CHAPTER 4
DISCUSSION OF Results 

Parameter Estimation Procedure(s)

The IUH parameters are estimated by simulating the DRH from the effective rainfall signal and adjusting values until some merit function is minimized.  The minimization algorithms used in this research is the downhill simplex method of Nelder and Mead (Nelder and Mead, 1965) as implemented by Press et al (Press et. al., 1986).  This method, while slow, is quite robust and faster than a grid search technique.  Refinement of values from the simplex algorithm is accomplished using Powell’s direction set method (Powell, 1964) for minimizing functions without calculating derivatives, again as implemented by Press et. al. (Press et. al., 1986).

The principal effort in this research was to adapt the two programs (as presented in Numerical Recipes) to function with the hydrologic data, adjust some of the stopping criteria (mostly reduced iteration exits), and manage the file I/O operations to keep data in memory during the optimization procedures rather that reading and writing to files.   This effort required about a year of programming and testing before the formal production runs were commenced.  

Merit Functions

The functions considered are the classic sum of squared errors (SSE), the root mean squared error (RMSE), and the maximum absolute deviation (MAD).

Mathematically these merit functions are:
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where Q is the discharge (L3/T),the subscripts O and S represent observed and simulated discharge, respectively, and N is the total number of values in a particular storm event.

Evaluating the Results

Figure 4.1 is an illustration of the result of such automated parameter estimation for a particular storm on the Ash Creek station in the Dallas area.  The other storms in other modules produce similar results.  In the figure, the model runoff and cumulative model runoff differ from the observed values, although qualitatively this particular example is not a bad model of the observed data.
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Figure 4.1 Plot of Observed and Model Runoff
Quantitative Measures

To quantify how well the model has represented the data we examined several measures (beyond the merit function) of acceptability.   These measures are evaluated after the minimization step and are not used in the fitting procedure, except to suggest manual restart adjustments.

Bias

Bias is the mean error defined as the residual between the observed and model value of runoff rate.  It is calculated using
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Fractional Bias

Fractional bias (FB) is a normalized mean error between the observed and predicted runoff rates (or cumulative values).  Fractional bias will be zero if the model and observed values are identical and will always fall in the range [-2,2].  The fractional bias is calculated using
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where 
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is the arithmetic mean of the observed runoff values, and 
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is the arithmetic mean of the model runoff values.

Fractional Variance

Fractional variance (FV) is a normalization of the mean bias of the sample variances of the observed and predicted values.  FV is calculated using
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where 
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is the sample variance of the observed runoff values, and 
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is the sample variance of the model runoff values.

Normalized Mean Square Error

Normalized mean square error emphasizes scatter in a data set.  NMSE is not biased towards models that over- or under-predict.  Smaller values of NMSE indicate better performance.  NMSE is calculated using
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Geometric Mean Bias

The geometric mean bias is calculated using
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Geometric Mean Variance

The geometric mean variance is calculated using
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In addition to these measures there also was quantified a peak discharge relative error (QB) and peak temporal bias (TB).  

Peak Relative Error

The peak discharge error is the %-difference in magnitude between the observed and model peak rate.  It is calculated from
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Peak Temporal Bias

The peak temporal bias (TB) is the difference in arrival time of the largest runoff rate in the model results as compared to the observed results.  It is calculated for each storm from
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A TB less than zero indicate that the model predicts a late peak (i.e. real peak comes sooner). While a positive value indicates that the model predicts an early peak.  We assume that a TB in the range [-30,30] (minutes) is a desirable value.

Acceptance Criteria

The performance of an exact model (that is faithful reproduction of observations) is that the FB, FV and NMSE should all be zero, and the MG and VG should both be one.  In the present work the following acceptance criteria were adopted, and other measures are simply reported.  The model (and its parameterization) is deemed acceptable if:
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These particular criteria were adopted using the reliability criteria suggested by Hanna and Heinhold (1985), Patel and Kumar (1998), and Kumar et al. (1999).   The meaning of acceptance is that the model is qualitatively useful (the picture) and meets these quantitative criteria.  The criteria are expected to identify if a particular model is useless, but they cannot choose among different models, except that if a particular model comes closer to the ideal measure values that all other models considered, then that is a non-inferior model.  Because all the models in this research are related to the gamma probability distribution, it is expected that they will all meet the acceptance criteria (after fitting), and our goal will be to select a sub-class (Gamma, Raleigh, Weibull, NRCS-DUH) as a most appropriate model for the Central Texas Data.

For the case presented in Figure 4.1 the values of the measures are listed in Table 4.1.

Table 4.1.  Acceptance analysis for Ash Creek, 1973, October 30 storm event.

	IUH Analysis for:  sta08057320_1973_1030.dat

	Measure
	Value
	Utility/Meaning
	Acceptable 

	SSE
	2.66 x 10-3
	Merit function value at exit
	N/A

	NMSE
	3.8 x 10-5
	
	Yes

	FB
	-6.15 x 10-3
	
	Yes

	FV
	0.26
	
	Yes

	MG
	0.99
	
	Yes

	GV
	1.00
	
	Yes

	QB
	24%
	Model peak is smaller than observed.
	N/A

	TB
	11
	Model peak occurs later than observed.
	N/A


The IUH model for this storm is
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where A is the watershed area (in appropriate units) and zo is the precipitation input depth for one time interval (in this case a one minute interval).  

The model hydrograph is obtained by the convolution of the above equation for each precipitation interval (~1400 minutes) with each input lagged. The numerical values are determined from the simplex minimization algorithm followed by a Powell refinement.  Some arithmetic is left incomplete for clarity to correspond with the parameters that appear in the generic equation for the hydrograph.

Comparison among Different IUH models

The utility of the acceptance testing is apparent when the different IUH models are considered.  Figures 4.2 through 4.6 are examples of the same storm analyzed using the five different models: Gamma, Rayleigh, Weibull, NRCS, and Commons, respectively.  Qualitatively speaking, all the models perform about the same; each captures the peak times reasonably well and each predicts the magnitude of the smaller peaks about the same.  The two large peaks are under-predicted in all the models but the degree of difference is different in each model.
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Figure 4.2 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the Gamma IUH model.
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Figure 4.3 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the Rayleigh IUH model.

The Rayleigh model, in contrast to the gamma model has much shorter decay times, thus shorter tails after the peak discharges.  In this particular storm it over-predicts the biggest peak somewhat, but certainly is a better estimate of peak magnitude than the gamma model.  
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Figure 4.4 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the Weibull IUH model.

The Weibull model performs more like the Rayleigh model with regards to peak discharge prediction as well as capture the decay behavior of the hydrographs after the peaks pass.  Like the other two models it has difficulty with the second large peak, but otherwise is not a qualitatively bad model.
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Figure 4.5 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the NRCS-IUH model.

The NRCS model is nearly indistinguishable from the Weibull model for this storm.  It too does a decent job of modeling both the peak magnitudes, times, and the decay of the hydrograph after the peaks.  Like the Weibull model, it too has a hard time with the second large peak.
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Figure 4.6 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the Commons IUH model.

The Commons model behaves a lot like the gamma model for this storm, again with the longer tails.

From the qualitative comparison it is difficult to select one model over another, but when the acceptance criteria are examined in this particular storm we can make a selection.  Table 4.2 is a list of the acceptance criteria (along with the parameter values which are of use for future storms).  From this table we can conclude that the Weibull and NRCS model have a lower NMSE by at least one order of magnitude over the other models and their QB and TB values are favorable (good prediction of time of peak as well as an acceptable flow bias).  For this particular storm it is a good model choice, and the NRCS model is probably the best. Such comparisons are made for the entire data base.

Table 4.2 List of the acceptance criteria (along with the parameter values which are of use for future storms).
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Model Acceptance Testing

The five different candidate models were used to analyze the rainfall-runoff data in the database. Two principle research questions were asked in this analysis: 

Is base flow separation necessary in these data? Is one particular model preferable to the other models for these data? 
Once the models were used to analyze the data, a set of IUH results for each condition was created (about 11 GB of data in 10 high-level directories). Table 4.3 is a summary table of the acceptance criteria used to select candidate models.
The base flow separation showed only a small improvement for the Gamma model, Rayleigh model and Weibull model. But the NRCS and Commoms model results showed better prediction without base flow separation which was not expected technically. In the future application base flow separation will still be used as a process of data preparation although for our data set did not make too much difference.   With the base flow separation, the Commons model has the lowest acceptance, and also the NRCS model did not have a good performance over all the dataset. Compared with other four models, the Weibull model has the best acceptable prediction. Therefore the Weibull model will be the main approach to analyze the Texas dataset.
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