant force (kN) acting on the wall.

EXAMPLE 3.10

Force to Open an Elliptical Gate

Problem Statement

An elliptical gate covers the end of a pipe 4 m in diameter. If
the gate is hinged at the top, what normal force F is required
to open the gate when water is 8 m deep above the top of the
pipe and the pipe is open to the atmosphere on the other side?
Neglect the weight of the gate.

i
S

5“‘/\tmosphﬂiC 4|I|diameter
F

\( pressure l
]

Define the Situation

Water pressure is acting on an elliptical gate.
Properties: Water (10°C), Table A.5: y = 9810 N/m”’.

Plan
Apply the panel equation (3.28).

Solution
1. Panel equation
F=pA

2. Term-by-term analysis

o p = pressure at depth of the centroid

P = (Yeoncrete) (Zeenroia) = (23.6 kKN/m’)(2.44/2 m)
= 28.79 kPa
o A = area of panel
A = (2.44m)(1.22 m) = 2.977 m?

3. Resultant force

F = pA = (28.79kPa)(2.977 m?) =

Assumptions:
1. Neglect the weight of the gate.

2. Neglect friction between the bottom on the gate and the
pipe wall.

State the Goal
F(N) €m Force needed to open gate.

Generate Ideas and Make a Plan
1. Calculate resultant hydrostatic force using F = pA.

2. Find the location of the center of pressure using
Eq.(3.33).

3. Draw an FBD of the gate.

4. Apply moment equilibrium about the hinge.

Take Action (Execute the Plan)
1. Hydrostatic (resultant) force
o p = pressure at depth of the centroid
P = (Yoser) Zeenteaia) = (9810 N/m*)(10 m) = 98.1kPa

o A = area of elliptical panel (using Fig. A.1 to find
formula)

A = mab
= (2.5 m)(2 m) = 15.71 m*
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« Calculate resultant force i 3. FBD of the gate:

F, = pA = (98.1kPa)(15.71 m*) = | 1.54 MN

2. Center of pressure

/ Hinge

« y = 12.5m, where y is the slant distance from the water - 2625m H,
surface to the centroid. P
o Area moment of inertia I of an elliptical panel using a 5m
formula from Fig. A.1
3 w(2.5mP*2m
f==== ( 4)( ) - 2454mt F
4. Moment equilibrium
« Finding center of pressure
I 2554 m* : 2] Mg = 0
otm = 0.125m § 1.541 X 10°N X 2.625m — FX 5m = 0

Yo =V T 54 T (125 m)(15.71 m)

3.5 Calculating Forces on Curved Surfaces

As engineers, we calculate forces on curved surfaces when we are designing components such
as tanks, pipes, and curved gates. Thus, this topic is described in this section.

Consider the curved surface AB in Fig. 3.21a. The goal is to represent the pressure distri-
bution with a resultant force that passes through the center of pressure. One approach is to
integrate the pressure force along the curved surface and find the equivalent force. However, it
is easier to sum forces for the free body shown in the upper part of Fig. 3.21b. The lower sketch
in Fig. 3.21b shows how the force acting on the curved surface relates to the force F acting on
the free body. Using the FBD and summing forces in the horizontal direction shows that

Fx = FAC (3.34)

The line of action for the force F, is through the center of pressure for side AC.
The vertical component of the equivalent force is

FyI =W+ FCB (3.35)
where W is the weight of the fluid in the free body and F is the force on the side CB.

i
]
|

PO
/
_>| $ W// Free-body

0 diagram
S V-
F
B

(a) (b)

FIGURE 3.21

(a) Pressure distribution
equivalent force.

{b) Free-body diagram
aclioneaction force p
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The force Fp acts through the centroid of surface CB, and the weight acts through t
center of gravity of the free body. The line of action for the vertical force may be found by sur
ming the moments about any convenient axis.

Example 3.11 illustrates how curved surface problems can be solved by applying equili
rium concepts together with the panel force equations.

EXAMPLE 3.11

Hydrostatic Force on a Curved Surface

Problem Statement

Surface AB is a circular arc with a radius of 2 m and a width
of 1 m into the paper. The distance EB is 4 m. The fluid above
surface AB is water, and atmospheric pressure prevails on the

free surface of the water and on the bottom side of surface AB.

Find the magnitude and line of action of the hydrostatic force

acting on surface AB.
I—— 2m —-l
D E

t]l

Define the Situation

Situation: A body of water is contained by a curved surface.
Properties: Water (10°C), Table A.5: y = 9810 N/m’,

State the Goal

Find:

1. Hydrostatic force (in newtons) on the curved surface AB.
2. Line of action of the hydrostatic force.

Generate Ideas and Make a Plan

Apply equilibrium concepts to the body of fluid ABC.

1. Find the horizontal component of F by applying
Eq.(3.34).

2. Find the vertical component of F by applying Eq. (3.35).

3. Find the line of action of F by finding the lines of action of
components and then using a graphical solution.

Take Action (Execute the Plan)
1. Force in the horizontal direction
F, = Fy = pA = (5m)(9810 N/m’)(2 X 1 m?)
= 98.1 kN
2. Force in the vertical direction
« Vertical force on side CB
Fy=ppA =981kN/m* X 4m X 2m X 1 m = 78.5 kN
o Weight of the water in volume ABC
W = y¥4pc = (Y)(emr’)(w)
= (9.81 KN/m®) X (0.25 X m X 4m?)(1m) = 30.8 kN
o Summing forces
F,= W+ F, = 109.3kN
3. Line of action (horizontal force)
cervil] 1 X 2%/12
ycp=,v+ﬂ=(5m)+(——-—5x2x 1’“)
Yep = 5.067 m

4. The line of action (x;) for the vertical force is found by
summing moments about point C:
XoF,=Fy X1Im+ WXx,

The horizontal distance from point C to the centroid of the
area ABC is found using Fig. A.1: Xy = 4r/3w = 0.849 m.
Thus,

. = 78.5kN X Im + 30.8 kN X 0.849 m
P 109.3 kN

5. The resultant force that acts on the curved surface is shown
in the following figure.

= 0.957 m

J:’I 0957 m
1.067m
T 98.1 kN
8 ang=193 o g
. 98.1
6= 48°
109.3 kN Fresun = 146.9kN



The central idea of this section is that forces on curved surfaces may be found by applying

equilibrium concepts to systems comprised of the fluid in contact with the curved surface. Notice
how equilibrium concepts are used in each of the following situations.

Consider a sphere holding a gas pressurized to a gage pressure pias shown in Fig. 3.22. The
indicated forces act on the fluid in volume ABC. Applying equilibrium in the vertical direction
gives

F=piAyc+W

Because the specific weight for a gas is quite small, engineers usually neglect the weight of
the gas:

F= Di A (3-36)

Another example is finding the force on a curved surface submerged in a reservoir of liquid
as shown in Fig. 3.23a. If atmospheric pressure prevails above the free surface and on the outside
of surface AB, then force caused by atmospheric pressure cancels out, and equilibrium gives

F= 'YVABCD = Wl’ (3.37)

Hence the force on surface AB equals the weight of liquid above the surface, and the arrow
indicates that the force acts downward.

Now consider the situation where the pressure distribution on a thin curved surface comes
from the liquid underneath, as shown in Fig. 3.23b. If the region above the surface, volume abcd,
were filled with the same liquid, the pressure acting at each point on the upper surface of ab
would equal the pressure acting at each point on the lower surface. In other words, there would
be no net force on the surface. Thus, the equivalent force on surface ab is given by

F= 'Y}'Zabcd = Wl« (3.38)

where W is the weight of liquid needed to fill a volume that extends from the curved surface to
the free surface of the liquid.
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3.6 Calculating Buoyant Forces

Engineers calculate buoyant forces for applications such as the design of ships, sediment trans-
port in rivers, and fish migration. Buoyant forces are sometimes significant in problems involv-
ing gases, for example, a weather balloon. Thus, this section describes how to calculate the
buoyant force on an object.

FIGURE 3.22

Pressurized spherical
showing forces that ¢
the fluid inside the mc
region.

FIGURE 3.23

Curved surface with ¢
liquid above and (b} Ii
below. In (a), arrows
represent forces acling
the liquid. In (b}, arrow
represent the pressure
disiribution on surface .



FIGURE 3.24
Two views of a body
immersed in a liquid.

FIGURE 3.25

A body partially
submerged in a liquid.

A buoyant force is defined as an upward force (with respect to gravity) on a body that
totally or partially submerged in a fluid, either a liquid or gas. Buoyant forces are caused by tl
hydrostatic pressure distribution.

The Buoyant Force Equation

To derive an equation, consider a body ABCD submerged in a liquid of specific weight
(Fig. 3.24). The sketch on the left shows the pressure distribution acting on the body. As shov
by Eq. (3.38), pressures acting on the lower portion of the body create an upward force eq
to the weight of liquid needed to fill the volume above surface ADC. The upward force is

Fup = 'Y('Vb + va)

ik
——
et

;—
UD
a

where ¥, is the volume of the body (i.e., volume ABCD) and ¥, is the volume of liquid ab«
the body (i.e., volume ABCFE). As shown by Eq. (3.37), pressures acting on the top surface
the body create a downward force equal to the weight of the liquid above the body:

Fdown = 'Yva

Subtracting the downward force from the upward force gives the net or buoyant force Fpact
on the body:

FBzFup—Fdown=y¥b (3.

Hence, the net force or buoyant force (Fp) equals the weight of liquid that would be needec
occupy the volume of the body.

Consider a body that is floating as shown in Fig. 3.25. The marked portion of the ob
has a volume ¥,,. Pressure acts on curved surface ADC causing an upward force equal to
weight of liquid that would be needed to fill volume ¥p. The buoyant force is given by

Fp = Fyp = ¥¥p .

i
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i
D
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D Volume ¥,




Hence, the buoyant force equals the weight of liquid that would be needed to occupy the vol-
ume ¥p,. This volume is called the displaced volume. Comparison of Egs. (3.39) and (3.40)
shows that one can write a single equation for the buoyant force:

Fy = y¥, (3.41q)

In Eq. (3.41a), ¥p, is the volume that is displaced by the body. If the body is totally submerged,
the displaced volume is the volume of the body. If a body is partially submerged, the displaced
volume is the portion of the volume that is submerged.

Eq. (3.41b) is only valid for a single fluid of uniform density. The general principle of
buoyancy is called Archimedes’ principle:

(buoyant force) = Fy = (weight of the displaced fluid) {3.41b)

The buoyant force acts at a point called the center of buoyancy, which is located at the center
of gravity of the displaced fluid.

v’ CHECKPOINT PROBLEM 3.3
Consider a balloon filled with helium (case A) /‘ Balloon filled
and a balloon filled with air (case B). Which et et

statement is correct?

a. Buoyant force (case A) > Buoyant force
(case B) Hydrometer
b. Buoyant force (case A) < Buoyant force Balloon filled
Grad
(case B) with air p s:::l: i;"oerc
c. Buoyant force (case A) = Buoyant force Case A Case B = / ;’t’,‘:::c':‘f’_:
(case B) - gravity
__E__%V;__ J
The Hydrometer ]
A hydrometer (Fig. 3.26) is an instrument for measuring the specific gravity of liquids. It is
typically made of a glass bulb that is weighted on one end so the hydrometer floats in an up-
right position. A stem of constant diameter is marked with a scale, and the specific weight of
the liquid is determined by the depth at which the hydrometer floats. The operating principle w‘ﬁ‘ﬁt
of the hydrometer is buoyancy. In a heavy liquid (i.e., high v), the hydrometer will float shal-
lower because a lesser volume of the liquid must be displaced to balance the weight of the
hydrometer. In a light liquid, the hydrometer will float deeper.
EXAMPLE 3.12 Define the Situation
Buoyant Force on a Metal Part A metal part is suspended from a floating block of wood.

Problem Statement Properties:

A metal part (object 2) is hanging by a thin cord from a Water (15°C), Table A.5: y = 9800
floating wood block (object 1). The wood block has a specific  : Wood: S, = 0.3.

gravity §; = 0.3 and dimensions of 50 X 50 X 10 mm. The :

metal part has a volume of 6600 mm?®. Find the mass m, of the

metal part and the tension T in the cord.

FIGURE 3.26

N/m’,



State the Goal
« Find the mass (in grams) of the metal part.
« Calculate the tension (in newtons) in the cord.

] @ 25mm
a il
4 l!) mm
t
@ //HZO, 15°C
[LL /

Generate Ideas and Make a Plan

1. Draw FBDs of the block and the part.
2. Apply equilibrium to the block to find the tension.

3. Apply equilibrium to the part to find the weight of the part.

4, Calculate the mass of the metal part using W = mg.

Take Action (Execute the Plan)
1. FBDs

I T+ W,

T+Fg

W,

2. Force equilibrium (vertical direction) applied to block

T = FBI - Wl
« Buoyant force Fp, = y¥p,, where ¥p, is the submerged
volume
Fp = v¥p
= (9800 N/m*)(50 X 50 X 7.5 mm’)(10"° m*/mm’)
= (0.184 N
« Weight of the block
W, = y5¥%
= (9800 N/m?)(0.3)(50 X 50 X 10 mm’)(10™° m*/mm’)
= 0.0735N

« Tension in the cord

T = (0.184 — 0.0735) =

3. Force equilibrium (vertical direction) applied to metal part

« Buoyant force
Fsy = y¥, = (9800 N/m’)(6600 mm’)(10~°) = 0.0647 N
« Equilibrium equation

W, = T + Fg = (0.110N) + (0.0647 N)

4. Mass of metal part

my = Wilg =

Review the Solution and the Process

Discussion. Notice that tension in the cord {0.11 N) is less than
the weight of the metal part (0.18 N). This result is consistent

: with the common observation that an object will “weigh less

in water than in air”

Tip. When solving problems that involve buoyancy, draw an
FBD.

3.7 Predicting Stability of Immersed

and Floating Bodies

Engineers calcuate whether an object will tip over or remain in an upright position wl
placed in a liquid, for example for the design of ships and buoys. Thus, stability is presentex

this section.



SECTION 3.7 PREDICTING STABILITY OF IMMERSED AND FLOATING BODIES

Immersed Bodies

When a body is completely immersed in a liquid, its stability depends on the relative positions
of the center of gravity of the body and the centroid of the displaced volume of fluid, which is
called the center of buoyancy. If the center of buoyancy is above the center of gravity (see
Fig. 3.27a) any tipping of the body produces a righting couple, and consequently, the body is
stable. Alternatively, if the center of gravity is above the center of buoyancy, any tipping pro-
duces an overturning moment, thus causing the body to rotate through 180° (see Fig. 3.27c). If
the center of buoyancy and center of gravity are coincident, the body is neutrally stable—that
is, it lacks a tendency for righting itself or for overturning (see Fig. 3.27b).

=
Center of
buoyancy
Weight

(a) (b) (c)

Floating Bodies

The question of stability is more involved for floating bodies than for immersed bodies because
the center of buoyancy may take different positions with respect to the center of gravity,
depending on the shape of the body and the position in which it is floating. For example, con-
sider the cross section of a ship shown in Fig. 3.28a. Here the center of gravity G is above the
center of buoyancy C. Therefore, at first glance it would appear that the ship is unstable and
could flip over. However, notice the position of C and G after the ship has taken a small angle
of heel. As shown in Fig. 3.28b, the center of gravity is in the same position, but the center of
buoyancy has moved outward of the center of gravity, thus producing a righting moment.
A ship having such characteristics is stable.

(2) ()

The reason for the change in the center of buoyancy for the ship is that part of the original
buoyant volume, as shown by the wedge shape AOB, is transferred to a new buoyant volume
EOD. Because the buoyant center is at the centroid of the displaced volume, it follows that for
this case the buoyant center must move laterally to the right. The point of intersection of the

l‘;thURE 3.27 -
Conditions of stability fc
immersed bodies.

(o) Stable. (b) Neutral.
{c) Unstable.

FIGURE 3.28
Ship stability relations.
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FIGURE 3.29
{a) Plan view of ship

at waterline.
{b} Section A-A of ship.

lines of action of the buoyant force before and after heel is called the metacenter M, and
distance GM is called the metacentric height. If GM is positive—that is, if M is above G—
ship is stable; however, if GM is negative, the ship is unstable. Quantitative relations involv
these basic principles of stability are presented in the next paragraph.

Consider the ship shown in Fig. 3.29, which has taken a small angle of heel . First ev:
ate the lateral displacement of the center of buoyancy, CC'; then it will be easy by simple tri
nometry to solve for the metacentric height GM or to evaluate the righting moment. Re
that the center of buoyancy is at the centroid of the displaced volume. Therefore, resort to

fundamentals of centroids to evaluate the displacement CC’. From the definition of the ¢
troid of a volume,

¥ = IxAY; (3.

where x = CC’, which is the distance from the plane about which moments are taken to
centroid of ¥; ¥ is the total volume displaced; A¥ is the volume increment; and x; is
moment arm of the increment of volume.

(®)

Take moments about the plane of symmetry of the ship. Recall from mechanics that v
umes to the left produce negative moments and volumes to the right produce positive m
ments. For the right side of Eq. (3.42) write terms for the moment of the submerged volur
about the plane of symmetry. A convenient way to do this is to consider the moment of t
volume before heel, subtract the moment of the volume represented by the wedge AOB, a1

add the moment represented by the wedge EOD. In a general way this is given by the followi:
equation:

x¥ = moment of ¥ before heel — moment of ¥,05 + moment of ¥z,p (3.4



Because the original buoyant volume is symmetrical with y-y, the moment for the first term on
the right is zero. Also, the sign of the moment of ¥,0; is negative; therefore, when this negative
moment is subtracted from the right-hand side of Eq. (3.43), the result is

¥ = D xAVuos + % A¥ir0p (3.44)

Now, express Eq. (3.44) in integral form:

x¥= J xd¥ +J xd¥ (3.45)
AOB EOD

But it may be seen from Fig. 3.29b that d¥ can be given as the product of the length of the
differential volume, xtan a, and the differential area, dA. Consequently, Eq. (3.45) can be
written as

x¥= J x*tan o dA +J x tan o dA
AOB EOD

Here tan a is a constant with respect to the integration. Also, because the two terms on the
right-hand side are identical except for the area over which integration is to be performed,
combine them as follows:

¥¥ = tana ¥ dA (3.46)

Avatertine

The second moment, or moment of inertia of the area defined by the waterline, is given the
symbol Iy, and the following is obtained:

x¥ = Iootan o
Next, replace x by CC' and solve for CC":

_ Ioo tano
¥

From Fig, 3.29b, CC' = CMtana

cc’

Thus eliminating CC’ and tan o yields

I
CM = —
¥

However, GM=CM - CG
Therefore the metacentric height is

Ino
GM =~ — 3.4
v G (3.47)

Equation (3.47) is used to determine the stability of floating bodies. As already noted, if
GM is positive, the body is stable; if GM is negative, it is unstable.
Note that for small angles of heel o, the righting moment or overturning moment is given
as follows:
RM = y¥GMa (3.48)

However, for large angles of heel, direct methods of calculation based on these same principles
would have to be employed to evaluate the righting or overturning moment.
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EXAMPLE 3.13

Stability of a Floating Block

Problem Statement

A block of wood 30 cm square in cross section and 60 cm long
weighs 318 N. Wil the block float with sides vertical as shown?

f 60 cm vi ,'— 30cm —-'
30cm
Side view End view
Define the Situation

A block of wood is floating in water.

State the Goal

Determine the stable configuration of the block of wood.

Generate Ideas and Make a Plan
1. Apply force equilibrium to find the depth of submergence.

2. Determine if block is stable about the long axis by applying
Eq. (3.47).

3. If block is not stable, repeat steps 1 and 2.

Take Action (Execute the Plan)
1. Equilibrium (vertical direction)
>F=0
—weight + buoyant force = 0
=318 N + 9810 N/m’ X 0.30m X 0.60m Xd = 0
d=0.18m = 18cm

2. Stability (longitudinal axis)

GM_IM CG_ﬁxsoxsm is _ 3
Ty T8 xe60%x30 )

= 4,167 — 6 = —1.833cm

Because the metacentric height is negative, the block is not
stable about the longitudinal axis. Thus a slight disturbance
will make it tip to the orientation shown below.

Width = w

i

5.73 cm

Center of gravity

Center of buoyancy

3. Equilibrium (vertical direction—see preceding figure)
—weight + buoyant force = 0
—(318N) + (9810 N/m*)(¥p) = 0
¥ = 00324 m’

4. Find the dimension w.

(Displaced volume)
= (Block volume) — (Volume above the waterline).

2
¥, = 0.0324m’ = (0.39(0.6) m’ — WT (0.6 m)
w=0.379m
5. Moment of inertia at the waterline

bk’ (0.6 m)(0.379 m)’

= 0.00273 m*
12 ) 0.00273 m

Im=

6. Metacentric height

Ino 0.00273 m*
GM=— - CG=——"—"—"-=0.0573m = 0.027
¥ 0.0324m’ m .

Because the metacentric height is positive, the block will be
stable in this position.

3.8 Summarizing Key Knowledge

Pressure and Hydrostatic Equilibrium

® A hydrostatic condition means that the weight of each fluid particle is balanced by the net

pressure force.

® Pressure p is ratio of (magnitude of normal force due to a fluid) to (area) at a point.




SECTION 3.8 SUMMARIZING KEY KNOWLEDGE

» Pressure always acts to compress the material that is in contact with the fluid exerting
the pressure.

» Pressure is a scalar quantity; not a vector.
* Engineers express pressure with gage pressure, absolute pressure, and vacuum pressure.
» Absolute pressure is measured relative to absolute zero.

b Gage pressure gives the magnitude of pressure relative to atmospheric pressure.

Dabs = Patm + Pgage

» Vacuum pressure gives the magitude of the pressure below atmospheric pressure.

Pvacuum = Patm — Pabs

Describing Pressure and Hydrostatic Equilibrium

* The weight of a fluid causes pressure to increase with increasing depth, giving the
hydrostatic differential equation. The equations that are used in hydrostatics are derived
from this equation. The hydrostatic differential equation is

dp_ _
iz Y= —pg

* If density is constant, the hydrostatic differential equation can be integrated to give the
hydrostatic equation. The meaning (i.e., physics) of the hydrostatic equation is that
pizeometric head (or piezometric pressure) is everywhere constant in a static body
of fluid.

% + z = constant

Pressure Distributions and Forces Due to Pressure
e A fluid in contact with a surface produces a pressure distribution, which is a mathematical
or visual description of how the pressure varies along the surface.

e To find the force due to a pressure distribution, integrate the pressure distribution over area
using a normal vector to track the direction of the force acting on dA.

Net force due to a pressure distribution = F, = J (—p)ndA
A

® A pressure distribution is often represented as a statically equivalent force F, acting at the
center of pressure (CP)

® A uniform pressure distribution means that the pressure is the same at every point ona
suface. Pressure distributions due to gases are typically idealized as uniform pressure
distributions.

e A hydrostatic pressure distibution means that the pressure varies according to dp/dz = —y

Force on a Flat Surface (Hydrostatic Pressure Distribution)

® For a panel subjected to a hydrostatic pressure distribution, the hydrostatic force is
F,=pA
»
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® This hydrostatic force
» Acts at the centroid of area for a uniform pressure distribution

» Acts below the centroid of area for a hydrostatic pressure distibution. The slant distanc
between the center of pressure and the centroid of area is given by

e
ycp y= }—, A
Hydrostatic Forces on a Curved Surface

® When a surface is curved, one can find the pressure force by applying force equilibrium t.
a free body comprised of the fluid in contact with the surface.

The Buoyant Force

© The buoyant force is the pressure force on a body that is partially or totally submerged in a flui
¢ The magnitude of the buoyant force is given by
Buoyant force = F; = Weight of the displaced fluid
® The center of buoyancy is located at the center of gravity of the displaced fluid. The
direction of the buoyant force is opposite the gravity vector.

® When the buoyant force is due to a single fluid with constant density, the magnitude of th
buoyant force is:

Fp = v¥p

Hydrodynamic Stability

* Hydrodynamic stability means that if an object is displaced from equilibrium then there i
a moment that causes the object to return to equilibrium.

¢ The criteria for stability are

» Immersed object. The body is stable if the center of gravity is below the center of buoyanc;
» Floating object. The body is stable if the metacentric height is positive.
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PROBLEMS
PLU's Problem available in WileyPLUS at instructor’s discretion.

Describing Pressure (§3.1)

3.1 FLU's Apply the grid method (§1.5 in Ch. 1) to each situation.

a, If pressure is 6 inches of water (vacuum), what is gage
pressure in kPa?

3. Wikipedia contributors “Hydraulic machinery;” Wikipedia,
The Free Encyclopedia, http://en.wikipedia.org/w/index,
php?title=Hydraulic_machinery&oldid=161288040 (accessed
October 4, 2007).

0" Guided Online (GO) Problem, available in WileyPLUS at

instructor’s discretion.
b. If the pressure is 180 kPa abs, what is the gage pressure in psi
c. If gage pressure is 0.4 bar, what is absolute pressure in psi

d. If a persons blood pressure is 96 mm Hg, what is their
blood pressure in kPa abs?



3.2 FL'U%s A 100 mm diameter sphere contains an ideal gas at 20°C.

Apply the grid method (§1.5 in Ch. 1) to calculate the density in
units of kg/m’.

a. Gas is helium. Gage pressure is 20 in H,0.

b. Gas is methane. Vacuum pressure is 3 psi.

3.3 /1'U's For the questions below, assume standard atmospheric
pressure.

a. For avacuum pressure of 30 kPa, what is the absolute
pressure? Gage pressure?

b. For a pressure of 13.8 psig, what is the pressure in psia?

c. For a pressure of 200 kPa gage, what is the absolute
pressure in kPa?

d. Give the pressure 100 psfg in psfa.

3.4 FLUS The local atmospheric pressure is 99.0 kPa. A gage on
an oxygen tank reads a pressure of 300 kPa gage. What is the
pressure in the tank in kPa abs?

3.5 Using §3.1 and other resources, answer the following
questions. Strive for depth, clarity, and accuracy while also
combining sketches, words, and equations in ways that enhance
the effectiveness of your communication.

a. What are five important facts that engineers need to
know about pressure?

b. What are five common instances in which people use
gage pressure?

c. What are the most common units for pressure?

d. Why is pressure defined using a derivative?

e. How is pressure similar to shear stress? How does

pressure differ from shear stress?

3.6 0" The Crosby gage tester shown in the figure is used

to calibrate or to test pressure gages. When the weights and the
piston together weigh 140 N, the gage being tested indicates
200 kPa. If the piston diameter is 30 mm, what percentage of
error exists in the gage?

PROBLEM 3.6

3.7 81'U's As shown, a mouse can use the mechanical advantage
provided by a hydraulic machine to lift up an elephant.

a. Derive an algebraic equation that gives the mechanical
advantge of the hydraulic machine shown. Assume the
pistons are frictionless and massless.

b. A mouse can have a mass of 25 g and an elephant a mass
of 7500 kg, Determine a value of D, and D, so that the
mouse can support the elephant.

PROBLEMS

Elephant witt
mass m,

Mouse with
mass m,
Piston (2 plac

Hydraulic flu

51

PROBLEM 3.7

3.8 Find a parked automobile for which you have informati
on tire pressure and weight. Measure the area of tire contact
with the pavement. Next, using the weight information and 1
pressure, use engineering principles to calculate the contact
area. Compare your measurement with your calculation and
discuss.

Deriving and Applying the Hydrostatic Equation (§3.2)
3.9 BLU’s To derive the hydrostatic equation, which of the
following must be assumed? (Select all that are correct.)

a. the specific weight is constant

b. the fluid has no charged particles

¢. the fluid is at equilibrium
3.10 Imagine two tanks. Tank A is filled to depth h with
water. Tank B is filled to depth h with oil. Which tank has
largest pressure? Why? Where in the tank does the largest
pressure occur?
3.11 Consider Figure 3.8 on p. 67 of §3.2.

a. Which fluid has the larger density?

b. If you graphed pressure as a function of z in these tw
layered liquids, in which fluid does the pressure chan
more with each incremental change in z?

3.12 'FiU’s Apply the grid method (§1.5 in Ch. 1) with the
hydrostatic equation (Ap = yAz) to each of the following
cases.

a. Predict the pressure change Ap in kPa for an elevatio
change Az of 10 ft in a fluid with a density of 90 Ibm,

b. Predict the pressure change in psf for a fluid with S -
and an elevation change of 22 m.

c. Predict pressure change in inches of water for a fluic
with a density of 1.2 kg/m® and an elevation change
1000 ft.

d. Predict the elevation change in millimeters for a flui
with S = 13 that corresponds to a change in pressur:
1/6 atm.

3.13 FLUs Using §3.2 and other resources, answer the follos
questions. Strive for depth, clarity, and accuracy while also
combining sketches, words, and equations in ways that enha
the effectiveness of your communication.
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a. What does hydrostatic mean? How do engineers identify
whether a fluid is hydrostatic?

b. What are the common forms on the hydrostatic
equation? Are the forms equivalent or are they
different?

¢. What is a datum? How do engineers establish a datum?

d. What are the main ideas of Eq. (3.10) on p. 66 of §3.2?
That is, what is the meaning of this equation?

e. What assumptions need to be satisfied to apply the
hydrostatic equation?

WILEY

314 %" Apply the grid method to each situation.

a. What is the change in air pressure in pascals between
the floor and the ceiling of a room with walls that are
10 ft tall.

b. A diver in the ocean (S = 1.03) records a pressure of
2.5 atm on her depth gage. How deep is she?

c. A hiker starts a hike at an elevation where the air pressure
is 940 mbar, and he ascends 1200 ft to a mountain sum-
mit. Assuming the density of air is constant, what is the
pressure in mbar at the summit?

d. Lake Pend Oreille, in northern Idaho, is one of the deepest
lakes in the world, with a depth of 350 m in some
locations. This lake is used as a test facility for submarines.
What is the maximum pressure that a submarine could
experience in this lake?

e. A 70 m tall standpipe (a standpipe is vertical pipe that is
filled with water and open to the atmosphere) is used
to supply water for fire fighting. What is the maximum
pressure in the standpipe?

3.15 FEUs As shown, an air space above a long tube is pressurized
to 50 kPa vacuum. Water (20°C) from a reservoir fills the tube to
a height h. If the pressure in the air space is changed to 25 kPa
vacuum, will h increase or descrease and by how much? Assume
atmospheric pressure is 100 kPa.

/—- Aur space
' /

o

‘]; /—~—— Water
V4

PROBLEM 3.15

3.16 'FLU's For the closed tank with Bourdon-tube gages tapped
into it, what is the specific gravity of the oil and the pressure
reading on gage C?

05m Air 4  py=500kPa
. |

T

1.0m 0il

G ik bk B pam385kPa

T

1.0m Water
———————— C  pc=?

Lo 7o

PROBLEM 3.16

3.17 This manometer contains water at room temperature. Th
glass tube on the left has an inside diameter of 1 mm (d = 1.0 mr
The glass tube on the right is three times as large. For these
conditions, the water surface level in the left tube will be

(a) higher than the water surface level in the right tube,

(b) equal to the water surface level in the right tube, or (c) less
than the water surface level in the right tube. State your main
reason or assumption for making your choice.

PROBLEM 3.17

3.18 @ﬁ:s If 2 200 N force F, is applied to the piston with the

4 cm diameter, what is the magnitude of the force F, that can be
resisted by the piston with the 10 cm diameter? Neglect the
weights of the pistons.

F
—-' |<— 10 cm diameter
T
Vertical
F, 2m
—-I |‘— 4 cm diameter
0il (S =0.85)
3 i
e 22m )

PROBLEM 3.18

3.19 Regarding the hydraulic jack in Problem 3.18, which ideas
were used to analyze the jack? (select all that apply)



a. pressure = (force)(area)
b. pressure increases linearly with depth in a hydrostatic fluid

c. the pressure at the very bottom of the 4-cm chamber is larger
than the pressure at the very bottom of the 10-cm chamber

d. when a body is stationary, the sum of forces on the object
is zero

e. when a body is stationary, the sum of moments on the
object is zero

f. pressure = (weight/volume)(change in elevation)

3.20 Some skin divers go as deep as 50 m. What is the gage
pressure at this depth in fresh water, and what is the ratio of the
absolute pressure at this depth to normal atmospheric pressure?
Assume T = 20°C.

Fomem

3.21 'FLU’s Water occupies the bottom 0.8 m of a cylindrical tank.
On top of the water is 0.3 m of kerosene, which is open to the
atmosphere. If the temperature is 20°C, what is the gage pressure
at the bottom of the tank?

3.22 An engineer is designing a hydraulic lift with a capacity of
10 tons. The moving parts of this lift weigh 1000 Ibf. The lift
should raise the load to a height of 6 ft in 20 seconds. This will be
accomplished with a hydraulic pump that delivers fluid to a
cylinder. Hydraulic cylinders with a stroke of 72 inches are
available with bore sizes from 2 to 8 inches. Hydraulic piston
pumps with an operating pressure range from 200 to 3000 psig
are available with pumping capacities of 5, 10, and 15 gallons per
minute, Select a hydraulic pump size and a hydraulic cylinder
size that can be used for this application.

10 tons

1000 1bf
i —_—
—— o] Hydraulic oil
(return line)
6ft
Piston stop
1 Hydraulic oil
- ﬁ_ (from pump)
| ; ———
PROBLEM 3.22
3.23 A tank with an attached manometer contains water at

20°C. 'Ihe atmosphenc pressure is 100 kPa. There is a stopcock
located 1 m from the surface of the water in the manometer. The
stopcock is closed, trapping the air in the manometer, and water
is added to the tank to the level of the stopcock. Find the increase
in elevation of the water in the manometer assuming the air in
the manometer is compressed isothermally.

PROBLEMS

Open

Initial Final

PROBLEM 3.23

3.24 FTU's A tank is fitted with a manometer on the side, as
shown. The liquid in the bottom of the tank and in the manc
has a specific gravity (S) of 3.0. The depth of this bottom liqu
20 cm. A 15 ¢m layer of water lies on top of the bottom liqui
Find the position of the liquid surface in the manometer.

——=:Z=——‘
15cm Water A_I{_= 9
20 cm $=30
PROBLEM 3.24

3.25 F{'U's As shown, a load acts on a piston of diameter D
'The piston rides on a reservoir of oil of depth h, and specifi
gravity S. The reservoir is connected to a round tube of dia
D, and oil rises in the tube to height h,. The oil in the tube
open to atmosphere. Derive an equation for the height i, i
terms of the weight W of the load and other relevant varial
Neglect the weight of the piston.

3.26 Asshown,a load of mass 5 kg is situated on a piston |
diameter D, = 120 mm. The piston rides on a reservoir of
depth h; = 42 mm and specific gravity S = 0.8. The reserv(
connected to a round tube of diameter D, = 5 mm and oil
in the tube to height h,. Find h,. Assume the oil in the tube
open to atmosphere and neglect the weight of the piston.

: h
t 2
Weigh ail

Piston

=5

PROBLEMS 3.25,3.26
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3.27 i%'_\' What is the maximum gage pressure in the odd tank

shown in the figure? Where will the maximum pressure occur?
What is the hydrostatic force acting on the top (CD) of the last
chamber on the right-hand side of the tank? Assume T = 10°C.

Open to Closed top
atmosphere 4
T =T T T
\ I | 1 / | _l’n-'n
I I
; N e : 4
Plan view (view E-E)
E r Open to atmosphere —‘ E
4
-
A f—2m——=1m—
¥ C. D
Water

Elevation view

PROBLEM 3.27

3.28 @5 The steel pipe and steel chamber shown in the figure
together weigh 600 Ibf. What force will have to be exerted on the
chamber by all the bolts to hold it in place? The dimension € is
equal to 2.5 ft. Note: There is no bottom on the chamber—only a
flange bolted to the floor.

-"¥~—— d= 1a€

Steel pipe
- pip

Liquid (§=1.2)

Steel chamber

LB
=

PROBLEM 3.28

3.29 What force must be exerted through the bolts to hold the
dome in place? The metal dome and pipe weigh 6 kN. The dome
has no bottom. Here € = 80 cm and the specific weight of

the water is y = 9810 N/m?,

4
T ID=Ysé
5¢
W,
20 ater 7
| i
PROBLEM 3.29

3.30 Find the vertical component of force in the metal at the
base of the spherical dome shown when gage A reads 5 psig.
Indicate whether the metal is in compression or tension. The
specific gravity of the enclosed fluid is 1.5. The dimension L
is 2 ft. Assume the dome weighs 1000 Ibf.

+*

Liquid (S=1.5)

PROBLEM 3.30

3.31 ,MG;T?;‘ The piston shown weighs 10 Ibf. In its initial position
the piston is restrained from moving to the bottom of the
cylinder by means of the metal stop. Assuming there is neither
friction nor leakage between piston and cylinder, what volume ¢
oil (S = 0.85) would have to be added to the 1 in. tube to cause
the piston to rise 1 in. from its initial position?

- 1 in (ID) tube

£
" 0il (S =0.85)
1T
4 Jm_ | 4in
Stop 4 in (ID) cylinder

PROBLEM 3.31

3.32 Consider an air bubble rising from the bottom of a lake.
Neglecting surface tension, determine approximately what the
ratio of the density of the air in the bubble will be at a depth of
34 ft to its density at a depth of 8 ft.



3.33 One means of determining the surface level of liquid in a
tank is by discharging a small amount of air through a small
tube, the end of which is submerged in the tank, and reading the
pressure on the gage that is tapped into the tube. Then the level
of the liquid surface in the tank can be calculated. If the pressure
on the gage is 15 kPa, what is the depth d of liquid in the tank?

<« Air supply

]
L

PROBLEM 3.33

Calculating Pressure in the Atmosphere (§3.2)

3.34 For Fig. 3.9 on p. 70 of §3.2 that describes temperature
variation with altitude, answer the following questions.

a. Does the linear approximation relating temperature to
altitude apply in the troposphere or the stratosphere?

b. At approximately what altitude in the earth’s atmosphere
does the linear approximation for temperature variation fail?

3.35 The boiling point of water decreases with elevation because
of the pressure change. What is the boiling point of water at an
elevation of 2000 m and at an elevation of 4000 m for standard
atmospheric conditions?

3.36 From a depth of 10 m in a lake to an elevation of 4000 m in
the atmosphere, plot the variation of absolute pressure. Assume
that the lake water surface elevation is at mean sea level and
assume standard atmospheric conditions.

3.37 @5 Assume that a woman must breathe a constant mass
rate of air to maintain her metabolic processes. If she inhales and
exhales 16 times per minute at sea level, where the temperature is
59°F (15°C) and the pressure is 14.7 psia (101 kPa), what would
you expect her rate of breathing at 18,000 ft (5486 m) to be? Use
standard atmospheric conditions.

3.38 A pressure gage in an airplane indicates a pressure of

95 kPa at takeoff, where the airport elevation is 1 km and the
temperature is 10°C. If the standard lapse rate of 5.87°C/km is
assumed, at what elevation is the plane when a pressure of 75 kPa
is read? What is the temperature for that condition?

3.39 Denver, Colorado, is called the “mile-high” city. What are
the pressure, temperature, and density of the air when standard
atmospheric conditions prevail? Give your answer in traditiona!
and SI units.

3.40 @5 An airplane is flying at 10 km altitude in a U.S.
standard atmosphere. If the internal pressure of the aircraft

PROBLEMS

interior is 100 kPa, what is the outward force on a window
‘The window is flat and has an elliptical shape with lengths
of 300 mm along the major axis and 200 mm along the
minor axis.

3.41 The mean atmospheric pressure on the surface of M
is 7 mbar, and the mean surface temperature is —63°C. T!
atmosphere consists primarily of CO, (95.3%) with small
amounts of nitrogen and argon. The acceleration due to

gravity on the surface is 3.72 m/s?. Data from probes ente
the Martian atmosphere show that the temperature variai
with altitude can be approximated as constant at —63°C {
the Martian surface to 14 km, and then a linear decrease
a lapse rate of 1.5°C/km up to 34 km. Find the pressure a
8 km and 30 km altitude. Assume the atmosphere is pure
carbon dioxide. Note that the temperature distribution in
the atmosphere of Mars differs from that of Earth because t
region of constant temperature is adjacent to the surface an
region of decreasing temperature starts at an altitude of 14 1

3.42 Design a computer program that calculates the pressur
and density for the U.S. standard atmosphere from 0 to 30 ku
altitude. Assume the temperature profiles are linear and are
approximated by the following ranges, where z is the altitude
kilometers:

0-13.72 km T=23.1 - 5.87z(°C)
13.7-16.8 km T= —57.5°C
16.8-30 km T= —57.5 + 1.387(z — 16.8)°C

Measuring Pressure (§3.3)
3.43 Match the following pressure-measuring devices with 1
correct name, The device names are: barometer, Bourdon ga
piezometer, manometer, and pressure transducer.
a. A vertical or U-shaped tube where changes in pressu
are documented by changes in relative elevation of a
liquid that is usually denser than the fluid in the syst:
measured; can be used to measure vacuum.
b. Typically contains a diaphragm, a sensing element, a;
conversion to an electric signal.
¢. A round face with a scale to measure needle deflectic
where the needle is deflected by changes in extensior
coiled hollow tube.
d. A vertical tube where a liquid rises in response to a
positive gage pressure.
e. An instrument used to measure atmospheric pressur
various designs.

Applying the Manometer Equations (§3.3)

3.4 ;ﬁfs Which is the more correct way to describe the tw
summation (2) terms of the manometer equation, Eq (3.21)
p- 74 of §3.3?

a. Add the downs and subtract the ups.
b. Subtract the downs and add the ups.
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3.45 ’L:ﬁl_'s Using the Internet and other resources, answer the
following questions:
a. What are three common types of manometers? For each
type, make a sketch and give a brief description.
b. How would you build a manometer from materials that
are commonly available? Sketch your design concept.
46 'PLU's As shown, gas at pressure Pg raises a column of
hqmd to a height h. The gage pressure in the gas is given by
Pg = Viiquiah- Apply the grid method (p. 00) to each situation that
follows.
a. The manometer uses a liquid with S = 1.3, Calculate
pressure in psia forh = 1 ft.
b. The manometer uses mercury. Calculate the column rise
in mm for a gage pressure of 0.25 atm.
c. The liquid has a density of 30 Ibm/ft’. Calculate pressure
in psfg for h = 4 inches.

d. The liquid has a density of 800 kg/m’. Calculate the gage
pressure in bar for h = 3 m.

Gas at pressure Pg

PROBLEM 3.46

3.47 FLUs Is the gage pressure at the center of the pipe (a) negative,
(b) zero, or (c) positive? Neglect surface tension effects and state
your rationale.

Specific gravity = 1.00

Specific gravity = 2.00
PROBLEM 3.47

3.48 Determine the gage pressure at the center of the pipe (point A)
in pounds per square inch when the temperature is 70°F with
hl = l6in.andh2 =2in.

e Pipe {section view)

..
| s

Mercury o

bl

PROBLEM 3.48

3.49 'FL'Us Considering the effects of surface tension, estimate
the gage pressure at the center of pipe A for h = 120 mm and
T = 20°C.

Glass tube (0.5 mm ID, 4 mm OD)

b Water level in tube

L@A

PROBLEM 3.49

3.50 'FL'U's What is the pressure at the center of pipe B?

|
@

50 cm

PROBLEM 3.50

3.51 The ratio of container diameter to tube diameter is 8. Wh
air in the container is at atmospheric pressure, the free surface |
the tube is at position 1. When the container is pressurized, the



liquid in the tube moves 40 cm up the tube from position 1 to
position 2. What is the container pressure that causes this
deflection? The liquid density is 1200 kg/m’.

3.52 The ratio of container diameter to tube diameter is 10.
When air in the container is at atmospheric pressure, the free
surface in the tube is at position 1. When the container is
pressurized, the liquid in the tube moves 3 ft up the tube from
position 1 to position 2. What is the container pressure that causes
this deflection? The specific weight of the liquid is 50 Ibf/ft*,

Container

PROBLEMS 3.51, 3.52

3.53 LU Determine the gage pressure at the center of pipe A in
pounds per square inch and in kilopascals.

Water

Air 100 cm 328 ft

4

PROBLEM 3.53

3.54 A device for measuring the specific weight of a liquid
consists of a U-tube manometer as shown. The manometer tube
has an internal diameter of 0.5 cm and originally has water in it.
Exactly 2 cm® of unknown liquid is then poured into one leg of
the manometer, and a displacement of 5 cm is measured between
the surfaces as shown. What is the specific weight of the
unknown liquid?

—]

73
o
3

.y
™ Unknown liquid

-

0.5cm —= —

™~ Water

PROBLEM 3.54

PROBLEMS

3.55 Mercury is poured into the tube in the figure until the
mercury occupies 375 mm of the tube’s length. An equal volur
water is then poured into the left leg. Locate the water and me
surfaces. Also determine the maximum pressure in the tube.

| Uniform
diameter tube

"/
k— 160 mm —|

PROBLEM 3.55

3.56 'FLLU’s Find the pressure at the center of pipe A. T = 10°C.

0il (S=0.8) ﬁ

- H

Water
— -
™| 90 cm 150 em | T~ Water

LIy
Mercury 30 cm

(S=13.6) ~1L | 30cm
h A

W

PROBLEM 3.56

3.57 Determine (a) the difference in pressure and (b) the
difference in piezometric head between points A and B. The
elevations z4 and z are 10 m and 11 m, respectively, £; = 1
and the manometer deflection €, is 50 cm.

Air

Elevation
B

0Oil (§ =0.85)
Elevation =z,

PROBLEM 3.57

3.58 The deflection on the manometer is A meters when the
pressure in the tank is 150 kPa absolute. If the absolute pressu
the tank is doubled, what will the deflection on the manomet
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Atmospheric
pressure = 100 kPa abs

Gas
p=150kPaabs

Manometer
liquid

PROBLEM 3.58

3.59 @;s A vertical conduit is carrying oil (S = 0.95).

A differential mercury manometer is tapped into the conduit at
points A and B. Determine the difference in pressure between
A and Bwhen h = 3 in. What is the difference in piezometric
head between A and B?

!

0il

Mercury
PROBLEM 3.59

3.60 Two water manometers are connected to a tank of air. One
leg of the manometer is open to 100 kPa pressure (absolute)
while the other leg is subjected to 90 kPa. Find the difference in
deflection between both manometers, Ak, — Ah,

A o
i 4

Ah, Ahy

Ul T

PROBLEM 3.60

3.61 A manometer is used to measure the pressure difference
between points A and B in a pipe as shown. Water flows in the pipe
and the specific gravity of the manometer fluid is 2.8. The distance:
and manometer deflection are indicated on the figure. Find (a)
the pressure differences p, — pj, and (b) the difference in
piezometric pressure, p, » — p,.p. Express both answers in kPa.

Manometer
fluid, S=3

PROBLEM 3.61

3.62 A novelty scale for measuring a person’s weight by having
the person stand on a piston connected to a water reservoir and
stand pipe is shown in the diagram. The level of the water in the
stand pipe is to be calibrated to yield the person’s weight in
pounds force. When the person stands on the scale, the height of
the water in the stand pipe should be near eye level so the perso:
can read it. There is a seal around the piston that prevents leaks
but does not cause a significant frictional force. The scale should
function for people who weigh between 60 and 250 Ibf and are
between 4 and 6 feet tall. Choose the piston size and standpipe
diameter. Clearly state the design features you considered.
Indicate how you would calibrate the scale on the standpipe.
Would the scale be linear?

s
/ Water

[ ]

Piston /!—

PROBLEM 3.62

Applying the Panel Force Equations (§3.4)

3.63 Using §3.4 and other resources, answer the questions
below. Strive for depth, clarity, and accuracy while also
combining sketches, words, and equations in ways that enhance
the effectiveness of your communication.

a. For hydrostatic conditions, what do typical pressure
distributions on a panel look like? Sketch three examples
that correspond to different situations.



b. What is a center of pressure (CP)? What is a centroid of area?

¢. In Eq.(3.28) on p. 80 of §3.4, what does p mean? What
factor: influence the value of p?

d. What is the ~~lationship between the pressure distribu-
tion on a panel and the resultant force?

e. How far is the CP fiom the centroid of area? What factors
influence this distance?

3.64 0" Part 1. Consider the equation for the distance
between the CP and the centroid of a submerged panel
(Eq. (3.33) on p. 81 of §3.4). In that equation, y;, is

a. the vertical distance from the water surface to the CP.
b. the slant distance from the water surface to the CP.

Part 2. Consider the figure shown. For case 1 as shown, the viewing
window on the front of a submersible exploration vehicle is at

a depth of y;. For case 2, the submersible has moved deeper in

the ocean, to y,. As a result of this increased overall depth of the
submersible and its window, does the spacing between the CP and
centroid (a) get larger, (b) stay the same, or (c) get smaller?

=L -

o

PROBLEMS

"

Tank 1

\

Tank 2
PROBLEM 3.66

Area 4 Area 44

3.68 @Rﬁs Consider the two rectangular gates shown in the
figure. They are both the same size, but gate A is held in plac
a horizontal shaft through its midpoint and gate B is cantiles
to a shaft at its top. Now consider the torque T required to hc
the gates in place as H is increased. Choose the valid stateme
(a) T, increases with H. (b) T increases with H. (c) T, does 1
change with H. (d) T does not change with H.

3.69 @s For gate A, choose the statements that are valid:
(a) The hydrostatic force acting on the gate increases as H
increases. (b) The distance between the CP on the gate and t
centroid of the gate decreases as H increases. (c) The distanc
between the CP on the gate and the centroid of the gate rem
constant as H increases. (d) The torque applied to the shaft t
prevent the gate from turning must be increased as H increa
(e) The torque applied to the shaft to prevent the gate from
turning remains constant as H increases.

Case 1

Case 2

PROBLEM 3.64

3.65 Which of these assumptions and/or limitations must be
known when using Eq. (3.33) on p. 81 of §3.4 for a submerged
surface or panel to calculate the distance between the centroid of
the panel and the center of pressure of the hydrostatic force
(select all that apply):

a. The equation only applies to a single fluid of constant density

b. The pressure at the surface must be p = 0 gage

¢. The panel must be vertical

d. The equation gives only the vertical location (as a slant
distance) to the CP, not the lateral distance from the edge
of the body

~f3.66 FLUs Two cylindrical tanks have bottom areas A and 44
respectively, and are filled with water to the depths shown.

a. Which tank has the higher pressure at the bottom of the tank?

b. Which tank has the greater force acting downward on the
bottom circular surface?

3.67

PLUS What is the force acting on the gate of an irrigation
ditch if the ditch and gate are 4 ft wide, 4 ft deep, and the ditch is
competely full of water? There is no water on the other side of
the gate. The weather has been hot for weeks, so the water is 70°F.

= = Shaft
Water [LPEUSTRNTVE Water Lol
<— Gate 4 le— Gat
H . Shaft H Gate B
Atmospheric Atmosphen
pressure pressure

PROBLEMS 3.68, 3.69

panel;d = 1mandh=2m.
a. Calculate the depth of the centroid

3,70 % LU’s As shown, water (15°C) is in contact with a squar

b. Calculate the resultant force on the panel
c. Calculate the distance from the centroid to the CP.

Panel
h

PROBLEM 3.70
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3.71 66" As shown, a round viewing window of diameter

D = 0.5 m is situated in a large tank of seawater (S = 1.03). The top
of the window is 1.5 m below the water surface, and the window is
angled at 60° with respect to the horizontal. Find the hydrostatic
force acting on the window and locate the corresponding CP.

S /
5 A Window
Sea water \Z\
D
60°
PROBLEM 3.71

3.72 PLU Find the force of the gate on the block. See sketch.

Water
10m
4 mx4mgate
/. S
2m 4
Pivot
2m
) 7 - ll
A}
I ; Block
PROBLEM 3.72

3.73 Assume that wet concrete (y = 150 Ibf/ft*) behaves as a liquid.

Determine the force per unit foot of length exerted on the forms. If
the forms are held in place as shown, with ties between vertical
braces spaced every 2 ft, what force is exerted on the bottom tie?
Top tie

[ _1./

1 |~ Brace
Form
A‘/

9ft |~ Concrete

Bottom

: /tic

PROBLEM 3.73

?(3.74 Ftus A rectangular gate is hinged at the water line, as
shown. The gate is 4 ft high and 8 ft wide. The specific weight of
water is 62.4 Ibf/ft’. Find the necessary force (in Ibf) applied at
the bottom of the gate to keep it closed.

1t Hinge

Water

4ft

.

 FaEAS]

PROBLEM 3.74

3.75 The gate shown is rectangular and has dimensions 6 m by 4 n
What is the reaction at point A? Neglect the weight of the gate.

Hinge

Atmospheric
pressure

PROBLEM 3.75

3.76 PLU's Determine P necessary to just start opening the
2 m-wide gate.

- P—
Hinge I‘ "

2 m-wide gate

Water

1
L—— im —“'4
PROBLEM 3.76

3.77 FCUs The square gate shown is eccentrically pivoted so the
it automatically opens at a certain value of h. What is that value
in terms of £2

Atmospheric

pressure
Water l /

7
Square gate | ¢ go¢

ﬂ

Stop
PROBLEM 3.77

0.40¢
L 1




3.78 ¢5" This 10 ft-diameter butterfly valve is used to
control the flow in a 10 ft-diameter outlet pipe in a dam. In
the position shown, it is closed. The valve is supported by a
horizontal shaft through its center. What torque would have
to be applied to the shaft to hold the valve in the position
shown?

Atmospheric
pressure

10 ft diameter
PROBLEM 3.78

3.79 'FLUS For the gate shown, = 45%y, = I m,and y, = 4 m.

Will the gate fall or stay in position under the action of the
hydrostatic and gravity forces if the gate itself weighs 150 kN
and is 1.0 m wide? Assume T = 10°C. Use calculations to
justify your answer.

ey

3.80 LU For this gate,a = 45%, y, =3 ft,and y, = 6 ft.

Will the gate fall or stay in position under the action of the
hydrostatic and gravity forces if the gate itself weighs 18,000 1b
and is 3 ft wide? Assume T = 50°F. Use calculations to justify
your answer.

—
b7 7
Water
Atmospheric
pressure Gate p4
Hi a\
inge

PROBLEMS 3.79, 3.80

3.81 Determine the hydrostatic force F on the triangular gate,
which is hinged at the bottom edge and held by the reaction Ry
at the upper corner. Express F in terms of -y, h, and W, Also
determine the ratio Ry/F Neglect the weight of the gate.

Z_

Hinge

P

View 4-4
PROBLEM 3.81

PROBLEMS

3.82 FiUsIn constructing dams, the concrete is poured in
of approximately 1.5 m ( y; = 1.5 m). The forms for the fac
the dam are reused from one lift to the next. The figure sho
one such form, which is bolted to the already cured concre
the new pour, what moment will occur at the base of the fo
per meter of length (normal to the page)? Assume that con
acts as a liquid when it is first poured and has a specific we
24 kN/m’,

Cantilevered New pour level

form

M|
Old pour level

Cured
concrete

PROBLEM 3.82

3.83 The plane rectangular gate can pivot about the suppo
For the conditions given, is it stable or unstable? Neglect th
weight of the gate. Justify your answer with calculations.

Xz
1 Water
8m Gate
&
L
4 !
PROBLEM 3.83

Calculating Pressure on Curved Surfaces (§3.5)

3.84 @s Two hemispheric shells are perfectly sealed toge
and the internal pressure is reduced to 25% of atmospheric
pressure. The inner radius is 10.5 cm, and the outer radius
10.75 cm. The seal is located halfway between the inner ans
outer radius. If the atmospheric pressure is 101.3 kPa, what
is required to pull the shells apart?

3.85 If exactly 20 bolts of 2.5 cm diameter are needed to h
the air chamber together at A-A as a result of the high pres
within, how many bolts will be needed at B-B? Here D = 4
and d = 20 cm.

PROBLEM 3.85
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3.86 For the plane rectangular gate (€ X w in size), figure (a),
what is the magnitude of the reaction at A in terms of vy,, and
the dimensions € and w? For the cylindrical gate, figure (b), will
the magnitude of the reaction at A be greater than, less than, or
the same as that for the plane gate? Neglect the weight of the
gates.

Rectangular
gate

Smooth
boundary

Smooth

fsi” 95 / boundal
o\-j ry

A

(b) Curved gate
PROBLEM 3.86

3.87 Water is held back by this radial gate. Does the resultant of
the pressure forces acting on the gate pass above the pin, through
the pin, or below the pin?

Gate

Pin (center of
Water curvature of gate)

PROBLEM 3.87

3.88 For the curved surface AB:

a. Determine the magnitude, direction, and line of action of
the vertical component of hydrostatic force acting on the
surface. Here £ = 1 m.

b. Determine the magnitude, direction, and line of action of
the horizontal component of hydrostatic force acting on
the surface.

¢. Determine the resultant hydrostatic force acting on the
surface,

Surface is 1 m
long (normal to page)

e —

Water

PROBLEM 3.88

3.89 Determine the hydrostatic force acting on the radial gate i
the gate is 40 ft long (normal to the page). Show the line of actic
of the hydrostatic force acting on the gate.

\/
=

S0 ft

PROBLEM 3.89

3.90 ?@'s A plug in the shape of a hemisphere is inserted in a
hole in the side of a tank as shown in the figure. The plug is
sealed by an O-ring with a radius of 0.2 m. The radius of the
hemispherical plug is 0.25 m. The depth of the center of the plu
is 2 m in fresh water. Find the horizontal and vertical forces on
the plug due to hydrostatic pressure.

-
O-ring
“'1\3 2m
0.2m
0.25m
PROBLEM 3.90

3.91 ﬁs This dome (hemisphere) is located below the water
surface as shown. Determine the magnitude and sign of the for
components needed to hold the dome in place and the line of
action of the horizontal component of force. Here y, = 1 m

and y, = 2 m. Assume T = 10°C.



3.92 Consider the dome shown. This dome is 10 ft in diameter,
but now the dome is not submerged. The water surface is at the
level of the center of curvature of the dome. For these conditions,
determine the magnitude and direction of the resultant
hydrostatic force acting on the dome.

AV
t =
2] Water
%
Hemi- s
Y2  spherical A":::f:;nc
dome p

T

PROBLEM 3.91, 3.92

Calculating Buoyant Forces (§3.6)

3.93 Apply the grid method (§1.5 in Ch. 1) to each situation
below.

a. Determine the buoyant force in newtons on a basketball
that is floating in a lake (10°C).

b. Determine the buoyant force in newtons on a 1 mm
copper sphere that is immersed in kerosene.

¢. Determine the buoyant force in newtons on a 12 inch-
diameter balloon. The balloon is filled with helium and
situated in ambient air (20°C).
3.94 Using §3.6 and other resources, answer the following
questions. Strive for depth, clarity, and accuracy while also
combining sketches, words, and equations in ways that enhance
the effectiveness of your communication.

a. Why learn about buoyancy? That is, what are important
technical problems that involve buoyant forces?

b. For a buoyant force, where is the CP? Where is the line
of action?

¢. What is displaced volume? Why is it important?

d. What is the relationship between pressure distribution
and buoyant force?

3.95 'Three spheres of the same diameter are submerged in the
same body of water. One sphere is steel, one is a spherical
balloon filled with water, and one is a spherical balloon filled
with air.
a. Which sphere has the largest buoyant force?
b. If you move the steel sphere from a depth of 1 ft to 10 fi,
what happens to the magnitude of the buoyant force
acting on that sphere?

c. If all 3 spheres are released from a cage at a depth of 1 m,
what happens to the 3 spheres, and why?

PROBLEMS

3.96 As shown, a uniform-diameter rod is weighted at one
and is floating in a liquid. The liquid (a) is lighter than wate
(b) must be water, or (c) is heavier than water. Show your we

1

P = Pwater et j

L

p= 2pwnler —f
PROBLEM 3.96

3.97 @s An 800 ft ship has a displacement of 35,000 tons
the area defined by the waterline is 38,000 ft. Will the ship
more or less draft when steaming from salt water to fresh w
How much will it settle or rise?

3.98 @s A submerged spherical steel buoy that is 1.2 m i1
diameter and weighs 1200 N is to be anchored in salt water
20 m below the surface. Find the weight of scrap iron that
should be sealed inside the buoy in order that the force on i
anchor chain will not exceed 4.5 kN.

3.99 A buoy is designed with a hemispherical bottom and
conical top as shown in the figure. The diameter of the
hemisphere is 1 m, and the half angle of the cone is 30°. The
has a mass of 460 kg. Find the location of the water line on
buoy floating in sea water (p = 1010 kg/m?).

L

42
w!

1m

PROBLEM 3.99

3.100 J:j_fl} s A rock weighs 925 N in air and 781 N in water.
its volume.

3.101 }fﬂs As shown, a cube (L = 60 mm) suspended in ¢
tetracloride is exactly balanced by an object of mass m;, =7
Find the mass m, of the cube.
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Balance beam scale

1
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AN | |

Cube with mass m,
\ Block with } v
mass m, j —
IL

Carbon tetrachioride

PROBLEM 3.101

3.102 @L‘\tﬁs A block of material of unknown volume is
submerged in water and found to weigh 300 N (in water). The
same block weighs 700 N in air. Determine the specific weight
and volume of the material.

3.103 A1 ft-diameter cylindrical tank is filled with water to a
depth of 2 ft. A cylinder of wood 5 in. in diameter and 2.5 in, long
is set afloat on the water. The weight of the wood cylinder is 2 Ibf,
Determine the change (if any) in the depth of the water in the tank.

3.104 A 90° inverted cone contains water as shown. The volume
of the water in the cone is given by ¥ = (w/3)h’. The original
depth of the water is 10 cm. A block with a volume of 200 cm?
and a specific gravity of 0.6 is floated in the water. What will be
the change (in cm) in water surface height in the cone?

A-‘:J?—_
N
|

10cm

PROBLEM 3.104

3.105 ﬂ?ﬁs The floating platform shown is supported at each
corner by a hollow sealed cylinder 1 m in diameter. The platform
itself weighs 30 kN in air, and each cylinder weighs 1.0 kN per
meter of length. What total cylinder length L is required for the
platform to float 1 m above the water surface? Assume that the
specific weight of the water (brackish) is 10,000 N/m>. The
platform is square in plan view.

L=?

-

) ]
| 10m 1 Floatin;
l platforn
T Im v Weight = 3|
il

[+— Diameter=1m

PROBLEM 3.105

3.106 To what depth d will this rectangular block (with density
0.75 times that of water) float in the two-liquid reservoir?

p =0}759wnler
4__4_______' ________ v
L T $=10
—‘—L iL it [ S=10_
y
Tl l | S=1.2
f 6L |

PROBLEM 3.106

WILEY

3.107 'P1.US Determine the minimum volume of concrete
(v = 23.6 kN/m?®) needed to keep the gate (1 m wide) in a close
position, with € = 2 m. Note the hinge at the bottom of the gate

1/4€
L ¥ }
Stop
Submerged
¢ concrete
block
Water Hinge

PROBLEM 3.107

3.108 A cylindrical container 4 ft high and 2 ft in diameter hok
water to a depth of 2 ft. How much does the level of the water in
the tank change when a 5 Ib block of ice is placed in the
container? Is there any change in the water level in the tank whe
the block of ice melts? Does it depend on the specific gravity of
the ice? Explain all the processes.

3.109 LU’ The partially submerged wood pole is attached to
the wall by a hinge as shown. The pole is in equilibrium under
the action of the weight and buoyant forces. Determine the

density of the wood.



PROBLEM 3.109

3.110 A gate with a circular cross section is held closed by a
lever 1 m long attached to a buoyant cylinder. The cylinder is
25 cm in diameter and weighs 200 N, The gate is attached to a
horizontal shaft so it can pivot about its center. The liquid is
water. The chain and lever attached to the gate have negligible
weight. Find the length of the chain such that the gate is just on
the verge of opening when the water depth above the gate hinge
is 10 m.

PROBLEM 3.110

3.111 A balloon is to be used to carry meteorological
instruments to an elevation of 15,000 ft where the air pressure is
8.1 psia. The balloon is to be filled with helium, and the material
from which it is to be fabricated weighs 0.01 Ibf/fi2, If the
instruments weigh 8 Ibf, what diameter should the spherical
balloon have?

3.112 A weather balloon is constructed of a flexible material
such that the internal pressure of the balloon is always 10 kPa
higher than the local atmospheric pressure, At sea level the
diameter of the balloon is 1 m, and it is filled with helium. The
balloon material, structure, and instruments have a mass of
100 g. This does not include the mass of the helium, As the
balloon rises, it will expand. The temperature of the helium is
always equal to the local atmospheric temperature, so it
decreases as the balloon gains altitude. Calculate the maximum
altitude of the balloon in a standard atmosphere.

Measuring p, v, and § with Hydrometers (§3.6)

3.113 PLU's The hydrometer shown weighs 0.015 N. If the stem
sinks 6.0 cm in oil (z = 6.0 cm), what is the specific gravity of
the oil?

PROBLEM:
3.114 'FLU's The hydrometer shown sinks 53cm (z = 5.:
water (15°C). The bulb displaces 1.0 cm?, and the stem area is
Find the weight of the hydrometer.

A4=0.1 cm?
e [T
. ?
z
- ¥=1.0cm’

PROBLEMS 3.113,3.114

3.115 66" A common commercial hydrometer for measu
the amount of antifreeze in the coolant system of an auton
engine consists of a chamber with differently colored balls.
system is calibrated to give the range of specific gravity by
distinguishing between the balls that sink and those that fl
The specific gravity of an ethylene glycol-water mixture var
from 1.012 to 1.065 for 10% to 50% by weight of ethylene g
Assume there are six balls, 1 cm in diameter each, in the
chamber. What should the weight of each ball be to provide
a range of specific gravities between 1.01 and 1.06 with
0.01 intervals?

3.116 FiU's A hydrometer with the configuration shown
has a bulb diameter of 2 cm, a bulb length of 8 cm, a stem
diameter of 1 cm, a length of 8 cm, and a mass of 40 g. Wh
is the range of specific gravities that can be measured with
hydrometer?

(Hint: Liquid levels range between bottom and top of stem.)

—! |+—1 cm diameter

-
8cm

|

be—]

2cm
diameter

PROBLEM 3.116

Predicting Stability (§3.7)

3.117 A barge 20 ft wide and 40 ft long is loaded with rocks ¢
shown. Assume that the center of gravity of the rocks and bar
is located along the centerline at the top surface of the barge. ]
the rocks and the barge weigh 400,000 Ibf, will the barge float
upright or tip over?
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PROBLEM 3.117

3.118 A floating body has a square cross section with side w as
shown in the figure. The center of gravity is at the centroid of the
cross section. Find the location of the water line, £/w, where the
body would be neutrally stable (GM = 0).If the body is floating
in water, what would be the specific gravity of the body material?

!

|

Exfehees

PROBLEM 3.118

3.119 A cylindrical block of wood 1 m in diameter and 1 m long
has a specific weight of 7500 N/m’. Wil it float in water with its
axis vertical?

3.120 FiUs A cylindrical block of wood 1 m in diameter and 1
long has a specific weight of 5000 N/m?. Will it float in water
with the ends horizontal?

3.121 Is the block in this figure stable floating in the position
shown? Show your calculations.

L=3H
W=2H ’ar/
v
H
§ v
¥ = M
H
h i
Water

PROBLEM 3.121



