CHAPTER 3

METHOD OF ANALYSIS

In this research the goal is to determine an IUH from observed rainfall-runoff data.  This research assumes that an IUH exists, and that it is the response function to a linear system, and the research task is to find the parameters (unknown coefficients) of the transfer function.

To accomplish this task a database must be assembled that contains appropriate rainfall and runoff values for analysis.  Once the data are assembled, the runoff signal is analyzed for the presence of any base flow, and this component of the runoff signal is removed.  Once the base flow is removed, the remaining hydrograph is called the direct runoff hydrograph (DRH).  The total volume of discharge is determined and the rainfall input signal is analyzed for rainfall losses.  The losses are removed so that the total rainfall input volume is equal to the total discharge volume.  The rainfall signal after this process is called the effective precipitation.  By definition, the cumulative effective precipitation is equal to the cumulative direct runoff.

If the rainfall-runoff transfer function and its coefficients are known a-priori, then the DRH signal should be obtainable by convolution of the rainfall input signal with the IUH response function.  The difference between the observed DRH and the model DRH should be negligible if the data have no noise, the system is truly linear, and we have selected both the correct function and the correct coefficients.  

If the analyst postulates a functional form (the procedure of this thesis) then searches for correct values of coefficients, the process is called de-convolution.  In the present work by guessing at coefficient values, convolving the effective precipitation signal, and comparing the model output with the actual output, we accomplish de-convolution.  A merit function is used to quantify the error between the modeled and observed output.  A simple searching scheme is used to record the estimates that reduce the value of a merit function and when this scheme is completed, the parameter set is called a non-inferior (as opposed to optimal) set of coefficients of the transfer function.
3.1. Database Construction

USGS small watershed studies were conducted largely during the period spanning the early 1960's to the middle 1970's. The storms documented in the USGS studies can be used to evaluate unit hydrographs and these data are critical for unit hydrograph investigation in Texas.  Candidate stations for hydrograph analysis were selected and a substantial database was assembled.

Table 3.1 is a list of the 88 stations eventually keypunched and used in this research.  The first two columns in each section of the table is the watershed and sub watershed name.  The urban portion of the database does not use the sub watershed naming convention, but the rural portion does.  The third column is the USGS station ID number.  

This number identifies the gauging station for the runoff data.  The precipitation data is recorded in the same reports as the runoff data so this ID number also identifies the precipitation data.  The last numeric entry is the number of rainfall-runoff records available for the unit hydrograph analysis. The details of the database construction are reported in Asquitn et. al (2004).
Table 3.1.Stations and Number of Storms used in Study
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3.2. Data Preparation
An additional processing step used in this thesis is the interpolation of the observed data into uniformly spaced, one minute intervals.  

3.2.1. Base Flow Separation

Hydrograph separation is the process of separating the time distribution of base flow from the total runoff hydrograph to produce the direct runoff hydrograph (McCuen 1998). Base flow separation is a time-honored hydrologic exercise termed by hydrologists as “one of the most desperate analysis techniques in use in hydrology” (Hewlett and Hibbert 1967) and “that fascinating arena of fancy and speculation” (Appleby 1970; Nathan and McMahon 1990). Hydrograph separation is considered more of an art than a science (Black 1991). Several hydrograph separation techniques such as constant discharge, constant slope, concave method, and the master depletion curve method have been developed and used. Figure 3.1 is a sketch of a representative hydrograph that will be used in this section to explain the different base flow separation methods.
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Figure 3.1 Representative Hydrograph

Constant-discharge method

The base flow is assumed to be constant regardless of stream height (discharge). Typically, the minimum value immediately prior to beginning of the storm is projected horizontally. All discharge prior to the identified minimum, as well as all discharge beneath this horizontal projection is labeled as “base flow” and removed from further analysis.  Figure 3.2 is a sketch of the constant discharge method applied to the representative hydrograph.  The shaded area in the sketch represents the discharge that would be removed (subtracted) from the observed runoff hydrograph to produce a direct-runoff hydrograph.
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Figure 3.2. Constant-discharge base flow separation.

The principal disadvantage is that the method is thought to yield an extremely long time base for the direct runoff hydrograph, and this time base varies from storm to storm, depending on the magnitude of the discharge at the beginning of the storm (Linsley et, al, 1949).  The method is easy to automate, especially for multiple peak hydrographs.

 Constant-slope method 

A line is drawn from the inflection point on the receding limb of the                               storm hydrograph to the beginning of storm hydrograph, as depicted on Figure 3.3. This method assumes that the base flow began prior to the start of the current storm, and arbitrarily sets to the inflection point.
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Figure 3.3. Constant-slope base flow separation.

The inflection point is located either as the location where the second derivative passes through zero (curvature changes) or is empirically related to watershed area.  This method is also relatively easy to automate, except multiple peaked storms will have multiple inflection points. 
Concave method

The concave method assumes that base flow continues to decrease while stream flow increases to the peak of the storm hydrograph.  Then at the peak of the hydrograph, the base flow is then assumed to increase linearly until it meets the inflection point on the recession limb.   

Figure 3.4 is a sketch illustrating the method applied to the representative hydrograph.  This method is also relatively easy to automate except for multiple peak hydrographs which, like the constant slope, method will have multiple inflection points.
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Figure 3.4 Concave-method base flow separations
Depletion curve method

This method models base flow as discharge from accumulated groundwater storage.  Data from several recessions are analyzed to determine the basin recession constant.  The base flow is modeled as an exponential decay term
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.  The time constant, k, is the basin recession coefficient that is inferred from the recession portion of several storms.  

Individual storms are plotted with the logarithm of discharge versus time.  The storms are time shifted by trial-and-error until the recession portions all fall along a straight line.  The slope of this line is proportional to the basin recession coefficient and the intercept with the discharge axis at zero time is the value for 
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.  Figure 3.5 illustrates five storms plotted along with a test storm where the base flow separation is being determined.  The storm with the largest flow at the end of the recession is plotted without any time shifting.  The recession is extrapolated from this storm as if there were no further input to the groundwater store.  The remaining storms are time shifted so that the straight line portion of their recession limbs come tangent to this curve.  By trial-and-error the master depletion curve can be adjusted and the storms time shifted until a reasonable agreement of all storms recessions with the master curve is achieved.  
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Figure 3.5 Master-Depletion Curve Method

(Data from McCuen, 1998, Table 9-2, pp 486)

Once the master curve is determined, then the test storm is plotted on the curve and shifted until its straight-line portion come tangent to the master curve, and the point of intersection is taken as the base flow value for that storm.  In the example in Figure 3.5, the base flow for the test event is approximately 9.1 cfs, the basin recession constant is 0.0045/hr, and the base flow at the beginning of the recession is 17 cfs.  Once the base flow value is determined for a particular test event, then base flow separation proceeds use the constant discharge method.    

The depletion curve method is attractive as it determines the basin recession constant, but it is not at all easy to automate. Furthermore, in basins where the stream goes dry (such as much of Texas), the recession method is difficult to apply as the first storm after the dry period starts a new master recession curve.  Observe in Figure 3.5 the storms used for the recession analysis span a period of nearly 40 years, and implicit in the analysis is that the basin recession constant is time invariant and the storms are independent.

The following Figure 3.6 is a multiple peak storm event from Dallas AshCreek station08057320. To automate the rest of data set using this method will be a challenge because of the change of master recession curve for different peaks. 
[image: image9.emf]File : #IUH_1_sta08057320_1977_0327.dat 

Dallas AshCreek

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

05001000150020002500

Time (minutes)

Accum. Depth (inches)

#RATE_PRECIP#RATE_RUNOFF

Figure 3.6 Multiple peak storms from Dallas module
Selection of Method to Employ

The principal criterion for method selection was based on the need for a method that was simple to automate because hundreds of events needed processing.  Appleby (1970) reports on a base flow separation technique based on a Ricatti-type equation for base flow.  The general solution of the base flow equation is a rational functional that is remarkably similar in structure to either a LaPlace transform or Fourier transform.  Unfortunately the paper omits the detail required to actually infer an algorithm from the solution, but it is useful in that principles of signal processing are clearly indicated in the model.

Nathan and McMahon (1990) examined automated base flow separation techniques.  The objective of their work was to identify appropriate techniques for determination of base flow and recession constants for use in regional prediction equations.  Two techniques they studied in detail were a smoothed minima technique and a recursive digital filter (a signal processing technique similar to Appleby’s work).  Both techniques were compared to a graphical technique that extends pre-event runoff (just before the rising portion of the hydrograph) with the point of greatest curvature on the recession limb (a constant-slope method, but not aimed at the inflection point).  They concluded that the digital filter was a fast objective method of separation but their paper suggests that the smoothed minima technique is for all practical purposes indistinguishable from either the digital filter or the graphical method.  Furthermore the authors were vague on the constraint techniques employed to make the recursive filter produce non-negative flow values and to produce peak values that did not exceed the original stream flow.  Press et.al. (1986) provide convincing arguments against time-domain signal filtering and especially recursive filters.  Nevertheless the result for the smoothed minima is still meaningful, and this technique appears fairly straightforward to automate, but it is intended for relatively continuous discharge time series and not the episodic data in the present application.
The constant slope and concave methods are not used in this work because the observed runoff hydrographs have multiple peaks. It is impractical to locate the recession limb inflection point with any confidence.   The master depletion curve method is not used because even though there is a large amount of data, there is insufficient data at each station to construct reliable depletion curves.  Recursive filtering and smoothed minima were dismissed because of the type of events in the present work (episodic and not continuous).  Therefore in the present work the discharge data are treated by the constant discharge method.

The constant discharge method was chosen because it is simple to automate and apply to multiple peaked hydrographs.  Prior researchers (e.g. Laurenson and O’Donell, 1969; Bates and Davies, 1988) have reported that unit hydrograph derivation is insensitive to base flow separation method when the base flow is not a large fraction of the flood hydrograph – a situation satisfied in this work.  The particular implementation in this research determined when the rainfall event began on a particular day; all discharge before that time was accumulated and converted into an average rate.  This average rate was then removed from the observed discharge data, and the result was considered to be the direct runoff hydrograph.   

The candidate models will be run in two cases with or without base flow separation, so one can compare how much the separation would effect the runoff prediction.

3.2.2. Effective Precipitation 
The effective precipitation is the fraction of actual precipitation that appears as direct runoff (after base flow separation).  Typically the precipitation signal (the hyetograph) is separated into three parts, the initial abstraction, the losses, and the effective precipitation.

Initial abstraction is the fraction of rainfall that occurs before direct runoff.  Operationally several methods are used to estimate the initial abstraction.  One method is to simply censor precipitation that occurs before direct runoff is observed.  A second method is to assume that the initial abstraction is some constant volume (Viessman, 1968).  The NRCS method assumes that the initial abstraction is some fraction of the maximum retention that varies with soil and land use (essentially a CN based method).

Losses after initial abstraction are the fraction of precipitation that is stored in the watershed (depression, interception, soil storage) that does not appear in the direct runoff hydrograph.  Typically depression and interception storage are considered part of the initial abstraction, so the loss term essentially represents infiltration into the soil in the watershed.  Several methods to estimate the losses include: Phi-index method, Constant fraction method, and infiltration capacity approaches (Horton’s curve, Green-Ampt model).
Phi-index model
The -index is a simple infiltration model used in hydrology. The method assumes that the infiltration capacity is a constant (in/hr). With corresponding observations of a rainfall hyetograph and a runoff hydrograph, the value of  can in many cases be easily guessed. Field studies have shown that the infiltration capacity is greatest at the start of a storm and that it decreases rapidly to a relatively constant rate. The recession time of the infiltration capacity may be as short as 10 to 15 minutes. Therefore, it is not unreasonable to assume that the infiltration capacity is constant over the entire storm duration. When the rainfall rate exceeds the capacity, the loss rate is assumed to equal the constant capacity, which is called the phi () index. When the rainfall is less than the value of , the infiltration rate is assumed to equal to the rainfall intensity.

Mathematically, the phi-index method for modeling losses is described by 

F(t)= I(t), for I(t) < 



3.1)
F(t)=  ,for I(t)>





where F(t) is the loss rate, I(t) is storm rainfall intensity, t is time, and  is a constant.
If measured rainfall-runoff data are available, the value of  can be estimated by separating base flow from the total runoff volume, computing the volume of direct runoff, and then finding the value of  that results in the volume of effective rainfall being equal to the volume of direct runoff. A statistical mean phi-index can then be computed as the average of storm event phi values. Where measured rainfall-runoff data are not available, the ultimate capacity of Horton’s equation, fc, might be considered.
Horton’s model 

Infiltration capacity (fp) may be expressed as
fp = fc + (fo – fc) e-βt,




(3.3)
where fo = maximum infiltration rate at the beginning of a storm event and reduces to a low and approximately constant rate of fc as infiltration process continues and the soil is saturated β = parameter describing rate of decrease in fp.

Factors assumed to be influencing infiltration capacity, soil moisture storage, surface-connected porosity and effect of root zone paths follow the equation
f = aSa1.4+ fc,





(3.4)
where f = infiltration capacity (in/hr),
a = infiltration capacity of available storage ((in/hr)/(in)1.4)

(Index of surface connected porosity),
Sa = available storage in the surface layer in inches of water equivalent (A-horizon in agricultural soils - top six inches).

Factor fc = constant after long wetting (in/hr).
The modified Holton equation used by US Agricultural Research Service is
f = GIa Sa1.4 +fc,




(3.5)
where GI = Growth index - takes into consideration density of plant roots which assist infiltration (0.0 - 1.0).

Green-Ampt Model

Green & Ampt (1911) proposed the simplified picture of infiltration shown in Figure 3.7.

[image: image10.png]
Figure 3.7.Variables in the Green-Ampt infiltration model. The vertical axis is the distance from the soil surface; the horizontal axis is the moisture content of the soil. 

(Source: Applied Hydrology by Chow/Maidement/Mays 1988)

The wetting front is a sharp boundary dividing soil below with moisture content i from saturated soil done with moisture content i above. The wetting front has penetrated to a depth L in time t since infiltration began. Water is ponded to a small depth h0 on the soil surface. The method computes total infiltration rate at the end of time t, with the following equation,
F(t) = Kt + ψ Δθ ln{ 1 + F(t)/(ψ Δθ)},

(3.6)
where

K = Hydraulic conductivity,


t = time in hrs,


F(t) = Total infiltration at the end of time t,


Ψ = Wetting front soil suction head, and


Δθ = increase in moisture content in time t.

Unlike the SCS curve method, this method gives the total amount of infiltration in the soil at the end of a particular storm event. Depending on this value and the total amount of precipitation, we can easily calculate the amount of runoff.
Constant Fraction Model

The constant fraction model simply assumes that some constant ratio of precipitation becomes runoff; the fraction is called a runoff coefficient.  At first glance it appears that it is a rational method disguise, but the rational method does not consider storage and travel times.  Thus in the rational method, if one doubles the precipitation intensity, and halved the duration, one would expect the peak discharge to remain unchanged, while in a unit hydrograph such changes should have a profound effect on the hydrograph.  As a model, the method is simple to apply, essentially 
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(3.7)
where 
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= the runoff coefficient,
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= the effective precipitation,
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= the raw precipitation,
            A = drainage area.        

The first equation states that the effective precipitation is a fraction of the raw precipitation, while the second states that the total effective precipitation volume should equal the total direct runoff volume.

3.3. Summary of Data Preparation

Base flow separation was accomplished using the constant discharge method because it is amenable to automation.  We analyzed the data with and without a separation to test whether separation was necessary in our data set.  Effective precipitation was always modeled using the constant fraction model, because of the need to automate and also because of the sheer magnitude of the dataset, but the fraction was left as a fitting constant. Ideally, the fitted result should preserve the required mass balance (precipitation volume = runoff volume).

An important detail in this research was the conversion of the original data into “pseudo data” for IUH analysis.   The time-step length used in the research was one-minute.  This time length was chosen because it is the smallest increment that can be represented in the current DATE_TIME format in the database.  It should be noted that there are very few actual one-minute intervals in the original data, so linear interpolation was used to convert the cumulative precipitation into one-minute intervals, then numerical differentiation is performed to obtain the rainfall rates.  The resulting units are inches per minute.  

Figure 3.8 is a sketch showing the incremental rate and the cumulative depth relationship.  The cumulative depth scale is the left vertical scale and the incremental rate scale is the right vertical scale.  Mathematically the cumulative rainfall distribution is the integral of the incremental rainfall distribution (or rainfall density) over the entire rainfall event.  Equation 3.8 expresses this relationship; integration over the entire number line is intended to indicate the entire lifetime of the individual rainfall event.  
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(3.8)
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Figure 3.8. Cumulative Precipitation and Incremental Precipitation Relationship

In Figure 3.8 the cumulative precipitation, P(t), is indicated by the open circles, while the rate, p(t), is indicated by the open squares.  In practice only the cumulative depth is recorded as a function of time; so to determine the rate we simply differentiate the cumulative precipitation.  
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The present work used a simple centered differencing scheme, except at the first and last time interval, when forward and backward differencing were used, respectively. 
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(3.10)
Details of the “pseudo data” conversion were reported by Cleveland et. al, (2003). The 1-minute data for roughly 1642 storms are located on a University of Houston server and can be publicly accessed at the URL associated with this citation.

3.4. NRCS Unit Hydrograph 
The Natural Resources Conservation Service (NRCS), formerly the Soil Conservation Service, developed a unit hydrograph (UH) in the 1950s. This UH was used to develop storm hydrographs and peak discharges for design of conservation measures on small agricultural watersheds.

Mockus (1956) discussed development of the standard NRCS unit hydrograph and the peak rate equation,
qp=KAQ/Tp,





(3.11)
where the peak discharge rate qp is a function of drainage area A, direct runoff volume Q, factor K, and time to peak of the unit hydrograph Tp. He indicated that the peak rate factor (PRF) of K is equal to 

K=1290.6/(1+H),




(3.12)
where H is the ratio of the time of recession to the time peak (Tr/ Tp). He also indicated that K was a function of the UH shape and that 3/8 of the storm runoff volume in the rising limb and 5/8 in the recession limb were typical of small agricultural watersheds. K also includes a conversion factor to make the equation dimensionally correct.
Mockus used the triangular UH shape in development of above two equations. It appears that Mockus analyzed many flood hydrographs to justify the selection of the peak rate factor K of 484. A UH with PRF of K of 484 was felt to be representative of small agricultural watersheds in the U.S.

NRCS-DUH (Gamma approximation)

The NRCS Dimensionless Unit Hydrograph (USDA, 1985) used by the NRCS (formerly the SCS) was developed by Victor Mockus in the late 1940’s. The SCS analyzed a large number of unit hydrographs for watersheds of different sizes and in different locations and developed a generalized dimensionless unit hydrograph in terms of t/tp and q/qp where, tp is the time to peak. The point of inflection on the unit graph is approximately 1.7 the time to peak and the time to peak was observed to be 0.2 the base time (hydrograph duration) (Tb).

The functional representation is presented as tabulated time and discharge ratios, and as a graphical representation.   Table 3.2 is the tabulation of the NRCS DUH from the National Engineering Handbook.
Table3.2. Ratios for dimensionless unit hydrograph and mass curve

	Time ratios

(t/Tp)
	Discharge ratios

(q/qp)
	Mass Curve Ratios

(Q/Qp)

	 0.0
	0.0
	0.000

	0.1
	0.03
	0.001

	0.2
	0.10
	0.006

	0.3
	0.19
	0.012

	0.4
	0.31
	0.035

	0.5
	0.47
	0.065

	0.6
	0.66
	0.107

	0.7
	0.82
	0.163

	0.8
	0.93
	0.228

	0.9
	0.99
	0.300

	1.0
	1.00
	0.375

	1.1
	0.99
	0.450

	1.2
	0.93
	0.522

	1.3
	0.86
	0.589

	1.4
	0.78
	0.650

	1.5
	0.68
	0.700
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Figure3.9. Plot of DUH and Mass Curve
Figure 3.9 is a plot of these ratios.  This figure is identical to Figure 16.1 in the National Engineering handbook (except this figure is computer generated).   

The IUH analysis assumed that the hydrograph functions are continuous and the database was analyzed using discrete values calculated from continuous functions.  Rather than use the NRCS tabulation in this work, the fit was tested of a function of the same family (the gamma distribution) as the IUH function and this function was used in place of the NRCS tabulation.  A similar approach was used by Singh (2000) to express common unit hydrographs (Snyder’s, SCS, and Gray’s) by a gamma distribution.

The gamma function used to fit the tabulation is 
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(3.13)
The variables  and k are unknown, and were determined by minimization of the sum of squared errors between the tabulation and the model (the function) by selection of numerical values for the unknown parameters. “Excel solver” was used to perform the minimization.  The values for parameters  and k were 3.88, 4.81 and 1.29 respectively. So the NRCS DUH approximation is
. 

(3.14)
Figure 3.10 is a plot of the model and tabulation, the variable x in the equations is the dimensionless time.  Qualitatively the fit is good.  The maximum residual(s) occur early in dimensionless time and at 60% of the runoff duration, but the magnitudes are quite small, and thus this model of the NRCS DUH is deemed acceptable for use.
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Figure3.10. Plot of Tabulated and Gamma-Model DUH
A Chi-square fitness test was performed to further support the decision to use the model in lieu of the tabulation.  The test statistic for the chi-square test was calculated as
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(3.15)
The test statistic is 0.5323.  For two degrees of freedom and 90 % confidence limits the value was 10.6 which is greater than the test statistic (0.5323) therefore the hypothesis (model) represent the observed values.

The NRCS DUH as presented in the NEH integrates to a little over 1.4 and thus it is not a true unit hydrograph as presented.  It is likely that it originally was a UH; then it was adjusted procedurally so that the peak value of the dimensionless distribution is 1.0 (thus the factor that scales the integral correctly is imbedded in the qp value).  The research assumes that all unit graphs and the accompanying functional representations of IUHs integrate to one; so in this work the NRCS DUH approximation is adjusted by dividing by the integral of the original DUH, in this case the value is 1.2903.  Therefore the final approximation to the NRCS DUH as a functional representation useful in IUH analysis is
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(3.16)
Or with all the constants evaluated and simplified and expressed in the NRCS terminology the NRCS DUH (as an IUH function) is
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(3.17)
3.5. Commons Hydrograph

Commons (1942) developed a dimensionless unit hydrograph for use in Texas, but details of how the hydrograph were developed are not reported.  The labeling of axes in the original document suggests that the hydrograph is dimensionless.  For the sake of completeness in this work, an approximation was produced for treatment as another transfer function by fitting a three-gamma summation model.  Essentially there were three integrated gamma models with different peaks and weights to reproduce the shape of Commons’ hydrograph.  The Commons hydrograph is quite different in shape after the peak than other dimensionless unit hydrographs in current use (i.e. NRCS Dimensionless Unit Hydrograph) – it has a very long time base on the recession portion of the hydrograph.

[image: image25.png]
Figure 3.11. Hydrograph developed by trial to cover a typical flood
Circles are tabulation from digitization of the original figure.  Curve is a Smooth Curve Approximation. Figure 3.11 is Commons’ hydrograph reproduced from a manual digitization.  The smooth curve is given by the following equation that was fit by trial and error.  
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(3.18)
The numerical values are simply the result of the fitting procedure.  The time axis was reconstructed (in the fitting algorithm) so that the tp parameter could be left variable for consistency with the other hydrograph functions.  The tabulated function integrates to approximately 1160; thus the function above is divided by this value to produce a unit hydrograph distribution.

3.6. Gamma Synthetic Hydrographs
The gamma distribution is given in the equation
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In the equation C equals 
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 is called the gamma function. Values can be found tabulated in mathematical handbooks. The gamma distribution is similar in shape to the Poisson distribution that is given the form as 
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The gamma distribution differs from the Poisson distribution is that it has two parameters instead of the single parameter of the Poisson. This allows the curve to take on a greater variety of shapes than the Poisson distribution. The parameter a is a shape parameter while b is a scale parameter. The shape of the Gamma distribution is similar to the shape of a unit hydrograph, so many researchers started looking for the application of the Gamma distribution into hydrograph prediction. This first started with Edson (1951), who presented a theoretical expression for the unit hydrograph assuming Q to be proportional to 
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(3.20)
where Q= discharge in cfs at time t; A= drainage area in square miles; x and y = parameters that can be represented in terms of peak discharge; and 
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is the gamma function of (x+1). Nash (1959) and Dooge (1959), based on the concept of n linear reservoirs with equal storage coefficient K, expressed the instantaneous UH (IUH) in the form of a Gamma distribution as 
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(3.21)
in which n and K= parameter defining the shape of the IUH; and q=depth of runoff per unit time per unit effective rainfall. These parameters have been referred to as the Nash model parameters in the subsequent literature.

Previous attempts to fit a Gamma distribution to a hydrograph were by Croley(1980), Aron and White (1982), Hann et al. (1994), and Singh (1998). The procedure given by Croley (1980) to calculate n for known values of qp and tp requires programming to iteratively solve for n. Croley also proposed procedures to obtain a UH from other observable characteristics. The method by Aron and White (1992) involves reading the values from a graph, in which errors are introduced. Based on their methods, McCuen (1989) listed a step-by-step procedure to obtain the UH, which maybe briefly described by the following equations,
n=1.045+0.5f+5.6f2+0.3f3,



(3.22)
in which   
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(3.23)
where V=total volume of effective rainfall. An equation provided by Singh (1998) to obtain the value of n may be written,
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where 
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is the peak runoff depth per unit time per effective rainfall. Singh observed that the error in n obtained from the equation: 
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is 0.53% when 
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3.7. Weibull Distribution

Historically a two-parameter Weibull distribution is employed to define the configuration of a natural hydrograph of direct runoff and is given in the following forms as (Canavos, 1984)
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(3.26)
where Q is the discharge ordinate of the natural hydrograph corresponding to the time t after the commencement of direct runoff, n is the dimensionless shape factor, and k is the storage time constant. Both n and k reflect the basin characteristics and are related to the time to peak tp in the following manner.
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The constant of proportionality B in Equation (3.26) is evaluated as 
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where Qp is the peak discharge and e is the base of the natural logarithms. Combining Equation (3.26), (3.27) and (3.28) yields
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(3.29)
Equation (3.29) is the desired form of the dimensionless Weibull distribution as used in this study. Analytical formulation of the parameter n can be developed as follows. Designating 
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(3.30)
Taking natural logarithms of both sides of the above equation and solving for n, one obtains 
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(3.31)
The value of n can be obtained from Equation (3.31) through graphical means. Once the value of n has been ascertained properly, the value of k can then be determined from Equation (3.31) conveniently.

3.8. Reservoir Elements

An alternative way to construct the hydrograph functions is to model the watershed response to precipitation as the response from a cascade of reservoirs.   The response function is developed as the response to an impulse of input, and the response to a time series of inputs is obtained from the convolution integral. The end result is the same, a function that is a distribution function, but the parameters have a physical interpretation.  The kernel (response function) to an impulse in this work is an instantaneous unit hydrograph (IUH).   The conceptual approach for a cascade of reservoirs is well studied and works well for many unit hydrograph analyses (e.g. Nash, 1958; Dooge, 1959; Dooge, 1973; Croley, 1980). In this work the cases are examined where a Gamma, Rayleigh, and Weibull distribution govern the individual reservoir element responses, respectively.  In addition, we have also converted the NRCS-DUH into its own response model (a special case of gamma).
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Figure 3.12 Cascade of Reservoir Elements Conceptualization

Figure 3.12 is a schematic of a watershed response conceptualized as a series of identical reservoirs without feedback.  The outflow of each reservoir is related to the accumulated storage in the reservoir.   The behavior of the individual reservoir elements determines whether the model becomes a Gamma, Rayleigh, or Weibull distribution.

Figure 3.13 is a schematic of a reservoir response element.   In the sketch, the element area is A, the accumulated excess storage is z, and the outlet flow area is a.
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Figure 3.13 Reservoir Element Model

The outlet discharge is the product of the outlet area, a, and the flow velocity v.   The input is pe.  

3.8.1 Linear (Gamma) Reservoir Element

The first response model is a linear reservoir model, where the reservoir discharge is proportional to the accumulated depth of input.  The constant of proportionality is c.  The discharge equation is 
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(3.32)
 A mass balance of the reservoir is


[image: image55.wmf]acz

dt

dz

A

-

=

.




(3.33)
The input pe is applied over a very short time interval; so the resulting depth, before outflow begins is zo.  The solution to this ODE (Ordinary Differential Equation) is 
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(3.34)
The ratio A/ac is called the residence time of the linear reservoir.  
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Thus in terms of residence time the accumulated depth in a linear reservoir is
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  (3.36)
The discharge rate is the product of this function and the constant of proportionality
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  (3.37)
[image: image60.png]
Figure 3.14 Linear Reservoir Model 
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This particular watershed model has the following properties:

· Cumulative discharge is related to accumulated time.

· Instantaneous discharge is inversely related to accumulated time.

· The peak discharge is proportional to the precipitation input depth, and occurs at time zero.

· The peak discharge is proportional to the watershed area.

3.8.2 Rayleigh Reservoir Element
The next response model assumes that the discharge is proportional to both the accumulated excess precipitation (linear reservoir) and the elapsed time since the impulse of precipitation was added to the watershed (translation reservoir).  The constant of proportionality in this case is 2c.
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A mass balance for this model is
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The solution (using the same characteristic time re-parameterization as in the linear reservoir model) is
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  (3.40)
The discharge function is 
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(3.41)
This result is a Rayleigh distribution weighted by the product of watershed area and the initial charge of precipitation (hence the name Rayleigh reservoir).  The discharge function for unit area and depth integrates to one; thus it is a unit hydrograph, and it satisfies the linearity requirement, thus it is a candidate IUH function.
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Figure 3.15. Rayleigh Reservoir Watershed Model. 
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Of particular interest, the Rayleigh model qualitatively looks like a hydrograph should, with a peak occurring some time after the precipitation is applied (unlike the linear reservoir) and a falling limb after the peak with an inflection point.  Examination of the discharge function includes the following relationships:

· Cumulative discharge is proportional to accumulated time.

· Instantaneous discharge is proportional to accumulated time until the peak, then inversely proportional afterwards.

· The peak discharge is proportional to the precipitation input depth, and occurs at some non-zero characteristic time.

· The peak discharge is proportional to the watershed area.

3.8.3 Weibull Reservoir

The Weibull response model assumes that the discharge is proportional to both the accumulated excess precipitation (linear reservoir) and the elapsed time raised to some non-zero power since the impulse of precipitation was added to the watershed (translation reservoir).  The constant of proportionality in this case is pc.
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A mass balance for this model is
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The solution (using the same characteristic time re-parameterization as in the linear reservoir model) is


[image: image70.wmf])

)

(

exp(

)

(

0

p

t

t

z

t

z

-

=

.



  (3.44)
The discharge function is 
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 (3.45)
This result is a Weibull distribution weighted by the product of watershed area and the initial charge of precipitation (hence the name Weibull reservoir).  The discharge function for unit area and depth integrates to one, thus it is a unit hydrograph, and it satisfies the linearity requirement, thus it is a candidate IUH function.

These three models constitute the reservoir element models used in this research.  

3.9. Cascade Analysis

Figure 3.12 is the schematic of a cascade model of watershed response.  In our research we assumed that the number of reservoirs “internal” to the watershed could range from 0 to +
[image: image72.wmf]¥

.  Our initial theoretical development assumed integral values, but others have suggested fractional reservoirs can be incorporated into the theory.  To develop the cascade model(s), start with the mass balance for a single reservoir element, and the discharge from this reservoir becomes the input for subsequent reservoirs and we determine the discharge for the last reservoir as representative of the entire watershed response.
3.9.1. Gamma Reservoir Cascade

Equation 3.46, where zi represents the accumulated storage depth, ac is the reservoir discharge coefficient, qi is the outflow for a particular reservoir, and A is the watershed area, represents the discharge functions for a cascade of linear reservoirs that comprise a response model.   The subscript, i , is the identifier of a particular reservoir in the cascade.
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(3.46)
Equation 3.47 is the mass balance equation for a reservoir in the cascade.  In Equation 3.46, the first reservoir receives the initial charge of water, zo over an infinitesimally small time interval, essentially an impulse, and this impulse is propagated through the system by the drainage functions.
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(3.47)
The entire watershed response is expressed as the system of linear ordinary differential equations, Equation 3.48, and the analytical solution for discharge for this system for the N-th reservoir is expressed in Equation 3.49. 
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(3.48)
The result in equation 3.48 is identical to the Nash model (Nash 1958) and is incorporated into many standard hydrology programs such as the COSSARR model (Rockwood et. al. 1972).   The factorial can be replaced by the Gamma function (Nauman and Buffham, 1983) and the result can be extended to non-integer number of reservoirs.
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(3.49)

To model the response to a time-series of precipitation inputs, the individual responses (Eq. 3.49) are convolved and the result of the convolution is the output from the watershed.   If each input is represented by the product of a rate and time interval (zo(t) = qo(t) dt) then the individual response is (note the Gamma function is substituted for the factorial)
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(3.50)
The accumulated responses are given by
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(3.51)
Equation 3.51 represents the watershed response to an input time series.  The convolution integral in Chapter 7 in Chow, et al (1988), an overview of that work, is repeated as Equation 3.52,
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(3.52)
The analogs to our present work are as follows (Chow’s variable list is shown on the left of the equalities):
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(3.53)
We call the kernel ( u(t –) ) for the linear reservoir a gamma response because the kernel is essentially a gamma probability distribution.  The reason for representing the function as being derived from a cascade is that this derivation provides a “physical” meaning to the distribution parameters.

The analysis is repeated for the Rayleigh and Weibull distributions.                                                      

3.9.2. Rayleigh Reservoir Cascade

A Rayleigh response is developed in the same fashion as the gamma, except the Rayleigh reservoir element is used instead of the linear (gamma) response.  The discharge and mass balances for the Rayleigh case are given as Equations 3.54 and 3.55, respectively,  
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(3.55)
The entire watershed response is expressed as the system of linear ordinary differential equations in Equation 3.56.
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The analytical solution for any reservoir is expressed in Equation 3.57. 
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Equation 3.58 gives the convolution integral using this kernel.     
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(3.58)
This distribution is identical to Leinhard’s  “hydrograph distribution” (Leinhard, 1972) that he developed from statistical-mechanical analysis. 

3.9.3. Weibull Reservoir Cascade
A Weibull response is developed in the same fashion as the gamma by substitution of the Weibull reservoir element in the analysis.  The discharge and mass balances are given as Equations 3.59 and 3.60, respectively,

[image: image86.wmf]t

i

t

i

actz

Aq

,

,

2

=

,




(3.59)
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(3.60)
The entire watershed response is again expressed as a system of linear ordinary differential equations; Equation 3.61.
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The analytical solution to this system for any reservoir is expressed in Equation 3.62,
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(3.62) The accumulated responses to a time series of precipitation input are given by

Equation 3.63.
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(3.63)
The utility of the Weibull model is that both the linear cascade (exponential) and the Rayleigh cascade are special cases of the generalized Weibull model, thus if we program a Weibull-type model as the IUH, we can investigate other models by restricting parameter values.  The parameters have the following impacts on the discharge function:

1. The power term controls the decay rate of the hydrograph (shape of the falling limb).  If p is greater than one, then decay is fast (steep falling limb); if p is less than one then the decay is slow (long falling limb).

2. The 
[image: image91.wmf]t

 term controls the scale of the hydrograph.  It simultaneously establishes the location of the peak and the magnitude of the peak.  

3. The reservoir number, N, controls the lag between the input and the response, as well as the shape of the hydrograph.

The next chapter describes how the distribution parameters are determined from observations.  
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		gamma (2/(L^.5))		1.1547				Mean=		0.378		For a exponential fit:
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														b		4.1455511438

		t/Tp		q/qp		Gamma F		diff^2		Chi-Sqr Test		Sum of Exponentials		diff1^2
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		0.5		0.47		0.4972373712		0.0007418744		0.0014919924		0.4960327388		0.0006777035
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		0.7		0.82		0.8236842256		0.0000135735		0.000016479		0.8252293531		0.0000273461

		0.8		0.93		0.9288656619		0.0000012867		0.0000013853		0.9303555611		0.0000001264

		0.9		0.99		0.9864955813		0.000012281		0.0000124491		0.9871181008		0.0000083053

		1		1		0.9992837924		0.000000513		0.0000005133		0.9986542563		0.000001811

		1.1		0.99		0.9742219738		0.0002489461		0.0002555333		0.9723853519		0.0003102758

		1.2		0.93		0.9202369139		0.0000953178		0.0001035797		0.9175510065		0.0001549774
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