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ABSTRACT

Three models were established through the extension of Domenico-Robbins’
model to simulate one-dimensional, two-dimensional and three-dimensional contaminant
transport from an exponentially decaying source of finite size. The models Incorporate
one-dimensional groundwater velocity, longitudinal and transverse dispersion. The
models are tested against three exact solutions obtained by numerical convolution of
exponentially decaying impulse sources and the agreement is excellent. Use of the models
shows that the output contaminant concentrations in column tests simulated by the models
are very close to those produced by experiments. Other possible applications include
simulations of contaminant transport from sources which have exactly the form of the
source term in the models, and the estimation of concentration at some receptor
downstream of a source for an exposure assessment calculation. Appendices show how
to perform the required calculation for use in computer spreadsheets and programs are

included.
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Chapter 1 Introduction

This chapter starts with summarizing mathematical models of contaminant
transport in subsurface porous media, briefly describing Domenico-Robbins’ model, and

finally ends at bringing up the problem dealt in this project.

1.1 Mathematical Models of Contaminant Fate and Transport

Recent concerns over the environmental impact of land disposal of hazardous
wastes have led to the rapidly increasing use of transport models to predict leachate plume
migration in groundwater systems. A number of mathematical models of contaminant fate
and transport in the subsurface are now available to help address contaminant transport
problems and they are used in the exposure component of risk assessment, evaluating
alternative risk-based source management strategies, designing remediation systems, and
interpreting soil flushing and leaching experiments. These mathematical models can be
divided into two categories: numerical and analytical models

The numerical models offer great flexibility and capability to handle complex field
conditions. However, their application is often constrained by computational difficulties
(convergence and stability problems) inherent in the numerical approximations, and
excessive computational requirements, particularly for three-dimensional problems
Analytical solutions are limited in scope compared to numerical simulators, but they are
useful for providing rapid initial estimates of alternative corrective actions, especially when

implemented over large spatial and temporal scales. The analytical models are also more
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economical and convenient in applications, and they also provide simple and effective
' means for gaining insight into the relative importance of the various transport parameters
When the limited precision of data describing most field situations is considered.
analytical estimates of expected concentrations may be as meaningful as detailed numerical
simulations. Furthermore, the analytical solutions, often being more efficient to compute
than the numerical solutions, are more conductive to uncertainty analyses via stochastic

: techniques

1.2 Domenico-Robbins’ Model

Many analytical solutions for various source functions and geometrices are
available. The more complex analytical models generally require some type of numerical
integration. In the more simple closed-form category for instantaneous pulses are the
models of Baetsle (1969) and Hunt (1978). For continuous source problems, the
relatively simple two-dimensional model of Wilson and Miller (1978) and the three-
dimensional solution of Hunt (1978) are typical examples. However, these models require
that the source be treated as a point and, consequently, are only applicable to the far field

Domenico and Robbins (1985) developed an analytical expression for contaminant
transport from a source of finite size in a continuous flow regime. The model requires
some numerical integration and its degree of accuracy for near-field problems depends on
discretization procedures applied to the source boundary. Meanwhile, they developed a
second model for a continuous source by extending a well-known pulse model. This

second model is particularly useful in that it permits the determination of several potential

(o]




unknowns directly from a concentration distribution. These include the source
. concentration, source dimensions, the position of the center of the mass that is the product
|
’ of the seepage velocity and the time since the contaminant first entered the groundwater,
| and up to three dispersivities for three-dimensional problem. As a demonstration of its
‘ utility, this second model was applied with reasonable success to a well-defined field
{ condition. Domenico and Robbins (1985) also made a comparison of the two models,
indicating that, except for minor differences in the very near field, the results from each

were virtually identical.

The model described above is referred to as an “extended pulse” type model in that

it was derived by an infinite spatial extension of an instantaneous finite source pulse
model. Based on this extended pulse model, Domenico (1987) developed another
mathematical model for a finite source that incorporated one-dimensional groundwater
velocity, longitudinal and transverse dispersion, and some form of decay for either

radionuclides or biodegradable organics

1.3 The Extension of Domenico-Robbins’ Model

While Domenico-Robbins’ (1985) model is useful. a similar model that can
approximate the case of a source whose concentration exponentially decays with time (as
distinct from a decaying contaminant) would extend the utility of their approach. Such an
intermediate source term where the source concentration decreases over time might be

more realistic and could significantly affect decisions relating to risk-based closure and

remediation.




This project presents three analytical fate and transport models that use concepts

from the Domenico-Robbins model, but incorporating a more realistic term for making the
observed receptor concentration (ORC) calculations in groundwater. These solutions are
limited in scope compared to numerical models, but they are useful in providing rapid
initial estimates of alternative risk-based source management strategies, and are intended
to serve as a screening tool to help a generator decide whether a more complicated and
detailed numerical modeling study is worthwhile. The flushing of an immobile residual
contaminant that can enter the aqueous phase by dissolution is an example of a source

zone that could be modeled by an exponentially decaying source.

1.4 The Organization of This Thesis

This thesis begins by considering the overall mathematical models of contaminant
transport in subsurface porous media, with particular emphasis on describing Domenico-
Robbins’ model, and bringing up the problem dealt with in this project. The second
chapter reviews the literature of analytical models and concludes that models for decaying
contaminant sources are in need. Chapter 3 briefly states the problems faced by model
USers.

Chapter 4 presents the model development procedure. The proposed models,
called approximation no.1, additional models, called approximation no.2, and the exact
solutions are provided. Model testing is illustrated in Chapter 5. Fifteen test cases, each

having different values of dispersion coefficient, groundwater velocity and source

decaying rate, are selected to test the proposed models and additional solutions against




the exact solutions. Computer Spreadsheets are used as tools to carry out the model

testing

Chapter 6 includes four examples of model application, with emphasis on
application no 4 to simulate leaching tests from hydrocarbon residuals. Chapter 7 presents
the conclusions and limitations. Finally, the FORTRAN programs used to evaluate all the

solutions are attached as appendices. A typical computer Spreadsheet of model evaluation

is provided in the appendices as well




Chapter 2 Literature Review

The process through which a dissolved mass moves in a porous medium is referred
to as advection-dispersion transport. Interest in mass advection-dispersion transport in
porous media has resulted from groundwater quality considerations of artificial recharge
and waste disposal, especially hazardous waste disposal such as oil tank leakage, into and
through the groundwater system. Mathematical modeling of the transport of contaminant
mass in groundwater involves the application of analytical or numerical solutions of the
advection-dispersion equation. Numerical models are more versatile and can provide
more accurate solutions of complex situations. Analytical models are simplified
approximations of reality due to the many required assumptions, but can provide reliable
and accurate results for simulations that do not involve complex aquifer heterogeneity or
boundary conditions

By the early 1970s, many analytical solutions had been obtained and applied
Examples are Carslaw and Jaeger (1959), Ogata and Banks (1961), Harleman and Rumer
(1963), Hoopes and Harleman (1965), Bruch and Street (1966), Shamir and Harleman
(1966), Ogata (1970), and Codell and Schreiber (1972). Common to these studies is the
assumption of a step function for input concentration, i.e, the input concentration is
changed instantaneously from zero to some value and is maintained at this value
thereafter. Marino (1974) derived mathematical solutions to two simplified dispersion

problems involving variable input concentrations of contaminants. For the first problem

the concentration of the displacing fluid at the starting point was expressed as an




exponential function (decaying or increasing over time). The second problem specified the

concentration at the starting point as an initial concentration minus an exponential
function. The solutions predict the distribution of contaminants in saturated porous media
resulting from the variable source concentrations. Marino’s solutions were developed for
one-dimensional problems only, while longitudinal and transverse dispersion problems are
more useful in practical application.

Yeh and Tsai (1976) developed a transient, three-dimensional turbulent diffusion
equation describing the concentration distribution of a substance or heat in a time-
dependent flow field analytically. Their approach was based on Green’s functions. ' The
solutions were developed for cases in which the velocity field could be described as any
integratable function of time. There are no limitations on the type of source conditions,
however numerical convolution is required and their work is more appropriate for heat
transfer problems.

Hunt’s (1978) solutions are the fundamental basis on which many analytical
models in contaminant hydrology have been developed. Hunt ( 1978) reported solutions
for instantaneous, continuous, and steady-state point sources of the pollution in a uniform
groundwater flow field. These solutions have been used to determine how long a
continuous source must be in place before steady-state conditions are approached,
determine the effect of a finite aquifer depth upon solutions for an aquifer of infinite depth,

calculate maximum concentrations for instantaneous sources under two different sets of

conditions, and determine the time required for solutions for a point source and a source




of finite size to approach each other. Hunt’s solutions have limited applications since they

are obviously constrained with point sources

Wison et al. (1978) presented analytical solution for a common groundwater
contamination problem, i.e., two-dimensional plume problem. The definition of the two-
dimensional plume is the following. Suppose a source of contaminant enters the saturated
zone at the water table, if the contaminant continually flows into the aquifer, a process
referred to as injection, a plume will develop downstream of the source, spreading out to
the side and below. When the aquifer is relatively thin, the vertical extent of the plume is
limited by the bottom impermeable boundary. The contaminant quickly mixes over the
vertical, and its concentration becomes essentially uniform with depth. When that occurs
the plume can be regarded as essentially two dimensional. Obviously, the application of
this two-dimensional approach is limited by conditions of contaminant sources and aquifer
systems.

Prakash (1982) developed simple analytical models to predict the spatial
distribution of steady-state concentrations caused by continuous release of contaminants
from a point, line, rectangular, or parallelepiped source in a groundwater environment
with one- or two-dimensional uniform flow. The applicability of this model to certain
types of field situations was demonstrated by examples. Once again, an assumption is
made that the source concentration is constant and thus this model can not be used to deal
with problems of variable concentration sources

In modeling practice, continuous sources of finite size are quite often used to

simulate the transport of contaminants. Based on Hunt’s (1978) work, Domenico and
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Robbins (1985) derived two analytical expressions for contaminant transport from a finite

source in a continuous flow regime. The first model required numerical integration and
the second model was developed by extending a pulse model. This second model is
particularly useful since it permits the determination of several potential unknowns directly
from a concentration distribution. A comparison of these two models indicates that,
except for minor differences in the very near field, the results from each are virtually
identical. Domenico-Robbins model is very useful in applications of early estimation of
concentration distribution but might not be appropriate for late estimation as it still does
not include any variable source terms

The majority of previous three-dimensional analytical models are based on a rather
restrictive assumption of infinite aquifer thickness (Shen, 1976, Hunt, 1978: Domenico
and Palciauska, 1982; Sagar, 1982; and Domenico and Robbins, 1985) therefore.
Huyakorn er al. (1987) proposed a new three-dimensional analytical solution. This
solution predicts transient and steady state concentration distributions resulting from a
partially penetrating strip source in a finite thickness aquifer. The plane of the source is
assumed to be perpendicular to the longitudinal direction of groundwater velocity, and the
prescribed source is assumed to be Gaussian in the transverse direction and uniform over
the penetration thickness. This model has been compared with three other analytical
models and the results of the comparison indicate certain advantages of the model over its
previous counterparts. This solution does not include a variable source term either.

While Ogata (1970) and Codell and Schreiber (1972) present solutions for

transport and dispersion in groundwater from a vertical plane source, Galya (1987) used a




horizontal plane source to more appropriately model dispersive transport from landfills or

land treatment facilities. This model extends the model of Codell and Schreiber (1977)
and Yeh (1981) in adopting Green’s function and incorporates retardation and decay (this
decay occurs while the contaminant mass transports through a porous medium). This
model provides more accurate results than point-source solutions, particularly near the
source; but it cannot handle the transport of an temporally decaying source which is more
realistic

The fate and transport of contaminants in the groundwater are a rather complex
process and there are many other factors rather than dispersion (such as decaying)
involved. Among the solutions dealing with the transport of a decaying contaminant
species, Domenico’s (1987) is one of the most convenient models for a finite source that
incorporates  one-dimensional groundwater velocity, longitudinal and transverse
dispersion, and some form of decay for either radionuclides or biodegradable organics
This model can be used in a calibration procedure that permits the determination of up to
seven parameters, including the velocity of the contaminant, source size and
concentration, and up to three dispersivities for a three dimensional problem, from a
known spatial distribution of concentrations. This model is intended to solve
multidimensional transport problems of a decaying contaminant species that is different
from an exponentially decaying source, which is the subject of this thesis.

Based on the literature reviewed, there is a need to develop approximations that

account for a time-variable source term. Approximations are preferred because exact
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solutions appear to be obtainable only by convolution of elementary impulse solutions, and
closed-form solutions may not be available

The subject of this thesis is to extend the Domenico-Robbins approach for an
exponentially decaying source term (for which closed-form solutions exist) and compare

this approach to an exact solution obtained by numerical convolution and a simplified

approximation approach.




Chapter 3 Problem Statement

Risk Reduction Standards of Texas contain guidelines for calculating an allowable
medium specific (soil, air, water, ground water) concentration (MSC) at a receptor (well,
receiving water, property lines) ( Texas Administrative Code, 1994). If the generator can
convincingly show that its source of the contamination can be controlled so that it does
not exceed this value at the nearest likely receptor, then an avenue for negotiating a clean-
up standard is opened with the regulatory agency. In Texas this is called a Risk Reduction
Standard Number-3 Closure. The intent is to reduce the number of contamination sources
that are cleaned-up to background or health-based standards where such an effort is
unnecessary. Generally, the rules incorporate certain deed recordings to prevent a
Number-3 site from being sold in a manner such that any receptors’ exposure is increased,
and various other safeguards

While these rules are specific to Texas, the concept has evolved from Federal
Guidelines, and similar programs will likely be implemented in other states and nations.
The rules contain very specific calculation procedures to determine the MSC, but the
generator is free to compute the potential observed receptor concentration (PORC) using
any reasonably defensible method. Typically some modeling study is conducted using an
acceptable numerical model. The goal of the modeling exercise is to determine what
changes in the source mass and distribution are necessary to ensure that the PORC is less

than the MSC at the nearest receptor. For example, if the modeling exercise shows that a

ten percent uniform reduction in mass at the source is sufficient to achieve the risk-




reduction standard, then the remediation strategy will be much different (and probably less

expensive) than a ninety percent clean-up strategy

Many analytical models for contaminant fate and transport exist, but most that
have been used involve either a constant source term or an impulse source term. The
subject of this project is to develop a model for an exponentially decaying source. A
constant source is inappropriate as the mass of contaminants will eventually be depleted
An impulse source is inappropriate because it is unlikely that all the mass will dissolve

immediately
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Chapter 4 Model Development

41 Introduction

Marino (1974) developed a mathematical model for the transport of a variable
concentration source of contaminants. In 1978, an attempt was made by Hunt (1978) to
establish models of the transport for an instantaneous and a continuous point contaminant
source and then for an instantaneous source of finite size. Several years later, Domenico
and Robbins (1985) developed a model for contaminant transport from a finite source in a
continuous flow regime based on the previous work. In 1987, Domenico (1987) extended
his 1985 model for a finite source that incorporated some form of decay for radionuclides
or biodegradable organics

The models developed in this thesis stemmed from Marino’s (1974) solutions to
dispersion problems involving variable input concentrations of contaminants in a one-
dimensional groundwater flow field. The concepts used in Domenico-Robbins’ (1985)
model was employed to extend this one-dimensional model into two and three dimensions.
Hunt’s (1978) solutions to the transport of point contaminant sources were also the
starting points to obtain exact solutions (more rigorous compared to the proposed models)
against which the models were tested. Additional approximate solutions that are less
rigorous than the exact ones, or the Domenico-Robbins’ model were also derived for

model testing and potential application. The procedure of model development will be

illustrated in the following sections in this chapter




4.2 Solutions for Instantaneous and Continuous Point Sources

If the uniform flow field has a constant velocity, v, in the positive x direction, then

the groundwater advection-dispersion equation is

*(- :3 ~2 =2 -
LIS R AT (1)
ot ox” T oy° " oz° oXx

where C is the concentration in mass per unit volume of water; D,. Dy, D, are the principal
values of the dispersion tensor; x, y, z, represent the Cartesian coordinates that are
presumed to be collinear with the principal directions of dispersion; and v is the average
linear velocity of the groundwater (specific discharge divided by the porosity).

An instantaneous point source is contaminant mass injected at the origin (x = 0)
instantaneously at time t = 0. A continuous point source is contaminant mass injected at
the origin continuously for all time t > 0. The solutions, C;, for instantaneous sources can
be obtained by using the following initial conditions to define the masses, M.. of

contaminant that are injected at the origin instantaneously at t = 0:

M, = jCi(x,O)ndx. (2)
M, = I J:Ci(x,y,())ndxdy. (3)
M, = I _[ jCl(x.y'.z.O)ndxd}' (4)

In each of Eqgs. (2)-(4), the initial distributions of C; are approximated with the

Dirac delta function, and the porosity, n, will be assumed constant. The solutions, C., for

15




continuous sources can be obtained by using the following definition for the constant mass

flow rate, M;, which is injected continuously into the aquifer for 0 <t < o
M =t j=] 273 (5)

Equations (1)-(4) then become a special form of the analogous equations in heat

conduction. Hunt (1978) reported the one-dimensional and three-dimensional solutions to

be
M x — vt)*
C.(x,t}:——w'-———exp[—u-] . (6)
' 2ny/7nD t 4Dt
M, exp(q"g ) :
2 XV L X—vt XV L X+V _
C.(x,t)= —--——‘[exp(—ﬁ—-_]ertc{ . _,_\_._) -G —ate(—==)}. (7
2nv 2D 2,/D, t 2D, 2,/D,t
X — vt 2 = 2 :
i, Gipis S tecurdbely oty 4
_ 4Dt 4D .t 4Dt
Exy,2t)= — —, (8)

8n,/n’t’D,D D,

o XV
M exp( )
p D

2 Rv “R=#t Rv . . R+wvt
C.(x,y,z,t) = —————=-[exp(- - yerfe( ,;) +exp( & Jerfc(— h )], (9)
§mR,/D,D, 2D, 2D, t 2D, 2,/D,t
where erfc is the complementary error function, and R is defined as
e D
R= [x'+y"' —=+2? = (10)
\ D, D,

The two-dimensional solution for an instantaneous source was also reported by

Hunt (1978) as
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X —vt)*
M‘exp[—(‘{ . I ]
ek ; 4Dt 4D, t
Ci(x,y,t)=- — : (11)
4mnt, /D D,

The continuous source solution to two-dimensional flow was derived by Hunt (1978) from

Eq. (11) by replacing M, with Ed‘[ ,twith t - T, and integrating fromt =0tot =t as
gy XV X y’
M: exp(——) |, = ,
b . D; - D, vi(t-1), dt
CV{X,_\f'.t]:—T_----—jexp - — — — | (12)
Jnn\;‘D\D‘_ . 4(t—1) 4D i—1

Equations (6), (8), and (11) will be used later in Section 4.5 to derive the exact
solutions to the transport problem of a continuous source of finite size when My/n is
replaced by Covdt (Co is the initial concentration of the contaminant) which is the
elementary solution to the transport of contaminants in groundwater. The integral in Eq

(13) has a solution that is defined recursively using exponential integrals

4.3 Solutions for an Instantaneous Source of Finite Size

The solution for an instantaneous source of finite size, which will be referred as a

“pulse” is shown schematically in Figure 1, will be taken to satisfy Eq. (1) and the initial

condition,
M. . L
C.(x,y,2z0)=—L", when Osx,y,z,«::
n 2
L .
=0 when 5 <Xy, z<o, (13)

)

0.

where L is side length of the cubical region occupied by the contaminant at t
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Source Zone
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Z() y
Xl
< >
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Groundwater Flow v=g/n

Figure 1. Schematic of Finite Size “Pulse” Source Zone
(Centroid of region shown is located at (0, 0, 0,) )

According to Hunt (1978), a solution to Eq. (1) is

1 7 : : A
Ci(x,y,z,t)= gf [IF(Q.B."{ )exp(iax + 1Py +iyz + 6t)dodBdy,

(14)

where 8(ct,B,y) = —iav —a’D,_ - B"‘D_\ -v’D,

Setting t = 0 in Eq. (15), using the initial condition, Eq. (14), and inverting the three-

dimensional Fourier integral gives

F(a, B Y)=

= s il (15)

Finally, substitution of Eq. (16) into Eq. (15) and evaluating the integrals give the solution

for a source of finite size.
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N _!+\ vt q—\+\l
Ci(x,y,z,t) = —[erf(= ) + erf (-————)]
8nL 2D, t ZV-D\t
L |1 I L
£ y s y o i 5 .
erf(= I_B_.J +erf (—=—=)][erf( —==—) +erf( —===)] (16)
2,/Dyt 2,/D,t 2,D,t 2,/D,t

Solutions for two-dimensional and one-dimensional transport problems are obtained by

extending the appropriate sides of the pulse and evaluating the remaining terms. The

results are
M +X-vt —X+vt [+ L_\
C.(x,y,t) = —2-[erf|( =) +erf (——==—)] [erf(—2 ) + erf( 3H_}] (17)
41‘1[ ~4) \[ 21\‘." \t "_.‘v.' I 2 | t ;
e v '-'\n’ v
M, A +X - vt =XV
C.(x,t) = —[erf(= ) +erf (= )] (18)
2nL 24/ D‘t ZVrD‘t

The procedure to develop Eqs.(17) and (18) will be shown later in Section 4.4 when

Domenico-Robbins’ model is presented.

4.4 Solutions for a Continuous Source of Finite Size -- Domenico and Robbins’ Model

To extend that model for an instantaneous source of finite size presented in
Section 4.3 to a continuous source model, one would be required to either numerically
solve the convolution integral associated with this instantaneous source, or perform the
required spatial integration of the continuous point source model presented in Section 4.2

Rather than perform these integrations, Domenico and Robbins (1985) created a useful
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approximation for a continuous source of finite spatial dimensions from Hunt’s
instantaneous solution by taking a finite size “pulse” and superposing it in space to create
an “extended pulse”. The solution derived by Domenico and Robbins was for three-
dimensional flow and is called Domenico-Robbins’ model. This model development
process is described below

The solution shown in Section 4.3 describes the convection and dispersion of a
substance deposited at time t = 0 in the region -X/2 < x < X/2, -Y/2 <y <Y/2, -Z/2 < z <
Z/2, as shown in Figure 1. In this solution, C, approaches zero in the x = 0 plane as time
gets large. For the continuous plane source of dimensions Y and Z, it is required that the
concentration be maintained at C, for all time in the x = 0 plane and be equal to zero at x >
0 for time equal to zero. This effect can be accomplished with the box of Figure 2 by

extending the box to infinity in the minus x direction as shown in Figure 2

X —> <[nfinity ‘

— - - - — ¢ —

Groundwater Flow
v=g/n

£y | S
- - — g

Figure 2. Schematic of “Extended Pulse” Model

20




The process is described by an infinite number of area sources each slightly

displaced in the - x direction from each other resulting in an infinite number of elementary

solutions which must be superposed, i.e., integrated from some x to infinity (Crank, 1979)

The result 1s

C(x,t) =~ =— | exp(———)dg
27D, t ’
£ o5y d
= —= jexp{—-n‘]dn. (19)
A7

where n =

Equation (19) has the closed form complementary error function solution of

(‘(x.t}:ierfc( X,_Vt )& (20)
2 2D, t

which describes continuous mass flow from the x = 0 plane

The remaining of an accounting of the substance initially confined in this region

-Y/2<y<Y/2 and -Z/2 < z <Z/2 is the integration fromy - Y/2toy+ Y/2 and z-Z/2 to z

+Z/2. This gives

v
C yT3 S
C:T‘J[erf(j —= --erf(_wi,_“)]. (21)
2 ..\.’D‘t -V.D_‘.t
Z
Z+% F A
C = 2[erf(—==) - erf (—==)]. (22)
2 2,/D,t 2,D,t




(20), (21) and (2

The product of these three integral solutions (Eqs 2)) describes a semi-
infinite contaminated parcel which moves in the positive x direction with a one-

dimensional velocity but which continually expands in size in directions transverse to X

throughout the whole domain of x, i.e., in the positive and negative regions

Domenico and Robbins tested this approach against a superposition model that

represented a “truncated” spatial integration of the point source model of Hunt (Section

42). The agreement was excellent and their resulting model for three-dimensional
transport is
v v
\‘" i3 Ly | " 3 3
C(x,y,z,t) = “[ rfc{ )][ rt(,:J-}—erf{q,_i‘:}]
\r vD\xx\»' ,_VD_\.\(-V
Z
Z T - B ;
[ert‘{'iq =) — erf (—=—==)] (23)
2D,x/v 2D, x/v

Similarly, for two-dimensional transport of contaminant,

accounting of the substance initially confined in the region -Y/2 <y < Y/2

integration fromy - Y/2toy + Y/2

two-dimensional transport is

the remaining of an

is the

This integration gives Eq. (21) and the model for

\r \_v
y * 2 i 5
C(x,y,t)— [erf( )][erf( Jretf(rt )] | (24)
2 s'D t 2/Dyx/v 2 fD X/v
Moreover, for one-dimensional transport of contaminant, the model simply is
C‘ > —
C(x,t):—i[er‘fc(-}“,_\‘—_(-)] (25)
2 2./D_t
Nz

b

e




In all cases, the fundamental form of the solutions to the governing partial

deferential equation (PDE) are products of exponential functions, e.g ,
C(x,y,z,t) = f,(x)f, (y)f, (2)f, (1) (26)

that satisfy the partial deferential equation

45 Exact Solutions for a Continuous Source of Finite Size

Domenico and Robbins’ model is only an approximate approach to a continuous
source of finite size. In order to properly extend those models for an instantaneous source
of finite size to continuous source models to obtain more rigorous solutions (referred as to
exact solutions), it would be required to either numerically solve the convolution integral
associated with this instantaneous source, or perform the required spatial integration of
the continuous point source models presented in Section 4.2. In this section, the
convolution integration associated with instantaneous sources was selected.

First of all, the continuous source solution to one-dimensional case can be derived
from Eq. (6) by replacing My/n with Covdt, t with t -t , and integrating with respect to t

fromt =0 tot=t to give

‘ C,v (x-v(t-1))’
;[ 27D, (t-1) v 4D (t—1) J

Secondly, the continuous source solution to the two-dimensional case can be
derived from Eq. (11) by replacing My/n with Covdt , t with t - T, and integrating with

respect to T from 1 =0 to t=t and with respectto y from y = -Y/2to y = Y/2 to

give




: (x-v(t-1)? (y-y)°

~ . Covexp[- — - ]
: 4D (t-t) 4D (t-71)

Cixyt)= J- - ' dtdy’, (28)
Yo 4“{I_I)N'ID\D‘

where Y is the source dimension in the y direction

Thirdly, the continuous source solution to the three-dimensional case can be
derived from Eq. (8) by replacing M; /n with Covdt ., t witht - t . and integrating with
respect to T from 1 =0 to t =1t and with respect to y from y = -Y/2to y = Y/2 and

with respect to z from z=-Z/2to z=2Z/2 to give

ZY
s b
iy 29 8,/n’(t-1)°D,D,D,

Sl e 8 K)ot 29)
4D (t-1) 4D (t—-1) 4D, (t-1)

exp[-

Equations (27), (28) and (29) are in integral form and closed-form results for
either the time or spatial integrations are available, but not for both. Numerical integration
is required to evaluate the exact models and the evaluation procedure is rather

complicated and time consuming.

4.6 Solutions for a Decaying Contaminant Species

Domenico (1987) developed a model for a finite source that incorporated one-
dimensional groundwater velocity, longitudinal and transverse dispersion, and some form

of decay (decay rate A) for either radionuclides or biodegradable organics. In this work
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Domenico outlined an approach where three-dimensional approximations could be

constructed from the product of three orthogonal one-dimensional solutions. They are

e x(v — \.-i.v: + 491—)?) —t v +4AD
xt)= -_)——e.\'p[—- °D ]erfc{x v\*, - o ) (30)
2 <D, 2,/D,t
x(v ;_ _+ 4/\.D\-) X% IIIV: +4}"D(
C(x,y,t) = —exp[ y ~Jerfe(— Y =
2D 2Dt
Y Y
¢ g e y==3
[erf (—===) - erf (——===)], (1)
| X | X
21D 2./D
Y 'y Y 'y
v i ERAND 2) X —tyv? +4AD,
O(x,,2,1) = =2 expl =V 2 o~ =t
AT S “qy Yy
Y Y i Z
yr ~ y o) o 2 s
[erf(——=2=) - erf (—===)] [erf(—==) —ef(—===)].  (32)
| X .I X [ X 'I X
7l U 2,/D 2,/D 2\D
Lo Yoy | e Vv

47 The Proposed Models -- Solutions to Approximation No.1 to Exponentially Decaying

Sources
The extension finite-source model to account for an exponentially decaying source
term is accomplished using Domenico’s (1987) approach with different source models

For one-dimensional flow, the initial and boundary conditions are
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C(x,0)=0,

C(0,t) = C, exp(—At),

r. ¢ y
=—(10.1)=0 (33)
(8.4

The one-dimensional source model (Marino, 1974) is

VX — x\.";-\-'-: —4AD :
——exp(—At)[exp( D )

E{x.t) =

_x—t\:\-"' -4AD
erfcf —— ) + exp( -
2D, t 2D > /D t

Application of Domenico’s approach leads to the following models (two-dimensional and
three-dimensional) for sources centered at x = 0, y = 0, and z = 0 with concentration in the

source of C(0, t) = Co exp(-At):

C \ s e (vx—x\."lx-':—-ﬁ,D\
AX,Y,1) = exXp(—At)exp(————
: 4 €xp JNEXP 2D, )
Ir-__'?—w-_‘--- { 2
. X—ty/v' —4AD, VX +X4/V" —4AD
erfc( e ) +expl— A — )
2Dt 2D,
Y Y
_ X+1ty/v —4AD, Penes N
erfe( v ))[erf (—===) - erf (—===)] (35)
:\I'I ‘t - IIID X - 'ID X
b Ny




: o ; VX X\-'.\-'l 4AD_
Clx,y,z,t) = —>exp(—At)[exp(—

X

e J'|
8 2D,
S 1\\ = 4AD—\ VX + \\» 4AD\
erfc(————— —) + exp(— =23
2D, t 2D,
—_— Y AP
o T G M L S S i
erte(—— —=——)][erf (—===) - erf (—==-)]
4-\.-]-_)\[ 2 I.'iD\ X : 'D\ X
Yy
Z Z
Z< = Z— -
[erf (——===) - erf (—==)] (36)
| ‘ | ‘
2./D 24D
L R ¥

4 8 Solutions to Approximate No 2 to Exponentially Decaying Sources

In addition to the application of Domenico’s approach to obtain models for
exponentially decaying sources, another attempt was made to approximate solutions to the
problems. The process of developing the models is to superpose an infinite number of

impulse solutions, all starting at the same time but each being displaced from x = 0 by -vt

units. Figure 3 is the schematic depicting this procedure




|
{ < .
| | , X
= | " ¢ ' A—— . L
Figure 3. Schematic for the Developing of Approximation No.2
The solutions are
C, exp(-2 C} -
. / (Xx—=¢ —vt)*
C(x,t) = | ——"exp[-———"—)dE, (37)
'[, 2,/nD,t Pl 4D t Ids
C, exp(-A }exp[---{x_::_\“ (y—y }']
v 4D t 4Dt
(X,,t) j j' dedy’, (38)
4nt,/D.D,
3 .sC\«e\p{ )‘ BN g i S L3
C(\\«zt}—j_l._l- exp[—{'\ s SO el A
8 [*t’D,D,D, 4Dt 4Dt
182 ) ey (39)
4D t

z

These equations are in integral form yet and can be evaluated analytically. The analytical

expressions were found using the Mathematica




49 Exact Solutions to Exponentially Decaying Sources

In order to test the approximations, exact solutions are required. For variable
concentration contaminant sources of finite size, the exact solutions were obtained solving
the convolution integral associated with instantaneous sources.

First of all. the continuous source solution to one-dimensional flow can be

obtained from Eq. (28) by replacing Co with Coexp(-At) as

i C ’ @) Lin X —V a2 2
Cx.t) = [ T | e T T (40)
2,/nD, (t- 1) 4D (t—-1)

0
Secondly, the continuous source solution to two-dimensional flow can be obtained

from Eq. (29) by replacing Co with Co exp(-At) as

x-v(t-1)° _ (y-y)’
. j’ j ot =X y dtdy’ (41)
X 4n(t-1),/D.D

Y

v

Thirdly, the continuous source solution to three-dimensional flow can be obtained

from Eq. (30) by replacing Co with Coexp(-At) as

Z X

2 2 : - B " . YT
C(x,y,z,t) = J'JI C,vexp(—A1) —exp[—(x vit=1))" (y-y")

z "

sica-o’'paRD,  AD(-1 AT D
_272) 4edydz’ (42)
4D, (t-1)

As Eqgs. (27), (28), and (29), Eqs (40), (41), and (42) are in integral forms and again

gither the spatial or temporal integrations have closed-form solutions, but not both

Numerical convolution is required to evaluate these expressions.




Chapter S Model Testing

The models presented in Sections 4.7 and 48 are regarded as approximate
solutions to the adevective-dispersion transport problem of exponentially decaying
contaminant sources. To test the validity of the approximations, these approximate
solutions are compared to the exact solutions ( requiring numerical integration ) presented
in Section 49 Model testing will be made in the order of one-, two- and three-

dimensional groundwater flow fields with each having three test cases

51 Model Testing for One-Dimensional Flow

In Section 4.9. the exact solution was presented as an integral form and this
integration can not be solved analytically. Gaussian Quadrature ( Press et al., 1995) using
Legendre polynomial weighting functions were used to perform the convolutions
Onel dllfor is a computer FORTRAN program (Appendix 1) used to perform the
integration numerically. Testing of the program showed that this numerical integration
method was accurate enough by dividing the range of the argument, which is the
computation time of interest, into 3072 elements for the positions near the contaminant
source and 1024 elements for rest of the distance.

On the other hand, the proposed model presented in Section 4.7 is simply
composed of exponential functions and complimentary error functions and can be

-~

evaluated directly. One2 dll.for is a computer FORTRAN program (Appendix 2)
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employed to evaluate the model. It is worthy noting here that the complimentary error
functions are evaluated numerically

Finally, approximation no.2 depicted in Section 4.8 is also presented in an integral
form and can be solved analytically. The Mathematica ( Wolfram, 1994) software package

is used to perform the required integration and the result is

ek <boVsormenX
C AMD At +tv? —w - 2D, 2Dt
C(x.t}z%exp{”‘h—i—w—(-)]edc( : . ‘] E (43)
\D,t

Then a computer FORTRAN program was coded to evaluate the above expression. - See
Appendix 3 for a listing of One3_dll.for.
The model was tested in three cases and the numerical values of the parameters

used in the model for testing are shown in Table 1

Table 1. Parameters Used for One-Dimensional Model Testing

Parameters Test Case 1 Test Case 2 Test Case 3
C,, mg/L 1000 1000 1000

V, ft/day 10 10 100

D, 0.1 1.0 10.0

A, l/day 0.0 0.1 1.0

The first test case was to compare the results of the approximations with the exact

results when the source decay rate was zero. This case was the closest that corresponded

to Domenico’s original model and is equivalent to a constant source at x = 0. The second
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test case was identical to the first case except a source decay rate of 0.1 was imposed

The third case was also identical to the first case except a source decay rate of 1.0 was
imposed. No particular length or time scale was considered. so these numerical values
must be viewed as generic values all in appropriate units

Figure 4 shows a plot of the concentration profiles for the exact and approximate
solutions at three different times for test case 1. In this case. the agreement between the
exact model and the approximations is excellent. In addition to the excellent matching,
these results reproduce the expected step concentration profile for a continuous input
source

Figure 5 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 2 Again, the agreement between the exact
model and the approximations is excellent. This case represents transport with Peclet
number (xV/D) of 100 at x =1 ft.

Figure 6 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 3. The agreement between the exact model
and the approximations is also excellent. This case represents transport with Peclet
number (xV/D)of 10atx =1 ft.

The maximum relative error for all cases occurred at x = 0. Table 2 shows the
maximum relative errors for three cases. A second measure of relative errors for models
was obtained from the Mean Relative Prediction Errors (MRPE) which is

ABS(Approximation — Exact)

MRPE = -100% (44)

> (Exact),




Equation (44) i1s to provide a comparative measure of how well the models matches the

exact solutions over the entire simulation domain. The form of the denominator in the
MPRE is chosen to prevent division by zero when the domain includes uncontaminanted
positions. Table 3 lists the MRPEs for one-dimensional model testing

The maximum relative error for all cases was 2.5%, with the approximation having
slightly higher total mass (expressed as the integral of the concentration profile) and the
maximum error always occurring in the earliest time profiles. Generally these results
indicate that the approximate models are valid and useful models for an exponentially
decaying input source, when the length and time scales are sufficiently large; and that even
at small length and time scales the approximations are good
The area compassed by the

Mass conservation was tested in Figure 6.

concentration profile curves at = 10 days and 7 = 20 days are 5,000 units and 5,000 units,

respectively, which means that mass is conserved

Table 2. The Maximum Relative Errors for One-Dimensional Model Testing

Test Case Time, day Exact Model | Appr. no.1 Appr. no.2 Max Error
T=100 975.0 1000.0 1000.0 2.5%

no.l T=10 992.0 1000.0 1000.0 0.8%
T=1 997.0 1000.0 1000.0 0.3%
T=100 0.044 0.045 0.045 2.3%

no.2 T=10 365.0 368.0 368.0 0.8%
T=1 903.0 905.0 905.0 0.2%
T=20 0.0 0.0 0.0 0.0%

no.3 T=10 0.045 0.045 0.045 0.0%
T=1 368.0 368.0 368.0 0.0%

Note: Error = [(Exact - Approximation) / Exact] x 100%
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Table 3. MRPEs for One-Dimensional Model Testing

Time Test Test Test

day Case 1, % Case 2, % Case 3, %
Appx.no.1 | Appx.no.2 | Appx.no.1 | Appx.no.2 | Appx.no.1 | Appx.no.2

I 0.22 0.22 1.10 1.10 0.32 0.27
10 0.10 0.10 032 0.27 0.21 0.14
20 0.19 0.12
100 0.05 0.05 0.21 0.14

Average 0.12 0.12 0.54 0.50 0.24 0.18

Table 4 lists the results of convergence testing for Gaussian Quadrature method to

evaluate convolutions. The range of the argument was divided into 256, 512, 1024, 2048,

4096 and 8192 elements respectively, and then parameters of one-dimensional model

testing (case 1 when 7 = 100 days and x = O ft) were used to calculate the concentrations

Results show that Gaussian Quadrature method is convergent.

Table 4. Convergence Testing of Quadrature for Convolutions

Number of Quadrature Points C;(0, 100) A; = Ci1-C; A/ A
256 680 .65
512 846.67 166.02
1024 23.97 77.30 0.50
2048 962.06 38.09 0.50
4096 081.04 18.98 0.50
8192 990.52 9.48 0.50
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3.2 Model Testing for Two-Dimensional Flow

The exact solution for two-dimensional flow was also presented as an integral
form and this integration could not be solved analytically. Gaussian Quadrature using
Legendre polynomial weighting functions were used to perform this integration
Twol _dllfor is a computer FORTRAN program (Appendix 4) used to perform the
integration numerically. Similarly, testing of the program showed that this numerically
integral method was accurate enough by dividing the range of the argument, which is the
computation time of interest, into 3072 elements for the positions near the contaminant
source and 1024 elements for rest of the distance

As the model for one-dimensional flow, the proposed model for two-dimensional
flow presented in Section 4.7 was simply composed of exponential functions and
complimentary error functions and could be evaluated directly. Two2_dll for is a computer
FORTRAN program, listed in Appendix 5, employed to evaluate the model. It is worthy
noting here that the complimentary error functions are evaluated numerically

Finally, approximation no.2 depicted in Section 4.8 was also presented in an
integral form and but can be solved analytically. The Mathematica ( Wolfram, 1994)

software package is used to perform the required integration and the result is

_}*._ v X
5 AMDAt+tv’-vx). .. v 2D. 2D.t
C(x,y,t) = —exp| s , m]erfc( ot pelbiiaeniy)
4 A [ 1
\D,t
2v+Y 2y -Y -
[erf( ~—'y:)—erf( 'v’_)]. (45)
4\|'|ID\l 4\|'ID‘t




Then a computer FORTRAN program was coded to evaluate the above expressions. See
Appendix 6 for a listing of Two3 dll for.
The model was tested in three cases and the numerical values of the parameters

used in the model are shown in Table 5.

Table 5. Parameters Used for Two-Dimensional Model Testing

Parameters Test Case | Test Case 2 Test Case 3
C,, mg/L 1000 1000 1000

V, ft/day 10 10 100

D, 0.1 10.0 20.0

D, 0.01 1.0 2.0

Y, ft 100 100 100

A, 1/day 0.0 0.1 1.0

The first test case was to compare the results of the approximations with the exact
results when the source decay rate was zero. This case was the closest that corresponded
to Domenico’s original model and was equivalent to a constant source at x = 0. The
second test case was similar to the first case with dispersion coefficients increased tenfold
and the source decay rate increased to 0.1. The third case was also similar to the second
case with the source decay rate increased to 1.0 and the dispersion coefficients doubled to
show the effect of the decay and dispersion on the contaminant transport

Figure 7 shows a plot of the centerline concentration profiles for the exact and

approximate solutions at three different times for test case 1 Figure 8 shows a plot of off-
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centerline profiles for the same times. In this case, the agreement between the exact
model and the approximations is excellent. In addition to the excellent matching, these
results reproduce the expected step concentration profile for a continuous input source

Figure 9 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 2. Figure 10 shows a plot of off-centerline
profiles for the same times. Again, the agreement between the exact model and the
approximations is excellent. This case represents transport with a Peclet number of 100 at
E=1f

Figure 11 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 3. Figure 12 shows a plot of off-centerline
profiles for the same times. The agreement between the exact model and the
approximations is also excellent. This case has a smaller Peclet number of 10 at x = 1 fi

Figures 13 and 14 are surfaces and contours that show the concentration
distributions for test case 3 when ¢ = 10 days and 7 = 20 days, respectively. Calculations
show that the contaminant mass is conserved: the volume compassed by the concentration
surface and xy-plane for Figure 13 is 9,900,000 units, whereas the volume for Figure 14 is
9,900,000 units.

It was observed that the maximum relative error for all cases occurred at x = 0
Tables 6 and 7 show statistics of the relative errors of centerline profiles and of off-
centerline profiles for all three cases.

For centerline two-dimensional model testing, the maximum relative error for all

cases was also 2.5%, with the approximation having slightly higher total mass (expressed




as the integral of the concentration profile) and the maximum error always occurring in the

earliest time profiles

valid, and useful models for an exponentially decaying input source.

Generally these results indicate that the approximate models are

Table 6. The Maximum Relative Errors for Two-Dimensional Model Testing
(Centerline Profile)

Test Case Time, day Exact Appr. no. 1 Appr. no.2 Maximum
mg/L mg/L mg/L Error, %
T=100 975.0 1000.0 1000.0 2.5
no. 1 T=10 992.0 1000.0 1000.0 08
T=1 997.0 1000.0 1000.0 0.3
T=100 0.044 0.045 0.045 2.3
no.2 T=10 365.0 368.0 368.0 038
T=1 903.0 905.0 905.0 02
T=20 0.0 0.0 0.0 0.0
no.3 =10 0.045 0.045 0.045 0.0
T=1 368.0 368.0 368.0 0.0

Once again the maximum relative error for all cases was 2.5%, with the

approximation having slightly higher total mass (expressed as the integral of the

concentration profile) and the maximum error always occurring in the earliest time

profiles. Generally these results indicate that the approximate models are valid, and useful

models for an exponentially decaying input source.
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Table 7

The Maximum Relative Errors for Two-Dimensional Model Testing
(Off-Centerline Profile)

Test Case Time, day Exact Model | Appr. no.1 Appr. no.2 Maximum
mg/L mg/L mg/L Error, %
T=100 975.0 1000.0 1000.0 2.5
no. 1 T=10 992.0 1000.0 1000.0 08 =
T=1 997.0 1000.0 1000.0 0.3 ]
T=100 0.0 0.0 0.023
no.2 T=10 0.0 0.0 184.0
T=1 903.0 905.0 905.0 02
T=20 0.0 0.0 0.0 0.0
no.3 T=10 0.0 0.0 0.023
T= 0.0 0.0 184.0
Table 8 lists the MRPEs for the Two-Dimensional Model Testing.
Table 8. MRPE:s for Two-Dimensional Model Testing
Time Test Test Test
day Case 1, %. Case 2, % Case 3, %
Appx Appx. Appx. Appx. Appx. Appx.
no.l no.2 no. 1 no.2 no.1 no.2
Center Off- Center Off- Center Off- Center Off- Center Off- Center Off-
Center Center Center Center Center Center
1 (.46 0.46 0.46 0.46 14.9 14.7 6.8 6.7 0.54 0.53 0.42 0.42
10 0.14 0.14 0.14 0.14 2.12 2.04 151 1.45 0.38 0.38 0.25 0.25
10 0.34 0.35 0.22 0.22
100 0.05 0.05 0.05 0.05 1.48 1.48 0.85 0.84
Ave. | 022 0.22 0.22 022 6.16 6.06 3.05 3.0 0.42 0.42 0.30 0.30
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Figure 13. Surface and Contour for Two-Dimensional Model Testing (Case 3 when t=10 days)
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Groundwater Flow
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Figure 14. Surface and Contour for Two-Dimensional Model Testing (Case 3 when t=20 days)
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5.3

Model Testing for Three-Dimensional Flow

Once again, the exact solution for three-dimensional flow was presented as an
integral form and this integration could not be solved analytically. Thrl _dll for, listed in
Appendix 7, is a computer FORTRAN program used to perform the integration
numerically by Gaussian Quadrature. Testing of the program showed that this numerically
integral method was accurate enough by dividing the range of the argument, which is the
computation time of interest, into 3072 elements for the positions near the contaminant
source and 1024 elements for rest of the distance.

For three-dimensional flow, the proposed model presented in Section 4.7 was
simply composed of exponential functions and complimentary error functions, could be
evaluated directly. Thr2_dllfor is a computer FORTRAN program (Appendix 8)
employed to evaluate the model. It is worthy noting here that the complimentary error
functions are evaluated numerically

Finally, approximation no.2 depicted in Section 4.8 was also presented in an
integral form and can be solved analytically. The Mathematica ( Wolfram. 1994) software

package was used to perform the required integration and the result is

KN e
At &y ;2 2
C(x‘y‘zqt):cs_ﬂexp[)&([)‘ +:W \rK)]erfC{— v lD‘ D‘t)
VDt
5 bk P 5 o | Bpiopd i he o
[erf (=) — erf(~ )][erf(_z,—)—ert( z )] (46)
4yD,t 4,/D,t 4,/D,t 4,/D,t
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Then a computer FORTRAN program was coded to evaluate the expressions. See

Appendix 9 for the listing of Thr3_dll for. The model was tested for three cases and Table

9 lists the parameters used to test three-dimensional models.

Table 9. Parameters Used for Three-dimensional Model Testing

Parameters Test Case 1 Test Case 2 Test Case 3
C,, mg/L 1000 1000 1000

V, ft/day 10 10 100

D, 1.0 10.0 20.0

D, 0.1 1.0 20

D, 0.1 1.0 2.0

Y, ft 10 10 10

Z ft 10 10 10

A, 1/day 0.0 0.1 1.0

The first test case was to compare the results of the approximations with the exact
results when the source decay rate was zero. This case was the closest that corresponded
to Domenico’s original model and was equivalent to a constant source at x = 0. The
' second test case was identical to the first case except a source decay rate of 0.1 was

imposed. The third case was also identical to the first case except a source decay rate of

1.0 was imposed. The numerical values of the parameters used in the model are shown in

Table 9. No particular length or time scale was considered, so these numerical values

must be viewed as generic values all in appropriate units.




Figure 15 shows a plot of the centerline concentration profiles for the exact and

approximate solutions at three different times for test case | Figure 16 shows a plot of
off-centerline profiles for the same times. In this case. the agreement between the exact
model and the approximations is excellent. In addition to the excellent matching, these
results reproduce the expected step concentration profile for a continuous input source.

Figure 17 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 2. Figure 18 shows a plot of off-centerline
profiles for the same times Again, the agreement between the exact model and the
approximations is excellent. This case represents transport with a Peclet number of 100 at
x=1f.

Figure 19 shows a plot of the concentration profile for exact and approximate
solutions at three different times for test case 3 Figure 20 shows a plot of off-centerline
profiles for the same times. The agreement between the exact model and the
approximations is also excellent. This case has a smaller Peclet number of 10 at x = 1 ft
and the effect of dispersion is evident in the profiles.

Figure 21 is a density rendering that shows the concentration clouds for test case 3
when 7 = 10 days and r = 20 days, respectively. The red color indicates high
concentration, purple low. The spatial volume occupied by the contaminant at 7 = 10 days
is smaller than the spatial volume occupied by the contaminant at 7 = 20 days, because the
contaminant is more concentrated at the earlier time point. The contaminant mass is

conserved. It was observed that the maximum relative error for all cases occurred at x = 0

Tables 10 and 11 show statistics of the relative errors of centerline profiles and of off-
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Figure 21 Dicer Plot for Three-Dimensional Model Testing (t = 10, 20 days)
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centerline profiles for all three cases. Table 12 lists the MRPEs for three-dimensional

model testing

The maximum relative error for all cases was 2.5%, with the approximation having
slightly higher total mass (expressed as the integral of the concentration profile) and the
maximum error always occurring in the earliest time profiles. Generally these results
indicate that the approximate models are valid, and useful models for an exponentially
decaying input source

The models require that A always be smaller than or equal to v*/4D,, which is
proportional to Peclet number . When this condition is violated, then the arguments of the
error functions contain a nonzero imaginary component and the solution is difficult to
evaluate and interpret. This requirement should not be much of a practical limitation
because most field conditions have relatively high Peclet numbers. When A is large
enough to violate this condition, this source term is approaching an instantaneous input
case, and the approximation is simply not valid

Table 10. The Maximum Relative Errors for Three-Dimensional Model Testing
(Centerline Profile)

Case Time, day Exact Model Approx. no. |l Approx. no.2 Maximum
me/L meg/L mg/L Error, %

T=100 975.0 1000.0 1000.0 25

no.l T=10 992.0 1000.0 1000.0 0.8
] 997.0 1000.0 1000.0 0.3
T=100 0.044 0.045 0.045 e

no.2 T=10 365.0 368.0 368.0 08
T=1 903.0 905.0 905.0 0.2
T=20 0.0 0.0 0.0 0.0

no.3 T=10 0.045 0.045 0.045 0.0
T=1 368.0 368.0 368.0 0.0
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Table 11

The Maximum Relative Errors for Three-Dimensional Model Testing
(Off-Centerline Profile)

Case Time, day Exact Model | Appr. no.1 Appr. no.2 Maximum
mg/L mg/L mg/L Error, %
T=100 244 0 250.0 250.0 2
no.l T=10 248.0 250.0 250.0 0.8
T=1 2490 250.0 250.0 04
T=100 0.011 0.0 0011
no.2 T=10 91.0 00 92.0
T=1 226.0 0.0 226.0
T=20 0.0 0.0 0.0
no.3 T=10 0.011 0.0 0011
T=1 92.0 0.0 92.0
Table 12. MRPEs for Three-Dimensional Model Testing
Time Test Test Test
day Case 1, % Case 2, % Case 3, %
Appx. Appx. Appx. Appx. Appx. Appx.
no.1 no.2 no.l no.2 no.l no.2
Center Off- Center Off- Center Off- Center Off- Center Off- Center Off-
Center Center Center Center Center Center
| 0.46 0.46 0.46 0.46 14.93 14.85 6.75 6.79 0.47 0.53 1.69 0.49
10 0.14 0.14 0.14 0.14 1.13 2.16 1.13 538 8.97 0.21 297 | 409
20 0.19 0.20 4.76 3.38
100 0.05 0.05 0.10 0.05 0.91 095 | 1112 | 9.54
Ave 0.22 0.22 0.23 0.22 5.66 599 | 6.33 7.25 321 0.31 5.14 2.65




Chapter 6 Applications and Limitations

In order to show the applicability of the approximate models for exponentially
decaying source and the range of input conditions on the solution. four series of model
simulations were made. Application of the models was straightforward as all the terms
were evaluated using a computer spreadsheet. FORTRAN programs (see Appendices for
their listings) were used to evaluate convolution solutions and were called by fifth
generation spreadsheets as functions. Some care was required since the FORTRAN

programs could not handle large arguments to the exponential functions.

6.1 Application No.1

A mass balance for a source zone leads to the following expression for

contaminant leaving the zone,

C{t) = Clmml exp( lt) ’ {4?}

out E
where v is the velocity of fluid, and & is the source dimension in the velocity direction and
is small enough so that complete mixing can be assumed to occur within the source zone
This expression is exactly the form of the source term in the approximation no. |
models. The models can be applied to determine the concentration profile downstream of

the source,
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Risk-based corrective action rules require the estimation of concentration (for an
exposure assessment calculation) at some receptor downstream a contaminant source.
When the source is an exponentially decaying input, the peak concentration is different
than that when it is a continuously constant source, or even when the source is a fini'r
“pulse” input with the same total mass as the exponential case.

Figure 22 is a copy of a spreadsheet used to generate three profiles using these
three different possible source terms. The continuous source represents a worst-case

estimate in terms of peak concentration, the finite “pulse” an intermediate estimate.

Concentration, mg/L

Figure 22. Comparison of Concentration Profiles for Three Sources



6.3 Application No.3

The models can be applied to estimate concentrations downstream of a
contaminant source. The source has constant contaminant concentration for a period ,
followed by exponential decay. Refer to Figure 23 for a schematic of the combined

contaminant source system.

Mixing Zone

Inflow Outflow

> Cot)=C,;t=t® _ >
C(0,t)=C,e ",t > 1 *

< = — X0

Figure 23. Schematic of A Mixing Zone of Combined Source

For a one-dimensional flow field, let C,(x,t) represent the portion of the
downstream concentration resulting from the transport of contaminant from the impulse
source and Cx(x,t) is the concentration resulting from transport of the exponentially
decaying source. The concentration downstream of the source, C(x,t) is expressed as

C(x,t) = C,(x,t) + C,(x,t). (48)
Equation (35) is the same as Cx(x,t) and according toVan Genuchten and Alves (1982),
Ci(x,t) is

C.(x,t) = C,A(x,1), when O<t<t*,

C,(x,t) = C,A(x,t) - C,A(x,t —t*), whent >t *, (49)
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7 e % - \ Vs W
-l ex=wt ] 1] [ vx | [ Xx+vt | _
where A(x,t) = —erfc| iJ =~ eNPL — ,!erfc-. — (50)
2 L’\:JD\t/ 2 \-D'{’J ll\j\';D‘t/!

Figure 24 shows this one-dimensional application.
For two-dimensional flow, the concentration downstream the source is
C(x,y,t) =C,(x,y,t) +C,(x,y,t) (51)
Equation (36) is the same as Cy(x,y,t) and Ci(x,y.t) is
C,(x,y,1) = C,A(x,y,t), when O<t<t*,
C,(x,y,t) = C,A(x,y,t) - C,A(X,y.t — t*), whent >t *_ (52)

where by applying Domenico-Robbins’ concept, we have

1 f, X —vt .\‘ 1 ( VX \'| ( X + vt 3
A(x,y,t) =[—erfc]| —— | + —exp' — |erfc : |]
4 24Dt} 4 ‘\ 7 \ZJDt)

P \'u I_/ “\
I Yl ‘ b it
| Pl | y-.-—; |
[erfo] ———=— | — erfe] —=—= i]. (53)
12D X 2~
pr) )

Figure 25 shows this two-dimensional application.
Similarly, for three-dimensional flow, the concentration downstream the source is
C(x,y,z,t) =C,(x,y,z,t) + C,(x,y,2,t) (54)
Equation (37) is the same as Cx(x,y,z,t) and Ci(x,y,zt) is
Cx.¥,z2t)=C,Alx.v.21). when O<t<t¥*,

CAxY.zat)= CoA(x,y,z,t) - C,A(X,y,z,t —t*), whent>t*. (55)

where by applying Domenico-Robbins’ concept, we have




Figure 26 shows this three-dimensional application.
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] 8" L
( G
I Sndasian :
——=_|] [erfc]
| 2,/D, .
o

-_—
~
-
e

used in one-, two-, and three-dimensional applications

Table 13 lists the parameters

For Figures 24-28, the leading edges are shallower than the tailing edges due to

the effect of the portion of exponentially decaying source.

Table 13. Parameters Used in One-, Two-, and Three-Dimensional Applications

Parameters One-Dimensional Two-Dimensional Three-Dimensional
C,, mg/L 100 100 100
V, ft/day 1 1 1
A, 1/day I 1 |

t, day 40 40 40

t*, day 20 20 20
D, 0.1 0.1 0.1
D, 0.01 0.01
Y, ft 10 10
y, ft 5 5
D, 0.01
A 5
z fit 10




Concentration, mg/L

Distance, ft

Figure 24. Concentration Profile for One-Dimensional Application (Centerline)

Concentration, mg/L

Distance, fi

Figure 25. Concentration Profile for Two-Dimensional Application (Centerline)

oB88888

| == Cxt)

Concentration, mg/L

Figure 26. Concentration Profile for Three-Dimensional Application (Centerline)
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Concentration, mg/L

Concentration, mg/L

0 1 —o—cxn]

Distance, ft

Figure 28. Concentration Profile for Three-Dimensional Application (y=5ft,z=5f)
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6.4 Application No.4

The model developed in this thesis is compared to laboratory experiments to test
its usefulness at predicting leaching behavior from a physical description of a laboratory
column. Rixey e al. (1995) present data on the leaching of contaminant from an oily
residual phase in a contamination zone that is sufficiently short to be completely mixed and
zone dynamics are negligible. They present experimental results that further support this
assumption. The data suggest that the zone behaves as an exponentially decaying source
zone and thus could conceivably be modeled using the models in this thesis

The simplified theory of the contaminant source is the following. Assume that the
concentration in the aqueous phase is roughly expressed as the product of the mass
fraction in the residual phase and pure component solubility (Bedient, ez a/., 1994), then
the mass flux of each component leaving the zone is m;S;(nALv), where m; is the mass
fraction of component i, S; is the pure component aqueous solubility, n is the porosity of
the source zone, A is the across-section area of the source zone, L is the length of the
source zone and v is the velocity of the leaving components. The initial concentration of
water leaving the source zone is taken from the same relationship and is expressed as Cjo =
m;S;. The time required to exhaust all the mass in the source zone is determined by the
ratio of initial mass present and the assumed mass flux rate. Mathematically this time is

expressed as

M
m,S,(nAV)’
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where, m; is the mass fraction of component i. The exponential decay rate constant for

each species was taken as the ratio of the Peclet number for the column and the exhausting
time. Mathematically this decay rate constant is expressed as

A = EI'S'(HA_)D_‘_ (58)
M.L

Table 14 lists the parameters used to model the behavior of three component mixture
(Benzene, Toluene and Xylene) in a glass bead column.

Figure 29 shows the simulated concentrations and the experimental results. The
column dispersivity was determined by a trial-and -error fit to the Benzene data then used
unchanged for the other two components. The required Peclet number is relatively high,
which is consistent with the findings of Rixey ef a/. (1995). The results show that the
model has reasonable predictive capacity once the column dispersion coefficient is known
The model underpredicts the tail portion of the data curves because the model does not
account for changing mass fraction during the dissolution process. Nevertheless, the
model would provide useful predictions for a screening level analysis. The mean relative
prediction errors for the data shown in Figure 26 are -43.1%. -15.6% and 4.1% for
Benzene, Toluene and Xylene, respectively

Table 15 lists the parameters used to model the behavior of the three component
mixture in a natural soil. In this case chromatographic effects are expected, so the

retartation coefficient was also fitted.
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Table 14. Parameters Used for Model Application in Glass Beads Experiments

Benzene Toluene Xylene
'Total Mixture Mass, mg 40 40 40
Component Mass Fraction 0.05 0.05 0.1
'‘Component Mass, mg 2 2 4
Pure Component Solubility, mg/L 1780 515 162
Time to Exhaust Mass, day 4.3805E-05 0.0001514 0.0004813
Initial Flush Concentration, mg/L 89 25.75 16.2
'Source Zone Cross-Section Area, cm’ 19 19 19
Source Zone Porosity, n 0.6 0.6 0.6
"Velocity, cm/day 45 45 45
Effective Cross-Section Area, cm’ 11.4 114 11.4
A, 1/day 18.2628 5.2839 1.66212
Transport Length, cm 27 27 27
“Dispersion Coefficient, cm’/day 0972 0972 0.972

1
Measurement

* Trial-and-Error

Figure 30 shows the simulated concentrations and the experimental results. The
column dispersivity was determined by a trial-and-error fit to the Benzene data then used
unchanged for the other two components. The required Peclet number is relatively high,
which is consistent with the findings of Rixey e a/. (1995). As the simulation for the glass
beads experiments, the results show that the model has reasonable predictive capacity

once the column dispersion coefficient is known. The model underpredicts the tail portion

of the data curves because the model does not account for changing mass fraction during




screening level analysis. The mean relative prediction errors for the data shown in Figure

-~

J are -72.3%, 24.3% and 58.2% for Benzene, Toluene and Xylene, respectively

Table 15. Parameters Used for Model Application in Soil Column Experiments

Benzene Toluene Xylene
Total Mixture Mass, mg 40 40 40
Component Mass Fraction 0.05 0.05 0.1
Component Mass, mg 2 2 4
Pure Component Solubility, mg/L 1780 515 162
Time to Exhaust Mass, day 4 3805E-05 0.0001514 0.0004813
[nitial Flush Concentration, mg/L 89 25.75 16.2
Source Zone Cross-Section Area, cm” 19 19 19
Source Zone Porosity, n 0.6 0.6 0.6
Velocity, cm/day 45 45 45
Effective Cross-Section Area, cm’ 11.4 11.4 11.4
A, 1/day 17.577945 5.08575375 | 0.6399162
Retardation Coefficient 1.4 1.6 25
Transport Length, cm 27 27 27
Dispersion Coefficient, cm®/day 0.93555 0.93555 0.93555
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6.4 Model Limitations

The proposed models are useful predicting the mass transport from exponentially
decaying contaminant sources, however, on the negative side, the models have limitations
common to all analytical expressions, namely the isotropic and homogeneous assumptions
along with an assumed constant velocity system. Because of this, the models cannot be

used for situations with complex hydrogeology. In addition, the approximation no.2 can

only be applicable when dispersion coefficients are smaller than 100 ft*/day




Chapter 7 Summary and Conclusions

The literature review shows that, even though a number of analytical models have
been developed to simulate the transport of contaminants in subsurface porous media, they
are limited to constant concentration sources. A need to have models dealing with
exponentially decaying contaminant sources is necessary since time varying are more
realistic. To comply with risk-based corrective action rules, industry needs to find a quick
way to estimate a concentration at some receptor downstream of a source which is likely
to be decaying over time. Laboratory experiments have been conducted to monitor
contaminant concentrations in leachate that supports exponentially-decaying-like source,
however, a complete mathematical model has not been posed, yet the approximate models
do posess some predictive capacity

Based on previous models, three models have been developed for an exponentially
decaying source. Mario’s (1974) model is the origin of this model, combined with the
concepts in Domenico-Robbins’ model (1984) is the principal to extend the one-
dimensional model into a three-dimensional model. These models are mainly composed
with exponential functions, errors functions and complimentary functions. FORTRAN
programs were coded to evaluate values of these models with which concentration profiles
downstream of a source were easily obtained. The models are regarded as an approximate
solution (approximation no.1) to an exponentially decaying source

Three exact solutions to exponentially decaying sources have also been found

against which the models could be tested. Mathematica (Wolfram, 1994) was employed
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to perform the required spatial integration and FORTRAN programs used to numerically

solve the integration with respect to time. In addition, other solutions to the same source
have been obtained and have been tested against the exact solutions. These solutions are
also approximate approaches (approximation no.2) and their advantage is that no
numerical integration is necessary, thus simplifying the evaluation procedure

The model (approximation no.1) and approximation no.2 have been tested against
the exact solutions for three test cases. The choosing of the test cases was based on the
selection of values of source decay rate, fluid velocity, and dispersion terms. The testing
results showed that the agreement between the exact model and the approximations was
excellent

Once the models were set up and tested, they were used for four applications. The
first application is to determine a concentration profile downstream of a source which has
exactly the form of the source term in the model. The second application is to make an
estimation of concentration at some receptor downstream of the source for an exposure
assessment calculation. This application could be very practical and useful in determining
clean-up strategies because when the source is an exponentially decaying input, the peak
concentration is different than that when it is a continuous source. The third application is
to predict the mass transport from a source which is a combination of an impulse and
exponentially decaying source. Finally, the models were used to predict the output
concentrations of a column test for an exponentially-decaying-like source and
concentrations simulated by the models were closed to those produced by the real

experiments.
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So far, based on the work done by the author in this project, the following

conclusions have been made

Accurate approximations for one-, two- and three-dimensional groundwater mass
transport are obtained. Solutions are developed for case in which the contaminant source
varies exponentially with time. The models presented in this thesis may used as a
screening instrument for a preliminary evaluation of the dilution potential of waste sites
prior to intensive investigations

Exact solutions to one-, two- and three-dimensional dispersion equations are
presented against which the proposed models have been tested and the agreement is
excellent. The proposed models are much easier to use, thus have advantage over the
exact solutions. In addition, compared to tedious and time-consuming numerical models,
the present models provide a quick and easy way of predicting the concentration
distributions downstream of the source

The models can be used to determine what changes in the source mass and
distribution are necessary to ensure that the PORC is less than the MSC at the nearest
receptor. Costly information on some potential unknowns could be extracted directly
from the concentration distribution using these models. For example, given data at
different points in time, field retardation coefficients can be ascertained and incorporated

into subsequent calculations.
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aluate models:

-1 L inition for functions
3 0 411.DEF -- Definition file for ocnel dll.DLL

DOWS
RELOAD MOVEABLE

MOVEABLE

L0

- N o 14 n £ila Far Funearis
1U=& complling file ror Tunctions
- 5 C AW GwW l.I0r

10=3 file for functions
link onel dll.obj, onel dll.dll, nul, /NOD c fORTRAN\1lib\ldllfew.lib,
onel dll.def
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to show the commands on the previous page screen
Microsoft(R) MS-DOS[R] Version 6.22
[C)Copyright Microsoft Corp 1981-1994.
C:AMSOFFICE>d:
DAYUAN\FORA\DLL>l fc JAw /Gw onel _dll.for
Microsoft [R) FORTRAN Optimizing Compiler Version 5.10
Copyright [c] Microsoft Corp 1982-1991. All rights reserved.
onel_dll.for
D:AYUAN\FOR\DLL>link one1_dll.obj, onel_dil.dil, nul, fNOD c\fORTRAN\lib\IdIife
w.lib, onel_dil.def
Microsoft (R) Segmented-Executable Linker Version 5.15
Copyright [C] Microsoft Corp 1984-1991. All rights reserved.
10=5 A spreadsheet to evaluate models (One-Dimensional)
T 5SS R e S S T
; Title: One-Dimensional Solutions
3 1. Data
4 V, fiday 10 *CALL("dyuan\for\difone1_dil.dIl" "one1_dIl" "beeeeeee™ $B%11,B13,3B%4 $B%5,5B%6 5857 36%8)
5 D 0.1 **CALL("d:yuan\for\dilone2_dil.dI","one2_dii" "beeeeee” $B8311,B13,5B%4, 58355, 58%6,5B%8)
6 C, mg/L 1000 ***CALL("d:wuan\for\dione3_dil.diI*,"oned_dIl","beeeese” $B511,813 56854, 5835 5B%6 -38%8)
7 Pl 3.14159
: RS, 1/day 0
:2 2. Solutions
12 T, day 100
13 Dist, ft *Exact, mg/L “*Appre.#1, mg/L ***Apprx.#2, mg/L
14 0 974.7126732 1000 1000
W 1 999.9999999 1000 1000
16 7 999.9999999 1000 1000
17 8 999.9999999 1000 1000
18 9 999,9999999 1000 1000
_1“9_ 10 999.9999999 1000 1000
20 20 999.9999999 1000 1000
T 40 999.9999999 1000 1000
22 60 999.9999999 1000 1000
23 80  999.9999999 1000 1000
24 100 999.9999999 1000 1000
25
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